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Motional heating of ions in microfabricated traps is one of the open challenges hindering experimental
realizations of large-scale quantum processing devices. Recently, a series of measurements of the heating rates
in surface-electrode ion traps characterized their frequency, distance, and temperature dependencies, but our
understanding of the microscopic origin of this noise remains incomplete. In this work we develop a theoretical
model for the electric field noise which is associated with a random distribution of adsorbed atoms on the
trap electrode surface. By using first-principles calculations of the fluctuating dipole moments of the adsorbed
atoms we evaluate the distance, frequency, and temperature dependence of the resulting electric field fluctuation
spectrum. Our theory reproduces correctly the d−4 dependence with distance of the ion from the electrode surface
and calculates the noise spectrum beyond the standard scenario of two-level fluctuators by incorporating all the
relevant vibrational states. Our model predicts a regime of 1/f noise which commences at roughly the frequency
of the fundamental phonon transition rate and a thermally activated noise spectrum which for higher temperatures
exhibits a crossover as a function of frequency.
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I. INTRODUCTION

Laser-cooled trapped ions represent one of the most promis-
ing systems for the implementation of large-scale quantum
information processing [1–3]. Most of the basic requirements
for building a quantum computer—the so-called DiVicenzo
criteria [4]—have been demonstrated in the laboratory and
the generation of entangled states of up to 14 ions has been
achieved [5]. Many experimental efforts are now focused
on the development of miniaturization and microfabrication
techniques for ion traps [6–12] to realize more efficient and
also fully scalable quantum computing architectures [9,13].
However, when devices are miniaturized, physics at the short
distance becomes a challenge. This is evident in measurements
of Casimir force (of either sign) [14,15] or of noncontact
friction [16–18]; in the case of trapped ions it manifests
itself in the appearance of an excess (“anomalous”) heating
rate as the trap-surface distance is decreased [8,11,12,19–23].
Therefore, a detailed understanding of the origin of this
noise will be essential for the future progress of trapped-ion
quantum computing, as well as the development of several
hybrid quantum computing approaches where, for example,
ions [24,25], Rydberg atoms [26], polar molecules [27], or
charged nanomechanical resonators [28] are operated in the
vicinity of solid-state systems.

Theoretical attempts to explain the noise-induced heating
of trapped ions—its distance, frequency, and temperature
dependence—have been largely phenomenological. The most
common noise source in conductors, the Johnson-Nyquist
noise from the trap electrodes or circuitry, has a frequency-
independent spectrum and decays as d−2 with increasing trap-
surface distance d. Experimental data, however, is consistent
with a d−4 scaling for a large variety of trapping geometries
(see, e.g., Ref. [11] for a recent review) and suggests a
1/f or even stronger variation over the observed range

of frequencies [8,21]. Therefore, since the early work of
Turchette et al. [19], the influence of randomly oriented
dipole domains (patch potentials) has been recognized as the
leading source for motional heating of ions. The main assump-
tion of the patch potential model, namely, that the electric
noise originates from uncorrelated sources, explains correctly
the observed distance dependence of the heating rate, but
the model does not otherwise provide further insight into the
physical origin of these fluctuations. More recent experiments
with superconducting ion traps [20] strongly support the view
that the source of anomalous heating is not in the bulk, but is a
surface phenomenon, and detailed temperature studies [8,22]
reveal that thermally activated processes are at play.

In this work, we develop a microscopic theory of anomalous
heating in ion traps and other charged systems. The central
assumption in this work is that the electric field noise in ion
traps is produced by randomly distributed fluctuating dipoles
on the gold electrode surface, which, in turn, are formed by
surface adsorption of atomic impurities from the atmosphere
or in fabrication. This assumption is in agreement with the
experimental observations mentioned above and is supported
by the fact that in many traps the heating rate increases over
time, especially in the trap loading zone [11].

In our model, fluctuations of the adatom dipole moment
arise from phonon-induced transitions between multiple bound
surface states. We use analytic models supported by exact
density functional calculations to analyze the adatom surface
interaction potentials and the resulting time variations of the
induced dipole moment. From this analysis we obtain the
electric field fluctuation spectrum, and thereby the ion heating
rate, as a function of the relevant microscopic parameters
of the atom-surface interaction. Our calculations go beyond
the standard scenario of two-level fluctuators [8,11,29,30] and
we show that the inherent multilevel structure of the surface
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FIG. 1. (Color online) (a) Fluctuating dipoles associated with a
random distribution of adsorbed atoms lead to heating of an ion
trapped at distance d above the surface. (b) Dependence of the electric
field fluctuation spectrum SE(ωt ) (in arbitrary units) as a function of
the trap-surface distance d . The results have been obtained from a
numerical simulation of the electric field from N = 100 uncorrelated
dipoles distributed randomly over an area of 100 × 100 × d2

0 . d0 is
the minimum separation between two dipoles.

potential leads to a characteristic frequency and temperature
dependence, where even for a single atom a region with 1/f

scaling emerges due to a distribution of different transition
rates. The predicted distance dependence and heating rates are
in good agreement with measurements. More importantly, the
characteristic features of our noise model could provide more
insight into the microscopic origin of anomalous heating and
be tested against other potential mechanisms [31].

II. ANOMALOUS HEATING OF TRAPPED IONS

Figure 1(a) shows a typical experimental setting where
a single ion of mass mI and charge q is trapped at a
distance d above a metal surface using combined static and
inhomogeneous rf electric fields (Paul traps). For various
designs of surface patterned microtraps [6–12], the separation
d is between 20 and 100 μm. When the ion is laser cooled
the vibrational ground-state fluctuating electric fields couple
to the motion of the ion and lead to an increase of the average
vibrational occupation number n̄ with a characteristic rate [19]

˙̄n = q2

2mIh̄ωt

SE(ωt ). (1)

Here ωt is the trapping frequency of the ion, typi-
cally in the range ωt/2π ≈ 0.1–10 MHz, and SE(ω) =∫ ∞
−∞ dτ 〈δE(τ )δE(0)〉eiωτ is the spectrum of the fluctuating

electric field δE(t) (projected onto the trapping axis) at the
position of the trap. The heating rate (1) can be measured in
experiments and thereby provides an accurate probe of the
electric field noise over the accessible distance and frequency
range.

In our model we consider electric fields originating from a
distribution of fluctuating dipoles �μi(t) which are associated
with individual atoms adsorbed on the surface at positions �ri . In
accordance with previous “patch potential” models [19,32] the
assumption of uncorrelated noise sources leads to the expected
distance dependence d−4. This is illustrated in Fig. 1(b), where
we have numerically evaluated the electric field noise of N =
100 randomly distributed dipoles on a surface. More explicitly,
by averaging over a homogenous distribution of atoms with
area density σ the electric field noise spectrum at the position
of the ion can be written as

SE(ωt ) = 3

8

σ

(4πε0)2

Sμ(ωt )

d4
, (2)

where Sμ(ω) = ∫ ∞
−∞ dτ 〈δμz(τ )δμz(0)〉eiωτ is the spectrum of

the fluctuating dipole of a single adatom. Our main goal
in the remainder of this paper is to provide a microscopic
derivation of the dipole-fluctuation spectrum Sμ(ω), which by
using Eqs. (1) and (2) allows us to establish a direct relation
between the ion heating rate and the microscopic details of the
atom surface interactions.

III. ATOM-SURFACE INTERACTION

Atoms approaching a surface experience an attractive force
which at large distances is the well-studied van der Waals
(vdW) potential ∼−C3/z

3 which eventually becomes repul-
sive again when the electronic wave functions of the adsorbant
and the bulk atoms overlap. An atom approaching the surface
can lose energy by phonon-induced processes and get trapped
in the resulting potential well. We develop a model, based on
physical intuition, which captures the essential aspects of the
atom-surface interaction. To this end, we present ab initio
density-functional theory (DFT) calculations of hydrogen
adsorption on Au(111) surface and obtain the interaction
potential normal to the surface. This potential is used as a
proxy for our model atom-surface potentials, which more
closely mimic realistic impurity reactivity on gold surfaces.
The utility in using a parametric model potential rests with
it flexibility for tuning the phonon transition frequencies, and
with controlling of both the short-range and vdW interactions.

A. Ab initio atom-surface potentials

For the calculations to be manageable, we chose hydrogen
adsorption on the gold surface. Clearly, surface contaminants
are more than hydrogen atoms and contain atmospheric
species. We incorporate such species by devising realistic
interaction potentials (Sec. III B) to model the adsorption of
atmospheric or fabrication impurities on gold surfaces. For the
H-Au interaction, all-electron scalar relativistic calculations of
the total energy and optimized geometries of a H-Au surface
model system were performed using the spin-polarized DFT
as implemented in the DMOL3 software [33]. The exchange
correlation energy was calculated using the local-density
approximation (LDA) with the parametrization of Perdew and
Wang (PWC) [34].

In Fig. 2, the H-Au(111) surface potential is shown. The
long-range interaction of atom-conductor potential is given
by C3/z

3, where C3 is proportional to the atomic electric
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FIG. 2. (Color online) Potential energy curve for a H atom
interacting with a 2 × 2 Au(111) monolayer along the normal to
the surface calculated using density functional theory within the
local-density approximation.

dipole transitions and z is the normal to the surface. The
coefficient C3 = 1

4π

∫ ∞
0 α(iω)dω can be obtained numerically

by evaluating the dynamic atomic polarizability at imaginary
frequencies. The value of C3 for hydrogen is given in Ref. [35]
as C3 = 7.36 × 10−5 a.u. Allowance is made for the fact that
Au dielectric constant is not infinite; that is, C3(Au) = ε−1

ε+1C3,
where ε is the dielectric constant for Au. The fundamental
transition frequency is more than 25 THz, many orders of
magnitude larger than any frequency scale in the experiments.
Heavier adatoms on the gold surface mass scale the interaction
potentials, leading to lowering of the transition frequencies.

B. Model atom-surface potentials

To describe the atom-surface interactions for wider range of
atoms, we use a model potential which is commonly referred
to as exp-3 [36]. This potential is frequently used in surface
science studies [36] and provides a suitable description for
short- and medium-range distances. Our potential in this range
is described by

U (z) = βz0

βz0 − 3
U0

[
3

βz0
eβz0(1−z/z0) −

(
z0

z

)3
]

, (3)

where z0 is the equilibrium position, U0 is the depth of the
potential, and β is the reciprocal range of repulsion. The typical
shape of this potential is plotted in Fig. 3. In the long range
Eq. (3) reproduces the correct ∼−C3/z

3 form where C3 =
β z4

0
βz0−3U0 in terms of the model parameters, and by adjusting
these three parameters, we can modify U (z) to fit realistic
atom-surface potentials. The potential supports several bound
vibrational states with energies Ei = h̄νi , as indicated in Fig. 3.
By using a harmonic expansion of U (z) we find that for an
adatom of mass m, the typical vibrational excitation frequency
is approximately given by

ν10 := ν1 − ν0 ≈
√

U0

mz2
0

3(β̃2 − 4β̃)

(β̃ − 3)
, (4)

FIG. 3. (Color online) Surface potential with potential depth U0

and minimum at z0. The potential supports several bound vibrational
states with energies h̄νi . The arrows represent the phonon-mediated
transitions between the bound states. The parameters used for this plot
are U0 = 12 meV, z0 = 6.05a0, β = 0.95a−1

0 , and an atomic mass of
m = 20 a.u. These parameters correspond to the case of Ne on a gold
surface.

where β̃ = βz0. From this result, we also find a rough
estimate of the number of strongly bound vibrational states
Nb ≈ U0/(h̄ν10).

From the exact H-Au potential shown in Fig. 2, we deduce
U0 ≈ 2 eV, corresponding to a temperature of T = 1.6 ×
104 K, z0 ≈ 1.6 Å, and β ≈ 3.91 Å−1, as example for an
adatom with a high reactivity with the Au surface. Because
of the low H mass the vibrational frequencies are in the
range of ν10/2π ≈ 40 THz. In general, we expect a similar
reactivity for other alkali atoms, as can be seen, for example,
for K-Ag, where U0 = 1.79 eV and z0 ≈ 2 Å [37]. However,
due to the larger mass we obtain significantly lower vibrational
frequencies ν10/2π ≈ 4 THz. In contrast, for weakly interact-
ing atoms, we find from the widely studied noble gas-metal
potentials (see for instance, Refs. [38,39]) that potentials can
be wider and much shallower. For example, for Ne on a gold
surface U0 ≈ 0.012 eV, z0 ≈ 3.1 Å, and β ≈ 1.86 Å−1. Within
this typical range of potential parameters and adatom mass
m ∼ 10–150 a.u., we expect the relevant vibrational frequency
scales to be in the ν10/2π ≈ 0.1–1 THz regime. For our model
potential in Fig. 3, and using the reduced mass of Ne-Au, we
find ν10/2π ≈ 0.3 THz.

In our model of atom-surface interactions, we ignore the
dependence of U (z) on x and y due to surface roughness.
However, for a metal surface, where the electrons are smeared
out, this variation should be weak. Also, the random motion of
an otherwise fixed dipole along the xy plane would lead to a
different d−6 scaling of the heating rate which is not supported
by experimental data.

IV. FLUCTUATING DIPOLES

A. Adatom dipoles

Adatoms adsorbed on the surface exhibit a finite permanent
dipole moment perpendicular to the surface. This induced
dipole moment can be understood from the distortion of the
electronic wave functions. It is commonly argued that the
dipoles form when the impurity adatom valence electrons
penetrate into the surface conduction bands, modifying the
surface work function. Here we calculate the magnitude of
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FIG. 4. (Color online) The adatom nucleus and electrons and their
image charges are shown in front of an infinite conducting surface.
The adatom nucleus is at a distance Zn from the surface. The electron
is at a distance �ri from the nucleus.

the electric dipole moments of the adatoms by resorting to
elementary electrostatics, using image charge techniques. The
electrons and the ionic core interact with the surface electrons
through their respective image charges, as depicted in Fig. 4.
We begin by writing the potential seen by the orbital electron
due to its image charge [40],

V = − e2

8Z3
n

∑
i

(
z2
i + 1

2
ρ2

i

)
− 3e2

16Z4
n

∑
i

(
z3
i + 1

2
ziρ

2
i

)
,

(5)

where �ri = ( �ρi,zi) is the position of the ith electron and Zn

is the distance from the nucleus of the adatom to the metallic
surface (see Fig. 4). In specifying the position of the electron,
we use zi to refer to the distance from the electron to the nucleus
along the normal to the surface. The first term is the above-
discussed vdW interaction with the surface. The second term
in Eq. (5) vanishes in the first order of perturbation expansion,
but contributes to the second-order energy shift, �E(2).

Following Ref. [40], we use a variational ansatz of the form
φ = (1 + ∑

i λizi)ψ0, where ψ0 are the unperturbed atomic
wave functions, and calculate �E(2), by varying the parameters
λi . From the deformed electronic wave function φ, we find an
approximated induced dipole moment of the atom near the
surface, P (Zn) = 〈φ| ∑i e�ri |φ〉. For hydrogen atom P (Zn) =
4.5ea5

0
Z4

n
, where a0 is the Bohr radius. Since the numerical factor

in the expression is the static polarizability of hydrogen, αH =
4.5 a3

0 , this expression can be generalized to a generic atom
with polarizability α,

P (Zn) = 0.47ea
1/2
0 α3/2 1

Z4
n

. (6)

We use the numerically constructed wave functions |i〉, corre-
sponding to the vibrational bound states of our model potential
U (z), to evaluate the average induced dipole moments,

μz,i := 〈i|P (z)|i〉. (7)

FIG. 5. (Color online) Magnitude of the average induced dipole
moments μz,i for different vibrational states |i〉. The values are shown
for the model potential parameters given in Fig. 3 and a polarizability
of α(Ne) ≈ 0.36 Å3.

We should note that due to the image charges the dipole
moment seen by the atom will be twice the induced dipole
moment in Eq. (6). In Fig. 5, we plot the resulting induced
dipole moments μz,i for the model potential parameters shown
in Fig. 3. These parameters represent a weakly bound adatom
similar to the Ne-Au surface potential [38]. Using this potential
together with the polarizability of Ne, α(Ne) = 0.36 Å3 [41],
and Zn = z0, we obtain an induced ground-state dipole
moment of μz,0(Ne) = 0.005 D. Hence, the dipole moment
seen by the ion is approximately 0.01 D, which is in good
agreement with 0.016 D calculated for Ne in [39]. Note that
μz,i ∼ α3/2/z4

0 and in general the typical magnitude of induced
dipole moments is ∼1 D. For example, in [18,42], it is shown
that the dipole moment for Cs absorbed on Cu(100) is 4 D.
Similarly in [43] the induced dipole moments for K adsorbed
on W, Ni, and Pd ranges from 1.45 to 3.1 D.

B. Phonon-induced transition rates

The emission and absorption of phonons in the bulk lead
to transitions between different bound vibrational states and
result in fluctuations of the induced dipole moment of the
adatom. To evaluate the phonon-induced transitions rates,
we approximate the trap electrode surface by a semi-infinite
crystalline slab. The position of an atom in the solid is given
by

ri = r0
i + ui ,

where r0
i is the equilibrium position of the ith atom and

ui is its deviation from the equilibrium. We can write the
displacements ui terms of bosonic operators aλ(q) for the
phonon eigenmodes,

ui =
∑
q,λ

√
h̄

2NMωλ,q
�ελ(q)[aλ(q)eiq·r0

i + H.c.], (8)

where q is the quasimomentum, N is the number of atoms in
the bulk, and M is their mass. For each q the normalized vectors
�ελ(q) describe the three orthogonal phonon polarizations.
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In the presence of phonons, the adatom surface potential
U (z), which in Eq. (3) has been defined for a static surface,
will in general depend on the fluctuating positions of the bulk
atoms so that U (z) → U (z,{ri}). Expanding this potential to
first order in ui gives

U (z,{ri}) 	 U
(
z,

{
ri

0
}) +

∑
i

∇U
(
z,

{
ri

0
})

ui . (9)

Since our potential is already averaged over the two transverse
directions, we are only interested in the variations in the normal
direction. Further, the dominant deformation of the potential
arises from the closest surface atom and in the following, we
restrict the sum in Eq. (9) to a single atom. We use Fermi’s
golden rule to evaluate the phonon-induced transition rate
between two vibrational states |i〉 and |f 〉,

�i→f = 2π

h̄

∑
q

∣∣∣∣〈f |dU

dz
|i〉

∣∣∣∣
2

[|〈nq + 1|uz|nq〉|2

× δ(�E − h̄ωq) + |〈nq − 1|uz|nq〉|2δ(�E + h̄ωq)],

(10)

where �E = Ei − Ef is the difference between the vibra-
tional energies Ei,f , nq are phonon-mode occupation numbers,
and in this equation q ≡ (q,λ) includes the polarization label.
Assuming �E > 0 and using the mode decomposition in
Eq. (8), the resulting phonon emission and absorption rates
can be written as

�i→f = �ωif

2πh̄v3ρ

∣∣∣∣〈f | d

dz
U (z)|i〉

∣∣∣∣
2

[n(�ωif ) + 1], (11)

�f →i = �ωif

2πh̄v3ρ

∣∣∣∣〈f | d

dz
U (z)|i〉

∣∣∣∣
2

n(�ωif ), (12)

where �ωif = |Ei − Ef |/h̄, n(�ω) = (eh̄�ω/kBT − 1)−1, v is
the averaged speed of sound in the surface material, and ρ is
its bulk density.

In the following, we denote by �0 ≡ �1→0(T = 0), the
zero-temperature decay rate from the first excited to the lowest
vibrational state. From a simple harmonic approximation of
U (z) around its minimum at z0, we obtain the scaling

�0 ≈ 1

4π

ν4
10m

v3ρ
. (13)

Using v = 3962 m/s and ρ = 19.3 g/cm3 for Au, and the
model potential parameters given in Fig. (3), with ν10/2π =
0.3 THz, we find �0/2π ≈ 3.31 MHz. For K-Au, where
ν10/2π = 4 THz �0/2π is approximately 67 MHz and in
general we expect �0/2π to range from about 1 to a few
hundred MHz. Note that the validity of Eqs. (11) and (12)
is restricted to transition frequencies �ωif smaller than the
Debye frequency ωD of the bulk material, which for gold is
about 3.6 THz.

C. Dipole fluctuation spectrum

We are interested in the fluctuation spectrum of the induced
dipole moment of a single adatom, defined as

Sμ(ω) =
∫ ∞

−∞
dτ [〈μz(τ )μz(0)〉 − 〈μz(0)〉2]eiωτ . (14)

Summarizing the results from the previous sections we can
write the dipole moment operator as μz = ∑

i μz,iρi , where
ρi = |i〉〈i| is the projection operator on the vibrational level
|i〉. Therefore, for given values of pi the dipole fluctuation
spectrum can be related to the set of two-point correlation
functions 〈ρi(t)ρj (t + τ )〉 of the vibrational populations. The
populations, in turn, evolve according to the master equation

d

dt
〈ρi〉 =

∑
j

Mij 〈ρj 〉, (15)

where the diagonal Mii = −∑
j �=i �i→j and the off-diagonal

elements Mij = �j→i are determined by the phonon-induced
transition rates discussed above. We evaluate the dynamics
of the correlations 〈ρi(t)ρj (t + τ )〉 by first introducing the
condition

∑
i〈ρi〉 = 1 into the master equation. For N bound

states, we have

d

dt
〈ρi〉 =

∑
j �=N

Mij 〈ρj 〉 + MiN

(
1 −

∑
k �=N

〈ρk〉
)

=
∑
j �=N

(Mij − MiN )〈ρj 〉 + MiN. (16)

Since we are only interested in level populations, all coher-
ences, ρij = |i〉〈j |, in the density matrix can be omitted. Using
the quantum regression theorem, we find for i < N ,

d

dt
〈ρi(τ )ρk(0)〉 =

∑
j �=N

(Mij − MiN )〈ρj (τ )ρk(0)〉 + MiNρ
(0)
k ,

(17)

where ρ
(0)
k is the steady-state population in level k. For i = N

we obtain

d

dτ
〈ρN (τ )ρk(0)〉 =

N−1∑
i=1

(MNi − MNN )

×〈ρi(τ )ρk(0)〉 + MNNρ
(0)
k . (18)

All two-point correlation functions can be calculated from the
above two equations, and the full noise spectrum is obtained
by summing all the two-point correlations.

V. RESULTS AND DISCUSSION

In Fig. 6, we plot the typical behavior of the dipole fluctua-
tion spectrum Sμ(ω) as a function of frequency. The spectrum
has been evaluated for the model potential parameters given in
Fig. 3 and for different temperatures T . The lowest temperature
kBT = 0.02U0 corresponds to a situation where the thermal
energy is smaller than the vibrational energy h̄ν10 ≈ 0.1U0

and only transitions between the two lowest vibrational states
contribute to dipole fluctuations. In this case, the dipole
fluctuation spectrum resembles that of a thermally activated
two-level system [30], where at low temperatures

Sμ(ω) 	 (μ0 − μ1)2 2�0

ω2 + �2
0

e
− h̄ν10

kB T . (19)

For frequencies below the fundamental phonon transition rate,
ω < �0, the spectrum is frequency independent (white noise),
while above �0 the scaling changes to 1/ω2 as one would
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FIG. 6. (Color online) The dipole fluctuation spectrum Sμ(ω) is
plotted for six different temperatures T (given in units of the vibra-
tional excitation frequency ν10) and the model potential parameters
given in Figs. 3 and 5. The frequency is scaled by the zero-temperature
transition rate �0. The curves in black (kBT /h̄ν10 = 0.2,0.3,0.4)
correspond to temperatures where only the two lowest vibrational
states are populated. At these temperatures the spectrum resembles
that of a two-level fluctuator [see Eq. (19)] and its size increases with
increasing temperature. For higher temperatures (shown in red, green,
and blue) more and more bound states are thermally occupied and an
intermediate regime emerges where the dipole fluctuation spectrum
exhibits 1/f noise scaling. For all temperatures, the crossover from
the flat (white noise) regime to a 1/f 2 noise or 1/f noise scaling
occurs at around ωc ≈ �0[n(ν10) + 1].

expect for a two-level system [30]. The noise is thermally
activated with a characteristic temperature scale T = h̄ν10/kB ,
which depending on the atomic species ranges from few kelvin
to above room temperature for light and tightly bound adatoms
like hydrogen.

When the temperature exceeds the characteristic vibrational
energy T > h̄ν10/kB , more and more vibrational levels are
populated and contribute to the dipole fluctuations (curves in
red, green, and blue in Fig. 6). An intermediate frequency
regime appears where the noise spectrum exhibits a 1/f

scaling. We emphasize that in contrast to standard models
for 1/f noise, based on a random set of two level fluctuators
with varying parameters [29,30], this 1/f scaling occurs in our
model even for a single dipole and emerges from a distribution
of different vibrational transitions rates �if which contribute
to the dynamics. We find that the approximate crossover
between the white noise and the 1/f noise regime occurs at
ω ≈ �0 × [n(ν10) + 1]. To check the validity of our model,
we compare our spectrum to the measured values. Using
Eq. (2), we can relate Sμ(ω) to SE(ω). Since Sμ ∝ μ2, we note
that in the 1/f noise region, 10−11 < Sμ(ω) < 10−7 D2/Hz.
The value for �0 ∼ 1–10 MHz, and the 1/f behavior sets
in at 10–100 �0, which corresponds to 10–100 MHz. Using
the coverage fraction θ = 0.1 corresponding to about σ ∼
1018 m−2, we find 3.2 × 10−8 < ωSE(ω) < 0.0032 V2/m2

at d0 = 10 μm. The experimentally measured values range
between 10−7 and 0.001 V2/m2 [11].

FIG. 7. (Color online) Temperature dependence of the dipole
fluctuation spectrum vs normalized temperature (kBT /h̄ν10). The
three curves show the temperature dependence evaluated for frequen-
cies in the “white-noise regime” (ω → 0), the “1/f regime” (ω =
20 × �0), and the high-frequency, “1/f 2 regime” (ω = 100 × �0).
The other parameters are the same as in Fig. 6.

A. Temperature dependence

The temperature dependence of the ion heating noise is
more succinctly displayed in Fig. 7 as a function of scaled
temperature in units of ν10. At low frequencies, that is,
in the white-noise regime, the fluctuations are thermally
activated, showing a peak at kBT /h̄ν10 ≈ 1, while for higher
temperature they fall off again as ∼1/T . The suppression
of low-frequency fluctuations with increasing temperature
is in principle expected from a single two-level fluctuator.
In some models based on multiple two-level systems with
a distribution of activation energies, noise increases with
increasing temperature over the whole frequency range [30].
In our model this behavior is recovered for frequencies within
the “1/f region” of the spectrum, ω ≈ 20 × �0, where the
temperature dependence matches some of the experimental
findings described in [8] and fits an Arrhenius curve F (T ) =
ST e−T0/T with the parameters, ST = 10−13 D2/Hz and T0 ≈
0.242 U0 = 56.9 K. Finally, for very large frequencies, ω 
�0, that is, in the 1/f 2 regime, noise scales linearly with T .

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a microscopic model for
electric field noise generated by fluctuating dipoles associated
with adatoms on a metallic surface. We have shown that
phonon-induced transitions between different bound vibra-
tional states cause fluctuations of the induced dipole moments
and generate electric field noise which can contribute to the
anomalous heating observed in surface ion traps. The analysis
presented in this work has been largely based on analytic
model potentials for the atom-surface interactions and induced
dipole moments, allowing us to characterize the resulting field
fluctuation spectrum for a wide range of atomic or molecular
species in terms of a small set of microscopic parameters.

While more accurate predictions will depend on the atomic
species, our model explains correctly the magnitude and the
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d−4 scaling of the observed electric field noise. In contrast to
standard models for 1/f noise, which assume a distribution
of two-level fluctuators, our analysis predicts that for adatoms
a transition from a flat to a 1/f regime in the noise spectrum
should occur only at finite temperatures and at frequencies
above a typical phonon transition rate ω > �0. From our
estimates, we find that this transition rate is in the range,
but slightly above the typical ion trapping frequencies. This
suggest that either heavier or more loosely bound adatoms
are responsible for the noise, or additional mechanism like
multiphonon transitions or dipole-dipole interactions are at
play leading to the emergence of even lower fluctuation rates.

Our model predicts several distinct features for the electric
field noise spectrum which appear at characteristic frequencies
and temperature scales of the adatom surface interactions. In

future experiments the development of new trap designs [3]
could allow for more targeted search for these predictions, for
example, by probing samples where a clean metal surface is
contaminated with a single, prespecified atomic species. To
access the frequency regime of 10 to a few 100 MHz, similar
heating experiments could be done with nanomechanical
resonators or carbon nanotubes, for which accurate optical
and electrical readout schemes have been developed (see, e.g.,
Ref. [44] and references therein).
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