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1. Introduction

In the early seventies a sharp and beautiful analogy was discovered between the laws

of black hole dynamics and the laws of thermodynamics [1-7]. In particular the Bekenstein-

Hawking entropy - one quarter the area of the event horizon - behaves in every way like

a thermodynamic entropy. A missing link in this circle of ideas is a precise statistical

mechanical interpretation of black hole entropy. One would like to derive the Bekenstein-

Hawking entropy - including the numerical factor - by counting black hole microstates.

The laws of black hole dynamics could then be identified with - and not just be analogous

to - the laws of thermodynamics.

In this paper progress in this direction is reported. We consider phases of string theory

with five noncompact dimensions and N = 4 supersymmetry1, (e.g. type II string theory

on K3 × S1 or heterotic string theory on T 5). Black holes in these theories can carry

both an axion charge QH and an electric charge QF
2. Extremal black holes with either

QH = 0 (fundamental heterotic string states) or QF = 0 (but not both) have degenerate

horizons with zero area. We accordingly look for BPS saturated states - i.e. extremal

black holes - for which both QF and QH are non-vanishing. Such BPS states preserve

only 1/4 of the N = 4 supersymmetry. They may be viewed as bound states of minimally-

charged BPS solitons, and their exact degeneracy as a function of QF and QH can be

topologically computed by counting soliton bound states. In particular we show that the

leading degeneracy for the logarithm of the bound-state degeneracy for large QH and fixed

QF is given by3

Sstat = 2π

√

QH(
1

2
Q2

F + 1). (1.1)

On the other hand we will find that the Bekenstein-Hawking entropy as determined from

the low-energy effective action is

SBH = 2π

√

QHQ2
F

2
. (1.2)

in agreement with (1.1) for large charges.

1 Analogous results follow for N = 8 as indicated below.
2 QF ∈ Γ5,21 where Γ5,21 is the Narain lattice of heterotic strings compactified down to 5

dimensions and Q2

F = Q2

R − Q2

L.
3 Given the O(21, 5) invariance of the theory one expects that the bound-state degeneracy of

these BPS solitons be a functions of Q2

F and QH .
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The five-dimensional problem is considered here because it seems to be the simplest

non-trivial case. We expect that similar calculations will reproduce SBH for other types of

black holes in string theory. Previous attempts at a microscopic derivation of SBH include

[8-18].

In section 2 we present the black hole solutions and compute the area of their event

horizons. In section 3 the bound state degeneracy is asymptotically computed by relating it

to the elliptic genus of a certain two-dimensional sigma model. We conclude with discussion

in section 4.

2. A Class of Five Dimensional Extremal Black Holes

The low energy action for type II string theory compactified on K3×S1 contains the

terms
1

16π

∫

d5x
√

−g̃
(

e−2φ
(

R + 4(∇φ)2 − 1

4
H̃2

)

− 1

4
F 2

)

(2.1)

in the string frame. We adopt conventions in which α′ = GN = 1. F is a RR 2-form field

strength (associated with the right-moving current algebra in the dual heterotic picture)

and H̃ is a 2-form axion field strength arising from the NS-NS 3-form with one compnent

tangent to the S1. We work on a submanifold of the Narain moduli space for K3× S1 on

which nonzero F does not require nonconstant moduli. In the Einstein frame (g = e−4φ/3g̃)

(2.1) becomes

1

16π

∫

d5x
√
−g

(

R − 4

3
(∇φ)2 − e−4φ/3

4
H̃2 − e2φ/3

4
F 2

)

. (2.2)

A black hole can carry electric charge with respect to both F and H̃,

QH ≡ 1/4π2

∫

S3

∗e−4φ/3H̃,

QF ≡ 1/16π

∫

S3

∗e2φ/3F.

(2.3)

For the spherically symmetric configurations that we consider this implies

∗e−4φ/3H̃ = 2QHǫ3,

∗e2φ/3F =
8QF

π
ǫ3,

(2.4)
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where ǫ3 is the volume element on the unit S3. We have chosen our conventions so that

QH and 1

2
Q2

F are integers4. O(21, 5) invariance of the full lagrangian (which includes 26

gauge fields) implies that all of the following formulae remain valid with the replacement

Q2
F = Q2

R − Q2
L.

An extremal black hole carrying both types of charges can have an event horizon

with nonzero area. The near-horizon geometry will be the five-dimensional AdS2 × S3

charged Robinson-Berttoti universe with constant dilaton φ = φh. The constant value φh

is determined in terms of the charges by the dilaton equation of motion

16∇2φ + 2e−4φ/3H̃2 − e2φ/3F 2 = 0. (2.5)

Substituting φ = φh and (2.4) this implies

e2φh =
1

2
(
4QF

πQH
)2. (2.6)

Note that the type II closed string coupling at the horizon is weak when the ratio QF /QH

is small. If the asymptotic value of φ∞ of the dilaton is tuned to coincide with the special

value determined by (2.6) then the dilaton is everywhere constant and Einstein’s equation

becomes

Rab = 3(
8QHQ2

F

π2
)2/3

(

ǫ3acdǫ3b
cd − gab

)

,

φ = φh.

(2.7)

This is just the equation for d = 5 Reissner-Nordstrom with charge
√

3(
8QHQ2

F

π2 )1/3. The

extremal solution can be found for example in [19]:

ds2 = −
(

1 − (
r0

r
)2

)2
dt2 +

(

1 − (
r0

r
)2

)−2
dr2 + r2dΩ2

3, (2.8)

where

r0 = (
8QHQ2

F

π2
)1/6. (2.9)

S1 reduction of this solution to d = 4 gives the dyonic solution discussed in reference [20],

where it is further shown that the resulting configurations are annihilated by one quarter

of the supersymmetries (This is also evident from the stringy description given below).

4 Q2

F = 2 for a minimally-charged perturbative heterotic string state, while QH = 1 for a

minimally-charged heterotic fivebrane which wraps T 5 once.
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The Einstein-frame area of the extremal black hole horizon is given by the volume of

the S3:

Area = 8π

√

QHQ2
F

2
. (2.10)

The Bekenstein-Hawking entropy is

SBH = 2π

√

QHQ2
F

2
. (2.11)

Even if the asymptotic value of the dilaton φ∞ 6= φh, the near-horizon Robinson-

Berttoti geometry is still constrained to obey (2.6) and (2.7). Hence as the asymptotic

value of the fields are adiabatically changed, the near horizon geometry is unaltered. This

type of behavior has been noticed previously in families of exact solutions with generic

asymptotic moduli (see for example [21,17,22,18]) and can be intuitively understood [23]

by viewing black holes as solitons which interpolate between maximally symmetric vacua

at infinity and the horizon (in our case the d = 5 Robinson-Berttoti vacuum). In conclusion

the dilaton-independent relation (2.11) is valid even when φ∞ 6= φh.

The action (2.1) as well as the entropy (2.11) receives corrections from both string

loop and sigma model perturbation theory. N = 4 nonrenormalization theorems ensure

that there are no corrections to the lowest dimension terms exhibited in (2.1), but higher

dimension terms will be corrected in general. Type II string loop corrections are suppressed

by powers of gII ∼ QF /QH . Sigma model corrections are suppressed by inverse powers of

the string-frame Schwarzchild radius, which is r̃0II ∼
√

Q2
F /QH .5 Hence validity of (2.11)

in the type II theory requires that both QH and QF are large. String dualities of various

kinds might be used to extend the range of validity of (2.11).

3. Counting of Microscopic BPS States

The counting of microscopic BPS states has become possible for type II string com-

pactifications thanks to recent progress in understanding non-perturbative string theory.

Of particular importance is the beautiful identification of D-branes [24,25] as the source of

BPS states carrying QF Ramond-Ramond charge [26] and the relation between counting

bound states of D-branes and specific questions in certain quantum field theories on the

D-brane worldvolume [27,28,29,30,31].

5 For the dual heterotic theory, g2

h ∼ (QH/QF ) and r̃0h ∼
√

QH .
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Consider type IIB string theory compactified on K3 × S1. Type IIB string theory

has p-brane solitonic states for odd values of p [32]. We consider D-branes with p = 1, 3, 5

wrapped around S1 × C where C is a supersymmetric (i.e. holomorphic) 0-, 2- or 4-cycle

of K3. These states carry the Ramond-Ramond charge QF , and Q2
F is the self-intersection

number of the collection of cycles [28,30,29,31]. It was argued in [27] that BPS states

in spacetime which preserve half of the spacetime supersymmetries correspond to super-

symmetric ground states of the D-brane worldvolume theory. This follows directly from

the fact that worldvolume supersymmetries arise as the projection of unbroken spacetime

supersymmetries. This observation was generalized in [31] to spacetime BPS states, which

preserve fewer spacetime supersymmetries. The corresponding states of the D-brane world-

volume theory correspond to worlvolume BPS states, which preserve fewer worldvolume

supersymmetries than the worldvolume ground states. Since we are interested in states

which preserve 1/4 of the spacetime supersymmetries we should count BPS states which

preserve 1/2 of the supersymmetries of the relevant D-brane worldvolume theory. Let us

first consider a limit in which the worldvolume theory of the D-brane simplifies. Consider

the limit in which the K3 is small compared to the size of the circle S1. In this limit we

get an effectively two dimensional worldvolume theory on S1 × R (where R corresponds

to time). Based on the expected ground state degeneracies of the corresponding effective

theory6 it was conjectured in [29] that this theory is a supersymmetric sigma model whose

target space is the symmetric product of 1

2
Q2

F + 1 copies of K3

M =
(K3)⊗

[

1

2
Q2

F
+1

]

S[

1

2
Q2

F
+1

]

(3.1)

where Sn is the permutation group on n objects. Subsequently this was verified [30] at

least for cases where QF comes from primitive 2-cycles in K3 or from [ 1
2
Q2

F + 1] 0-cycles

together with one 4-cycle in K3 (for 2-cycles this was rephrased and further checked as a

counting problem for rational curves on K3 with double points [33]). In the latter case

the origin of (3.1) can be simply understood as the moduli space of 1

2
Q2

F + 1 unordered

points on K3. The conjecture (3.1) was further verified in [31] in cases where there are

more than one 4-cycle and some 0-cycles (and was connected to the strong coupling test of

6 According to string duality this is expected to be the same as the oscillator degeneracy of

bosonic strings.
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Olive-Montonen duality on K3 [34]). For the purposes of this paper consideration of any

of these configurations of D-branes suffices7.

Thus we have to count the BPS states of a supersymmetric sigma model on M if

we wish to count states which preserve only 1/4 of the spacetime supersymmetries. But

these are precisely those states which are killed by (say) the right-moving supercharge,

with no restrictions on the left-movers. In other words we consider RR sector states of

this sigma model in their right-moving vacuum, i.e., L0 = 1

2
(H − P ) = 0 and arbitrary

L0 = 1

2
(H +P ). The generating function for the degeneracies of such states is bounded by

the elliptic genus of the sigma model on M [35,36] which is computable for all manifolds M .

The actual number of BPS states may depend on the moduli of K3, but the elliptic genus,

which is the appropriate weighted sum (with ±1), is moduli independent. It is tempting

to speculate that the elliptic genus is the more relevant quantity which appears in physical

quantities (just as was the case considered in [37]) but either quantity will give the same

leading degeneracy as a function of charges [38], and this distinction is unimportant for

our purposes in this paper. Note that the eigenvalues of L0 contributing to the elliptic

genus are restricted to be integers because L0 = L0 − L0 = P where P is the momentum

operator on the S1.

Before considering the degeneracy of these states let us see what charges they carry.

In addition to QF charge they carry a charge corresponding to momentum P around S1.

If we go from type IIB to type IIA by dualizing the S1, these states carry P units of

winding around S1, i.e. they have P units of electric charge with respect to Bµθ where θ

corresponds to the circle direction and µ denotes the five dimensional spacetime indices,

i.e. QH = P . Thus the BPS states of the D-brane worldvolume theory we are considering

carry precisely the charges QF and QH for which the corresponding extremal black hole

solutions were found in the previous section.

To compare their degeneracy with the Bekenstein-Hawking entropy (2.11), which is

expected to be accurate for large QH and Q2
F , all we need to do is to consider the asymptotic

degeneracy of the above BPS states for large QH = P and Q2
F (even though it is straight

forward to compute it for all QH and Q2
F by an orbifold computation). For a hyperkahler

manifold M of dimension 4k we have a sigma model with central charge c = 6k. The

7 In fact all we will need is that the dimensions of M grows as 4( 1

2
Q2

F + 1), which is much

easier to argue [30,31].
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left-moving oscillator degeneracy for unitary conformal theories at level L0 = n goes for

n >> 1 as [39]8

d(n, c) ∼ exp(2π

√

nc

6
) (3.2)

In our case

c = 6(
1

2
Q2

F + 1),

n = QH ,
(3.3)

so we get for the growth of the elliptic genus, or equivalently the degeneracy of BPS solitons

for QH >> 1

Sstat = ln d(QF , QH) ∼ 2π

√

QH(
1

2
Q2

F + 1). (3.4)

This agrees to leading order with the expected Bekenstein-Hawking entropy (2.11) for large

Q2
F , in which case (2.11) is reliable9

4. Discussion

In the presence of N D-branes, the open string sector of perturbation theory involves

an expansion in gIIN (where gII is the asymptotic value of the type II closed string

coupling) because holes in the string world sheet can have N types of Dirichlet boundary

conditions. The effective value of N for our configurations grows like 1

2
Q2

F . Hence for

small but fixed gII string perturbation theory will break down for sufficiently large charge.

The correct physical picture of the objects we discuss really is as a large semiclassical black

hole with an event horizon. The description as a supersymmetric cycle embedded in K3

suffers large quantum corrections. It nevertheless can be reliably used to compute the

asymptotic degeneracy of BPS states because that is a topological quantity related to the

elliptic genus.

The validity of string perturbation theory can be restored by taking gII to be very

small - smaller than 1/N . In this case string perturbation theory is valid, and the physical

8 It would be interesting to understand large c corrections to this formula in order to determine

the range of validity of our estimate.
9 This result can also be derived for an N = 8 toroidal type II compactification, in which case

the same type of D-brane configuration breaks 7/8 of the supersymmetry. The only difference in

the derivation is that K3 is replaced by T4 in the symmetric product in (3.1). Since the dimension

of the resulting M is the same this does not affect the growth of the elliptic genus. We thank A.

Sen for discussions on this point.
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picture of the BPS state as a supersymmetric K3 cycle is the correct weakly-coupled

description. For such very small gII , the string length becomes larger than the Schwarzchild

radius (equation (2.9)). Hence the black hole picture will suffer large stringy corrections.

So we have a BPS state which at very weak coupling is described by p-branes wrapping

supersymmetric K3 cycles, but at strong coupling transforms into a hole in spacetime!

We believe that our results will have implications for the black hole information puzzle.

A central theme in studies of this puzzle over the last several years has been the problem

of low-energy scattering of ordinary quanta by an extremal black hole [40,41,42,43,44].

Naively this process proceeds by absorption followed by Hawking reemission, and so the

question of unitarity violation arises.

In principle light might be shed on this puzzle by employing D-brane technology [26,45]

to compute the scattering. However one immediately encounters the above-mentioned

problem that string theory is strongly coupled in the region of interest. Perhaps a string

duality can be used to map it to a weakly-coupled problem. In any case it is hard to

imagine how any calculation based on our D-brane description of the extremal black hole

could yield a non-unitary answer. However the alternatives are highly constrained by low-

energy consistency. Two of the alternatives involve low-energy effective non-locality, as

advocated for example in [46], or a very long scattering time, as advocated for example in

[47]. It is also very hard to imagine how either of these features could emerge in a D-brane

description. Our results of so far are consistent with all of these proposals, and do not tell

us definitively how string theory solves the information puzzle. Nevertheless we have more

clues and are optimistic that further progress on this issue is now possible.

We could consider other compactifications–for example heterotic string compactified

on T 6 (N = 4) or on K3×T 2 (N = 2), which are dual to type II strings on K3×T 2 or on

Calabi-Yau. The Bekenstein-Hawking entropy for the N = 4 cases have been computed in

[19,20,18], while N = 2 cases appear in [21]. It is not too difficult in these examples to set

up the computation for the BPS states which preserve only one unit of supersymmetry.

In one formulation, it is related to the study of cohomology of moduli space of stable

holomorphic SU(N) bundles on the six-manifold with fixed second and third Chern classes

determined by the charges. Unfortunately at the present the dimension of the cohomology

of such moduli spaces is not known. It would be interesting to compute the growth of

the cohomology of the moduli spaces for these bundles on the six-manifolds and check the

prediction obtained from the Bekenstein-Hawking entropy.
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