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1 Introduction

One of the striking successes of string theory is the microscopic description of certain classes

of black holes [1, 2]. Key to these advances is the realization of supersymmetric black

holes in terms of configurations of microscopic constituents of string theory, like strings

and branes. The degenerate excitations of these microscopic constituents give rise to a

statistical Boltzmann entropy, which reproduces the thermodynamic Bekenstein-Hawking

entropy of the black hole in a class of supersymmetric situations. These developments led

to the formulation of the far-reaching AdS/CFT correspondence, which gives a very general

approach to understanding the microscopic nature of black holes, including thermal black

holes which do not preserve supersymmetry. Our current understanding of black holes,

quite generally, is to view them as an ensemble of microscopic constituents in a dual

quantum field theory.
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During the past twenty years several black hole solutions in Anti de Sitter (AdS) space-

time in various dimensions have been constructed, including rotating and charged black

holes. The broad picture of these black holes as being made up of microscopic excitations

of the boundary theory has been checked in a variety of cases, and typically the accuracy of

these checks is only limited by the technology available to us for computing strongly coupled

quantities in the dual field theories. The leading behavior of the entropy at large N , for

example, bears out quite beautifully in most examples. In particular, in [3] the Bekenstein-

Hawking entropy of a class of supersymmetric AdS4 black holes was successfully reproduced

from an exact localization computation in the dual ABJM theory [4]. One situation,

however, sticks out — the dual field theoretic understanding of supersymmetric black

holes in the original, emblematic, AdS5/CFT4 correspondence has remained an enigma.

Despite the fact that supersymmetric black holes in AdS5 were constructed almost fifteen

years ago [5] and many generalizations have been found in the gravitational theory since

then [6–9], they have so far eluded all attempts to obtain a statistical explanation of their

entropy. In this paper we will present a derivation of the statistical entropy of a general

class of supersymmetric AdS5 black holes constructed in [7], which contains, as a special

case, the black holes of [5]. Since these black holes are solutions to five-dimensional minimal

gauged supergravity, the holographically dual state should exist in any four-dimensional

N = 1 SCFT with a weakly coupled supergravity dual. As a specific case, we will also

analyze N = 4 SYM and in this way reproduce the entropy of the black holes of [6, 8, 9],

which have an embedding in type IIB supergravity on S5.

Recall that the Bekenstein-Hawking entropy of five-dimensional black holes, expressed

in terms of dual field theory variables, scales like N2 in the large N limit. One could

hope that the degeneracies of BPS states contributing to the entropy of the black hole can

be estimated by evaluating the large N limit of certain supersymmetric indices, as first

investigated in [10]. However, the index defined in [10, 11] and some of its generaliza-

tions [12–14] were found to behave as O(1) in the large N limit, thus failing to account

for the correct O(N2) behaviour of the black hole entropy. One possible explanation that

has been offered for this discrepancy is that the index counts bosonic and fermionic states

with a sign, and there could be large cancellations which reduce the index drastically. On

the other hand, it has proven to be very difficult to directly rule out the contribution of

the supersymmetric black hole from the gravitational ensemble, leaving this problem in a

somewhat inconclusive state for a long time.

From the point of view of holography, it is most natural to relate the physics of the

bulk to that of the boundary field theory through the “master formula” of AdS/CFT,

that instructs us to identify the gravitational on-shell action of a given solution with the

corresponding functional integral of the dual field theory at large N . This will lead us to

perform a localization calculation [15–17] on the field theory side and derive a generalization

of the supersymmetric Casimir energy [18]. We find that in the large N limit not only this

generalization scales as O(N2), but it also precisely reproduces the entropy of the black

holes. The supersymmetric Casimir energy has been shown to be independent of the

regularization scheme and therefore a physical observable [19].

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
0
6
2

In order to implement this idea there are some technical issues that we need to ad-

dress. As a starting point we consider the thermal ensemble, for which it is clear that the

finite temperature Euclidean black hole is a saddle point of the gravitational functional

integral [20]. The issue becomes more subtle for the supersymmetric black hole at zero

temperature because the geometry near the horizon of a supersymmetric black hole looks

locally like an infinite throat, and it is not obvious how to regulate this problem while

keeping the asymptotic AdS5 geometry.1 Ideally we would like to define a gravitational

ensemble on asymptotic AdS5 space which includes the supersymmetric black hole as a

saddle point. We would expect that the on-shell action of that saddle point would then be

related to the black hole entropy. Here we face a problem because the so-called quantum

statistical relation that relates the black hole entropy to the Euclidean on-shell action is a

priori valid for black holes at non-zero temperature with non-degenerate Killing horizons.

In this paper we will define a “supersymmetric quantum statistical relation” of the

BPS black holes by taking an extremal limit of a family of supersymmetric, complexified

solutions, for which a finite on-shell action and a formal “temperature” can be defined. For

AdS5 black holes the notions of extremality and supersymmetry do not coincide, therefore

there are different ways to approach the BPS solution.2 Indeed, an analogous limiting

procedure, which served as an inspiration for us, was proposed in [22], but as we will explain

this procedure does not reach the BPS locus following a supersymmetric trajectory. Our

limit, on the other hand, is taken along a supersymmetric trajectory by construction, at

the expense of having to work with complex charges and chemical potentials. With this

limiting procedure, we find that we have to deal with a cigar-like geometry that is capped

off in the infra-red. As we shall see, this is a crucial feature which imposes a constraint

that can be expressed as

ω1 + ω2 − 2ϕ = 2πin , (1.1)

where ω1, ω2 and ϕ denote the chemical potentials and n = ±1. Relatedly, the fermions

which are charged under the symmetries conjugate to the chemical potentials have anti-

periodic boundary conditions on the S1. We will show that in our BPS limit the on-shell

action I takes the particularly simple form

I =
2π

27Gg3
ϕ3

ω1ω2
, (1.2)

and that its (constrained) Legendre transform equals the Bekenstein-Hawking entropy S

1The method of [21] regulates this problem for generic supersymmetric black holes by taking a T → 0

limit of the thermal black hole and keeping the horizon always at finite distance. While this gives a nice

definition of BPS black hole entropy, it does so by zooming in on the near-horizon AdS2 region, thus

throwing away the asymptotics of the black hole solution. It is therefore not useful if our goal is to explain

the black hole entropy as excitations in the CFT4 dual to the asymptotic AdS5 space. The corresponding

problem from the holographic dual point of view is that the definition of [21] casts the supersymmetric

black hole entropy as the degeneracy of the CFT1 dual to the near-horizon AdS2, but one does not have

good control over this CFT1.
2In this paper we take care distinguishing between supersymmetry and extremality, and will use the

term “BPS” to denote a quantity evaluated after both supersymmetry and extremality have been imposed.
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of the black hole, i.e.,

S(J1, J2, Q) = −I(ω1, ω2, ϕ)− ω1J1 − ω2J2 − ϕQ , (1.3)

where J1, J2 are the angular momenta and Q is (dual to) the R-charge. Here the chemical

potentials are saddle points of the constrained extremization.

Our regulated geometry in the bulk identifies a boundary geometry that corresponds

to the background in which the dual SCFT is defined. We perform an exact localization

computation and show that the partition function takes the form Z = e−FI, where both

factors depend on complex chemical potentials ω1, ω2, ϕ satisfying (1.1). As we will show, I
is essentially the superconformal index, while at large N the prefactor reads F = −16

27
ϕ3

ω1ω2
c,

where c is the central charge that appears in the Weyl anomaly, which scales as O(N2).

This prefactor matches minus the supergravity on-shell action. Therefore −F also yields

the black hole entropy upon Legendre transform. From a field theory perspective, one may

think that the right hand side of (1.1) can be reabsorbed by a large gauge transformation

(or by a large diffeomorphism) redefining the chemical potentials, so that the value of n

does not affect the physics. However both the result for F and its Legendre transform

do depend on n. For n = ±1 we are led to the black hole entropy, while for n = 0 F is

proportional to the supersymmetric Casimir energy [18, 19] and yields a vanishing entropy.

The fact that the BPS AdS5 black hole entropy can be rewritten as an extremization

of the quantity (1.2) with respect to the three chemical potentials constrained by (1.1),

was first observed in the interesting paper [23]. This crucial observation begs the question

of a physical interpretation, and it was an important starting point for our investigations.

Using the ideas sketched above, in this paper we provide an independent derivation of this

extremization principle. It is also important to note the analogies with the problem in one

dimension lower [3, 24]. Here the Bekenstein-Hawking entropy of a class of supersymmetric

AdS4 black holes is obtained by computing the Legendre transform of a topologically

twisted index of the three-dimensional theory [4], evaluated in the large-N limit. This

Legendre transformation was related to the attractor mechanism for the scalar fields in the

bulk. Based on these considerations, the authors of [23] related the extremization principle

for AdS5 black holes to the attractor mechanism in one dimension lower. The relation

between the entropy of supersymmetric AdS4 black holes and their on-shell supergravity

action was discussed in [25–27].

The rest of this paper is organized as follows. In section 2 we review the asymptot-

ically AdS5 solutions of [7], emphasizing the features that will be important for deriving

our results. In particular, we will consider a one-parameter family extension of the super-

symmetric black holes that will be instrumental for relating the entropy to the Euclidean

action of the physical solution, defined through a particular BPS limit. In section 3 we

discuss this limit and obtain a quantum statistical relation for the supersymmetric black

holes. We will also explain how this limiting procedure defines the rigid background of the

field theory at the boundary, through the interplay of supersymmetry and regularity con-

ditions in the interior, thus informing the dual field theory computation. This is performed

in section 4, which can be read independently of the rest of the paper. Here we compute

a variant of the localized partition function on twisted S1 × S3 manifolds, that gives rise

– 4 –
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to a generalization of the supersymmetric Casimir energy. The results of this section are

valid for arbitrary N = 1 field theories with a Lagrangian description and an R-symmetry.

In section 5 we summarise our findings and discuss several possible extensions of our work.

Four appendices contain further details on calculations both in gravity and in field theory.

Note added. After the first version of this paper was submitted to the arXiv, a number of

interesting papers have discussed the problem of reproducing the entropy of supersymmetric

AdS5 black holes from a dual field theory calculation. Notably, [28–30] showed that for

N = 4 SYM the entropy function that leads to the entropy of the dual AdS5 black holes

can be extracted from a Cardy-like limit of the supersymmetric index, in suitable ranges

of the fugacities. See also [31] for related work. In addition, [32] showed that the same

entropy function can arise in the large N limit of the index. In this version of our paper

we will make some comments on the relation of our results to these papers, leaving a more

detailed investigation for future research.

2 Review of AdS5 black hole solutions

In this section we review the asymptotically AdS5 black hole solutions to minimal five-

dimensional gauged supergravity found in [7], emphasizing the features that will be impor-

tant in the following.

In the conventions of [7], the Lagrangian for the bosonic sector of minimal five-

dimensional gauged supergravity is3

L = (R+ 12g2) ∗1− 2

3g2
F ∧ ∗F +

8

27g3
F ∧ F ∧A , (2.1)

where A is the graviphoton with field strength F = dA, while g > 0 controls the cos-

mological constant, normalized so that the AdS solution has radius 1/g. Any solution to

this theory can be uplifted locally to type IIB supergravity on S5 or, more generally, on a

Sasaki-Einstein five-fold [33, 34].

It was found in [7] that an asymptotically AdS solution to the equations of motion is

given by:

ds2 = −∆θ [(1 + g2r2)ρ2dt+ 2qν] dt

Ξa Ξb ρ2
+

2q νω

ρ2
+
f

ρ4

(
∆θ dt

ΞaΞb
− ω

)2

+
ρ2dr2

∆r
+
ρ2dθ2

∆θ

+
r2 + a2

Ξa
sin2 θ dφ2 +

r2 + b2

Ξb
cos2 θ dψ2 , (2.2)

A =
3gq

2ρ2

(
∆θ dt

Ξa Ξb
− ω

)
+ α dt , (2.3)

3The gauge field appearing here is related to the one in [7] as ACCLP = 2√
3 g

A. Although this gives a

non-canonically normalized kinetic term, the boundary value of our A couples to the R-current of the dual

N = 1 SCFT canonically. Our electric charge Q is therefore related to the one in [7] by QCCLP =
√
3 g
2

Q

and is dimensionless.

– 5 –
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where

ν = b sin2 θ dφ+ a cos2 θ dψ , ω = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb
,

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ , ρ2 = r2 + a2 cos2 θ + b2 sin2 θ ,

Ξa = 1− a2g2 , Ξb = 1− b2g2 , f = 2mρ2 − q2 + 2abqg2ρ2 . (2.4)

In the gauge field we have introduced an arbitrary constant α which parameterizes a gauge

choice that will be important later. The coordinates φ, ψ are taken 2π periodic, while

θ ∈ [0, π/2], so that together these parameterize a three-sphere S3 (seen as a torus fibration

over the interval parameterized by θ).

The solution depends on the four parameters a, b,m, q, with the first two satisfying

a2g2 < 1, b2g2 < 1. Correspondingly, it carries four independent conserved charges: the

energy E (associated with translations generated by the Killing vector ∂
∂t), two angular

momenta J1, J2 (associated with rotations generated by the Killing vectors ∂
∂φ and ∂

∂ψ ,

respectively) and the electric charge Q. These read:

E =
mπ(2Ξa + 2Ξb − Ξa Ξb) + 2πqabg2(Ξa + Ξb)

4Ξ2
a Ξ

2
b

, Q =
πq

2gΞa Ξb
,

J1 =
π[2am+ qb(1 + a2g2)]

4Ξ2
a Ξb

, J2 =
π[2bm+ qa(1 + b2g2)]

4Ξ2
b Ξa

. (2.5)

The outer event horizon of the solution is identified by the largest positive root of

∆r = 0, denoted by r = r+. This is a Killing horizon, generated by the Killing vector field

V =
∂

∂t
+Ω1

∂

∂φ
+Ω2

∂

∂ψ
, (2.6)

where

Ω1 =
a(r2+ + b2)(1 + g2r2+) + bq

(r2+ + a2)(r2+ + b2) + abq
, Ω2 =

b(r2+ + a2)(1 + g2r2+) + aq

(r2+ + a2)(r2+ + b2) + abq
(2.7)

are the angular velocities on the horizon measured in a non-rotating frame at infinity.

Evaluating the surface gravity gives the Hawking temperature

T ≡ β−1 =
r4+[(1 + g2(2r2+ + a2 + b2)]− (ab+ q)2

2π r+ [(r2+ + a2)(r2+ + b2) + abq]
, (2.8)

while the electrostatic potential on the horizon is defined as

Φ = ιVA|r+ − ιVA|∞ (2.9)

and reads [35]

Φ =
3 g q r2+

2
(
(r2+ + a2)(r2+ + b2) + abq

) . (2.10)

– 6 –
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Finally, the entropy S = Area
4 is given by

S =
π2[(r2+ + a2)(r2+ + b2) + abq]

2ΞaΞbr+
. (2.11)

These quantities satisfy the first law of thermodynamics,

dE = TdS +Ω1 dJ1 +Ω2 dJ2 +ΦdQ . (2.12)

The intensive variables β,Ω1,Ω2,Φ, that we will denote collectively as “chemical poten-

tials”, are conjugate in a thermodynamical sense to the charges E, J1, J2, Q, respectively.

Adopting the approach of [36], this is demonstrated by computing the on-shell action. The

latter should be evaluated in a regular Euclidean section of the solution, that is a section

in the complexified solution where the metric is real and positive definite. One then argues

that the action will take the same form on any other section of the complexified solution

which is homologous to the Euclidean section, even though the induced metric on this other

section may be complex. For the solution considered in this paper, the on-shell action was

computed in [35] (see also [37] for the case with a = b) by performing the analytic contin-

uation t → −iτ , a → ia, b → ib which yields a real Euclidean metric. Regularity of the

Euclidean metric leads to identify β with the circumference of the Euclidean time circle

that shrinks as r → r+.
4 Moreover the long-distance divergences arising from the action

integral were regularized in [35, 37] using the background subtraction method. Eventually

the parameters a, b are continued back to their original value. The result thus found for

the on-shell action is:

I =
πβ

4ΞaΞb

[
m− g2(r2+ + a2)(r2+ + b2)− q2r2+

(r2+ + a2)(r2+ + b2) + abq

]
, (2.13)

and one can verify that the quantum statistical relation is satisfied:

I = βE − S − βΩ1J1 − βΩ2J2 − βΦQ . (2.14)

The on-shell action, seen as a function of the chemical potentials, I = I(β,Ω1,Ω2,Φ), is

interpreted as minus the logarithm of the grand-canonical partition function. One can

check that the black hole charges are indeed conjugate to the chemical potentials, that is

they satisfy:

E =
∂I

∂β
, J1 = − 1

β

∂I

∂Ω1
, J2 = − 1

β

∂I

∂Ω2
, Q = − 1

β

∂I

∂Φ
. (2.15)

The entropy (2.11) is thus the logarithm of the microcanonical partition function which

is obtained as the Legendre transform of the logarithm of the grand-canonical partition

function I with respect to all chemical potentials.

The solution admits two notable and a priori distinct limits, namely the one to super-

symmetry and the one to extremality. The solution is supersymmetric if the parameters

are related as:

q =
m

1 + ag + bg
. (2.16)

4Regularity of the Euclidean section will be discussed further later. A general discussion of the thermo-

dynamics of asymptotically locally AdS spaces can be found in [38].
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For later purposes we record the non-spacelike Killing vector arising as a bilinear of the

spinor parameter solving the Killing spinor equation:

K =
∂

∂t
+ g

∂

∂φ
+ g

∂

∂ψ
. (2.17)

One can check that the supersymmetry condition (2.16) does not imply extremality since

the temperature does not vanish in general.

Extremality instead corresponds to a double root of ∆r. In order to show this, we

write the cubic polynomial r2∆r as

g−2r2∆r = (r2 − r2+)(r
2 − r20)(r

2 − r2−) , (2.18)

where by definition r2+ ≥ r20 ≥ r2−. Comparing this expression for ∆r with the one in (2.4),

we find:

r2+ + r20 + r2− = −(a2 + b2 + g−2) ,

r2+r
2
0 + r20r

2
− + r2−r

2
+ = g−2(a2 + b2 + a2b2g2 − 2m) ,

r2+r
2
0r

2
− = −g−2(ab+ q)2 . (2.19)

Using these relations, the numerator in the expression (2.8) for the temperature can be

rewritten as r2+(r
2
+ − r20)(r

2
+ − r2−) [39]. Hence the extremality condition corresponds to

r2+ = r20, meaning that r2∆r has a double root indeed. This condition does not imply

the supersymmetry relation (2.16), in fact one can check that the solution of [7] contains

causally well-behaved black holes that are extremal but non-supersymmetric.

On the other hand, for the black hole satisfying the supersymmetry condition (2.16) to

be free of causal pathologies such as closed timelike curves (CTC’s), one needs to further

restrict the parameters as

m =
1

g
(a+ b)(1 + ag)(1 + bg)(1 + ag + bg) . (2.20)

One also has to require a + b + abg > 0. After imposing (2.20) in addition to (2.16), the

solution becomes extremal. So although the generic supersymmetric solution depends on

three parameters, the supersymmetric and causally well-behaved solution is also extremal

and depends on two parameters only.

Throughout the paper, we will carefully distinguish between supersymmetry and ex-

tremality. Moreover, a quantity evaluated after taking both the supersymmetry and the

extremality limits will be called “BPS” and denoted by a ∗ symbol in the formulae.

In this BPS limit, the double root r2∗ = r2+ = r20 reads

r∗ =

√
1

g
(a+ b+ abg) , (2.21)

while the chemical potentials above satisfy:

β → ∞ , Ω1 → Ω∗
1 = g , Ω2 → Ω∗

2 = g , Φ → Φ∗ =
3

2
g . (2.22)

– 8 –
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Note that the null generator of the horizon given in (2.6) then coincides with the super-

symmetric Killing vector (2.17). The BPS values of the charges are:

J∗
1 =

π(a+ b)(2a+ b+ abg)

4g(1− ag)2(1− bg)
, J∗

2 =
π(a+ b)(a+ 2b+ abg)

4g(1− ag)(1− bg)2
,

Q∗ =
π(a+ b)

2g2(1− ag)(1− bg)
, (2.23)

with the energy being given by:

E∗ = Ω∗
1 J

∗
1 +Ω∗

2 J
∗
2 +Φ∗Q∗ . (2.24)

Relation (2.24) is a consequence of supersymmetry. Since two parameters have been tuned

to reach both supersymmetry and extremality, the charges satisfy an additional relation,

which reads:

(Q∗)3 +
2π

g3
J∗
1J

∗
2 =

(
3Q∗ +

π

2g3

)(
3 (Q∗)2 − π

g3
(J∗

1 + J∗
2 )

)
. (2.25)

The BPS entropy reads

S∗ =
π2(a+ b)r∗

2g(1− ag)(1− bg)
(2.26)

and it can be written in terms of the charges as [40]:

S∗ = π

√
3 (Q∗)2 − π

g3
(
J∗
1 + J∗

2

)
. (2.27)

Reproducing this expression for the BPS entropy from a field theory computation will be

our final goal.

By setting the rotational parameters equal, a = b, the solution reduces to the one

of [41], where the two angular momenta are equal to each other. In the BPS limit, this

reduces to the one-parameter supersymmetric black hole of [5].

3 BPS limit of black hole thermodynamics

We are interested in studying a BPS limit of the black hole thermodynamics described

above. In particular, we want to express the quantum statistical relation (2.14), relating

the entropy to the on-shell action, after both the supersymmetry and the extremality limits

have been taken. Since one has to tune two parameters, there are multiple ways to reach

the BPS black hole. In particular, the order of limits matters. We start by describing

the consequences of imposing supersymmetry first, followed by extremality. We will then

comment on other possible limits.

3.1 Supersymmetry

From now on we will set g = 1 for simplicity (this can easily be reinstated by dimensional

analysis). Moreover instead of using (a, b,m, q) as independent parameters, we will find

– 9 –
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it convenient to describe the solution in terms of (a, b, r+, q). From the expression of ∆r

in (2.4) we see that m is then determined as:

m =
(r2+ + a2)(r2+ + b2)(1 + r2+) + q2 + 2abq

2r2+
. (3.1)

In terms of the variables (a, b, r+, q), the supersymmetry condition (2.16) becomes

q = −ab+ (1 + a+ b) r2+ ±
√
−r2+(r2+ − r2∗)

2 , (3.2)

where we recall that r∗ is given by (2.21). If we require q to be real (and r2+ > 0) then

we need to take r+ = r∗, that is we are immediately forced to impose extremality in

addition to supersymmetry. This is consistent with the fact that the causally well-behaved,

supersymmetric black hole is also extremal. If instead we insist on imposing supersymmetry

while keeping r+ generic (but real), then q must be complex and may be written as

q = −(a− ir+)(b− ir+)(1− ir+) . (3.3)

where we have fixed the sign in (3.2) for definiteness. The other sign choice corresponds

to sending i → −i in this expression; this change straightforwardly propagates in the

expressions for the chemical potentials, the action, the entropy and the charges given below.

A complex value of the parameters would not be allowed in the Lorentzian solution.

However our aim is to study an analytically continued solution which satisfies the require-

ment of preserving supersymmetry. For this purpose, it is legitimate to take q and possibly

other parameters complex: since the Killing spinor equation is analytic in the supergravity

fields, it will still admit a solution in the complexified background.

Using expression (3.3) for q, the chemical potentials (2.7), (2.8), (2.10) become

β =
−2π(a− ir+)(b− ir+)(r

2
∗ + ir+)

(r2∗ − r2+)
[
2(1 + a+ b)r+ + i(r2∗ − 3r2+)

] ,

Ω1 =
(r2∗ + iar+)(1− ir+)

(r2∗ + ir+)(a− ir+)
, Ω2 =

(r2∗ + ibr+)(1− ir+)

(r2∗ + ir+)(b− ir+)
,

Φ =
3r+(r+ + i)

2(r2∗ + ir+)
, (3.4)

so they are all complex: it is only when r+ → r∗ (while keeping a, b fixed and real) that

their imaginary part vanishes and they reach the BPS values (2.22). Since we have imposed

the condition (3.3) on the parameters, the chemical potentials are no more independent.

It is readily checked that they now satisfy the constraint:

β (1 + Ω1 +Ω2 − 2Φ) = 2πi . (3.5)

Note that this condition could not be satisfied if the chemical potentials were real.

The constraint just derived has a simple interpretation: it corresponds to a global

regularity condition for the spinor ǫ solving the Killing spinor equation (A.1) and param-

eterizing the supersymmetry of the solution. In order to see this, let us discuss the action
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of the Killing vectors on ǫ. The explicit form of the Killing spinor ǫ is given in appendix A.

Although this depends on the frame chosen, the spinorial Lie derivative L, which is covari-

ant under local Lorentz transformations, can be evaluated in any frame. As discussed in

detail in appendix A, we find that the Killing spinor satisfies:

L ∂
∂t
ǫ =

i

2
(1 + 2α) g ǫ , L ∂

∂φ
ǫ =

i

2
ǫ , L ∂

∂ψ
ǫ =

i

2
ǫ , (3.6)

where we recall that α controls the flat connection term in the gauge field (2.3). The

last two equations are consistent with the fact that φ, ψ parameterize circles of length 2π

inside S3, which shrink smoothly to zero size at θ = 0 and θ = π/2, respectively. When

transported one full time around either one of these shrinking circles, the spinor must be

antiperiodic, as it inherits the spin structure of flat space; indeed exponentiating the action

of the Lie derivative one correctly finds that e2πL∂/∂φ ǫ = e2πL∂/∂ψ ǫ = −ǫ.
A similar condition must apply to the Killing generator V of the horizon, which be-

comes null at r = r+. In the Euclidean section of the solution this vector generates

translations along the time circle, which has period β and which shrinks to zero size as

r → r+. Recalling (2.6) and using (3.6), we see that the action of V on the Killing spinor

yields:

LV ǫ =
i

2

(
1 + Ω1 +Ω2 − 2Φ + 2 ιVA|r+

)
ǫ , (3.7)

where we also noted that from the definition (2.9) of the electrostatic potential one has

α ≡ ιVA|∞ = ιVA|r+ − Φ. The constraint (3.5) then leaves us with

LV ǫ =
(
∓ π

β
+ i ιVA|r+

)
ǫ . (3.8)

So transporting the spinor around the circle generated by V one full time yields:

ei β LV ǫ = − e−β ιV A|r+ ǫ . (3.9)

For the gauge field to be well-defined, its component along the direction that shrinks must

vanish, i.e. we should require ιVA|r+ = 0. This is achieved by fixing the gauge choice in A

as α = −Φ. In this gauge we have:

ei β LV ǫ = − ǫ for ιVA|r+ = 0 , (3.10)

namely the Killing spinor is antiperiodic when transported one full time around the cir-

cle generated by V . As for the circles generated by ∂
∂φ and ∂

∂ψ , this reflects regularity

of the spinor, since in the Euclidean section the thermal circle and the radial coordinate

parameterize a space which looks like R
2 for r → r+. Here we postulate that this condi-

tion should be satisfied also in the complexified, supersymmetric solution. Therefore the

constraint (3.5) can be seen as a regularity condition ensuring the correct periodicity of the

Killing spinor. In particular, it ensures that the spinor is antiperiodic in the regular gauge

such that ιVA = 0 at the horizon.
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In order to proceed further, it will be useful to redefine the chemical potentials Ω1,Ω2,Φ

by introducing the new variables:

ω1 = β(Ω1 − Ω∗
1) , ω2 = β(Ω2 − Ω∗

2) , ϕ = β(Φ− Φ∗) , (3.11)

where

Ω∗
1 = Ω∗

2 = 1 , Φ∗ =
3

2
, (3.12)

in agreement with (2.22) (recall that we are taking g = 1 in this section). In terms of the

new variables, the constraint (3.5) reads:

ω1 + ω2 − 2ϕ = 2πi . (3.13)

Explicitly, these read:

ω1 =
2π(a− 1)(b− ir+)

2(1 + a+ b)r+ + i(r2∗ − 3r2+)
, (3.14)

ω2 =
2π(b− 1)(a− ir+)

2(1 + a+ b)r+ + i(r2∗ − 3r2+)
, (3.15)

ϕ =
3π(a− ir+)(b− ir+)

2(1 + a+ b)r+ + i(r2∗ − 3r2+)
, (3.16)

Implementing the supersymmetry condition (3.3) and using the new variables, the

on-shell action (2.13) takes the nice form:

I =
2π

27g3G5

ϕ3

ω1ω2
. (3.17)

Note that this is manifestly independent of β. In view of the comparison with the field

theory result to be discussed in section 4, in this formula we have reinstated the five-

dimensional Newton’s constant G5, otherwise set to 1 in this paper, as well as the inverse

AdS radius g.

Condition (3.3) implies that the entropy (2.11) takes the complex value

S =
π2(a− ir+)(b− ir+)(ir

2
∗ − r+)

2(1− a2)(1− b2)

=
π2
[
r+(r

2
+ + a2 + b2 + ba2 + ab2 + ab) + iab(r2∗ − r2+)

]

2(1− a2)(1− b2)
, (3.18)

where notice that when r+ = r∗, the imaginary part vanishes and the real part becomes

the BPS entropy (2.26). The charges are also complex, and take the following form

J1 =
π(b+ 2a+ ab)

4(1− a)(1− a2)(1− b2)

[
r2+(1 + a+ b)− ab+ ir+(r

2
∗ − r2+)

]
, (3.19)

J2 =
π(a+ 2b+ ab)

4(1− b)(1− a2)(1− b2)

[
r2+(1 + a+ b)− ab+ ir+(r

2
∗ − r2+)

]
, (3.20)

Q =
π

2(1− a2)(1− b2)

[
r2+(1 + a+ b)− ab+ ir+(r

2
∗ − r2+)

]
. (3.21)
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This makes it manifest that in the BPS limit, r+ = r∗, again the imaginary parts vanish,

while the real parts coincide with the BPS values in (2.23). The energy E is also complex

and it satisfies the relation

E − Ω∗
1J1 − Ω∗

2J2 − Φ∗Q = 0 , (3.22)

which as already mentioned is a consequence of supersymmetry, independently of extre-

mality.

The quantum statistical relation (2.14) is now satisfied in the form

I = −S − ω1J1 − ω2J2 − ϕQ . (3.23)

Notice that the term containing the energy has disappeared. This is because

I = βE − S − βΩ1J1 − βΩ2J2 − βΦQ

= β(E − Ω∗
1J1 − Ω∗

2J2 − Φ∗Q)− S − ω1J1 − ω2J2 − ϕQ , (3.24)

and the term proportional to β vanishes as it is just the supersymmetry condition satisfied

by the charges. This also means that ω1, ω2, ϕ are the chemical potentials conjugate to

the charges J1, J2, Q when β is regarded as the chemical potential conjugate to the charge

associated with the supersymmetric Hamiltonian

{Q,Q} = E − J1 − J2 −
3

2
Q ,

≡ E − Ω∗
1J1 − Ω∗

2J2 − Φ∗Q , (3.25)

which acts via the Killing vector K.

3.2 Reaching extremality

Starting from the supersymmetric, complexified family of solutions defined above, we can

now take the limit to extremality by sending r+ → r∗. In this limit both the charges

and the entropy become real and reach their BPS values given in section 2. Crucially, the

only quantity diverging in this limit is β, while the redefined chemical potentials ω1, ω2, ϕ

remain finite. Dubbing their limiting values as

ω∗
1,2 = lim

r+→ r∗
ω1,2 , ϕ∗ = lim

r+→ r∗
ϕ , (3.26)

we obtain

ω∗
1 =

π (1− a)

1 + a2 + b2 + 3r2∗

(
−a+ 2b+ 2ab+ b2

r∗
+ i (1 + a)

)
,

ω∗
2 =

π (1− b)

1 + a2 + b2 + 3r2∗

(
−b+ 2a+ 2ab+ a2

r∗
+ i (1 + b)

)
,

ϕ∗ = − 3π (a+ b)

2(1 + a2 + b2 + 3r2∗)

(
1− ab

r∗
+ i (2 + a+ b)

)
. (3.27)
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Note that contrarily to the charges, these remain complex even after taking the BPS limit.

Since the limit is smooth, we still have the constraint

ω∗
1 + ω∗

2 − 2ϕ∗ = 2πi (3.28)

and the BPS on-shell action is:

I∗ =
2π

27

(ϕ∗)3

ω∗
1ω

∗
2

. (3.29)

For later purposes, we observe that in the physical range a2 < 1, b2 < 1 and r2∗ ≡ a+b+ab >

0, the real parts of the angular chemical potentials satisfy either Reω1 < 0, Reω2 < 0, or

Reω1·Reω2 < 0, while they are never both positive. We recall that these are not the leading

terms (2.22) of the chemical potentials in the BPS limit. They are instead the subleading

terms in the expansion Ωi = Ω∗
i +

1
β ω

∗
i + . . . (and similarly for Φ = Φ∗ + 1

β ϕ
∗ + . . .). We

argue that these quantities are to be identified with the BPS chemical potentials and BPS

grand-canonical partition function in the BPS limit of black hole thermodynamics. This is

demonstrated starting from the BPS Quantum Statistical relation:

I∗ = −S∗ − ω∗
1J

∗
1 − ω∗

2J
∗
2 − ϕ∗Q∗ − Λ(ω∗

1 + ω∗
2 − 2ϕ∗ − 2πi) , (3.30)

where Λ is a Lagrange multiplier enforcing the constraint (3.28) between the chemical

potentials. Although this BPS-quantum statistical relation is satisfied in the solution

under study with the term multiplied by Λ evaluating to zero, it is useful to introduce the

latter in order to recall that the chemical potentials cannot be varied independently, as

they must satisfy the constraint. The conjugacy relation between the BPS charges and the

chemical potentials subject to the constraint is then expressed as:

− ∂I

∂ω∗
1

= J∗
1 + Λ , − ∂I

∂ω∗
2

= J∗
2 + Λ , − ∂I

∂ϕ∗
= Q∗ − 2Λ , (3.31)

where one of these equations should be regarded as the equation which determines the La-

grange multiplier. Using these relations, the entropy is understood as the Legendre trans-

form of the supergravity on-shell action (3.29), trading the chemical potentials ω∗
1, ω

∗
2, ϕ

∗ for

the BPS charges J∗
1 , J

∗
2 , Q

∗. This reproduces precisely the BPS entropy in the form (2.27).

We describe the extremization leading from the on-shell action to the entropy in a slightly

more general setup in appendix B. There we also show that demanding reality of the en-

tropy and of the charges implies a specific relation between the charges that in the case

under study is precisely eq. (2.25).

We observe that the BPS limit of black hole thermodynamics defined above provides a

derivation of the extremization principle proposed in [23] from the principles of Euclidean

quantum gravity. In particular, we have shown that the function of the chemical potentials

considered in [23] is in fact a supersymmetric on-shell supergravity action, which can be

interpreted as minus the log of the grand-canonical partition function. Then the extrem-

ization principle proposed in [23] can be seen as a Legendre transformation sending the log

of the grand-canonical partition function into the log of the microcanonical partition func-

tion (i.e. the black hole entropy). This result is non-trivial as the on-shell action must be
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defined by taking an appropriate limit in which supersymmetry is imposed before reaching

extremality. This prescription also identifies the complex chemical potentials satisfying the

constraint (3.28). The latter played a central role in [23] and is understood here as a spe-

cific regularity condition for the Killing spinor that arises by imposing supersymmetry of

the non-extremal family of solutions. It should be clear from the discussion of appendix B

that the value taken by the constraint and the expression for the on-shell action are equally

crucial for the entropy to be retrieved correctly.

3.3 Different BPS limits

Above we defined the BPS limit in two steps: first we imposed supersymmetry and after-

wards we reached extremality. This limiting procedure is however not unique, and we now

compare it to other possible trajectories in the parameter space of the solution leading to

the BPS locus.

We saw in section 2 that the BPS solution is obtained by imposing the condi-

tions (2.16), (2.20) on the parameters a, b,m, q. Using (2.19) to trade m, q for the horizon

radii r0, r+, the same BPS conditions can be expressed as:

r20 = r2+ = a+ b+ ab ≡ r2∗ . (3.32)

We then consider the following deformation away from the BPS values:

r+ = r∗ + ǫ ,

r0 = r∗ + ǫ r0,1 + ǫ2 r0,2 + ǫ3 r0,3 + . . . , (3.33)

where r0,k are parameters independent of ǫ. From (2.19) one can see that this implies:

m = (a+ b)(1 + a)(1 + b)(1 + a+ b) + ( 1 + a2 + b2 + 3r2∗ )r∗(1 + r0,1) ǫ+O(ǫ2) ,

q = (a+ b)(1 + a)(1 + b) +
( 1 + a2 + b2 + 3r2∗ )r∗(1 + r0,1)

1 + a+ b
ǫ+O(ǫ2) . (3.34)

The supersymmetry condition (2.16) is still satisfied at first order in ǫ, while generically it

is violated at second order. On the other hand, we have r+ − r0 = (1− r0,1)ǫ+O(ǫ2) and

unless r0,1 = 1 the deformation takes the solution out of extremality already at first order.

Plugging the near-BPS values (3.33), (3.34) of the parameters in, we find that the

chemical potentials now read:

ω∗
1 ≡ lim

ǫ→0
β(Ω1 − Ω∗

1) =
π (1− a)

1 + a2 + b2 + 3r2∗

(
−a+ 2b+ 2ab+ b2

r∗
+ (1 + a)u

)
,

ω∗
2 ≡ lim

ǫ→0
β(Ω2 − Ω∗

2) =
π (1− b)

1 + a2 + b2 + 3r2∗

(
−b+ 2a+ 2ab+ a2

r∗
+ (1 + b)u

)
,

ϕ∗ ≡ lim
ǫ→0

β(Φ− Φ∗) = − 3π (a+ b)

2(1 + a2 + b2 + 3r2∗)

(
1− ab

r∗
+ (2 + a+ b)u

)
, (3.35)

where u is defined in terms of r0,1 as:

u =
r∗

1 + a+ b

r0,1 + 1

r0,1 − 1
. (3.36)
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These satisfy the constraint:

ω∗
1 + ω∗

2 − 2ϕ∗ = 2πu . (3.37)

We see that these chemical potentials depend — via u — on the way the BPS locus is

attained. The limiting value of the on-shell action (2.13) also depends on u and reads:

I∗ =
π2(a+ b)2

[
1− a2(1 + b)− b2(1 + a)− 3ab− 2r2∗ + (3 + a+ b− ab)r∗ u

]

4(1− a)(1− b)r∗(1 + a2 + b2 + 3r2∗)
. (3.38)

One can check that the quantum statistical relation is satisfied for any value of u.

Comparing the expressions for ω∗
1, ω

∗
2, ϕ

∗, we clearly see that the limiting procedure

described in sections 3.1, 3.2 corresponds to choosing u = i. The alternate sign choice

in (3.2) corresponds to taking u = −i here. The peculiarity of these two choices is that

fixing r0,1 so that u = ±i and setting to zero all other r0,k coefficients in (3.33) corresponds

to requiring that the supersymmetry condition (2.16) is preserved at finite ǫ. Moreover,

it is only after choosing u = ±i that the BPS on-shell action (3.38) can be written in the

nice form (3.29).

A different choice of u was previously discussed in [22]. In that work, the BPS limit

was defined by setting:

q = (a+ b)(1 + a)(1 + b) , (3.39)

m = (a+ b)(1 + a)(1 + b)(1 + a+ b) + µ , (3.40)

and then sending µ → 0. Clearly both BPS conditions (2.16) and (2.20) are fulfilled in

the limit. Note that here q is kept fixed together with a and b.5 In terms of our general

parameterization of the BPS limit, this corresponds to choosing r0,1 = −1, that is, u = 0.

From (3.34) we see that in this case m and q only receive corrections at order O(ǫ2) (then

the other r0,k coefficients can be tuned so that q maintains its value (3.39) also at finite ǫ).

The BPS chemical potentials given in [22] are consistent with those obtained by setting

u = 0 in (3.35) and (3.37).

The general analysis above shows that there are different ways to approach the BPS

solution, which lead to different expressions for the chemical potentials ω∗
1, ω

∗
2, ϕ

∗ and the

on-shell action, all of which lead to the same physical black hole entropy. The one presented

in sections 3.1, 3.2, which first focuses on a non-extremal but supersymmetric family of

solutions and in a second step reaches extremality, is singled out as the unique manifestly

supersymmetric BPS limit. As we shall now see, this naturally leads to a calculation of

the black hole entropy in the dual rigid supersymmetric background at the boundary.

3.4 SCFT background from regularity in the bulk

Having identified a BPS on-shell action and its precise relation with the black hole entropy,

we would like to define a holographically dual SCFT quantity that matches it. A central

statement of the AdS/CFT correspondence is that the gravitational on-shell action matches

5We remark that (3.39) is different from the extremality condition, it implies extremality only after

imposing the supersymmetry condition (2.16).
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the generating functional of connected correlators, − logZ, of a dual SCFT at large N . The

on-shell action is a functional of the non-normalizable modes in an asymptotic expansion of

the supergravity fields, which are identified with the background fields entering in the SCFT

partition function Z and sourcing the dual SCFT operators. The gravitational on-shell

action I for the solution of [7] depends on the chemical potentials β,Φ,Ω1,Ω2, therefore we

expect these to also appear in the SCFT background. In the following we illustrate how

indeed the asymptotic supergravity metric and gauge field contain information about the

chemical potentials after imposing regularity of the Euclidean solution in the bulk. In this

way we will identify the relevant SCFT background. In the next section we will evaluate

the SCFT partition function on such background and match it with the supergravity on-

shell action.

We start our analysis by discussing the boundary data for the solution reviewed in

section 2, independently of supersymmetry or extremality. Sending r → ∞, we find that

the asymptotic metric is

ds2 =
dr2

r2
+ r2 ds2bdry + . . . , (3.41)

where the metric on the conformal boundary reads

ds2bdry = − ∆θ

ΞaΞb
dt2 +

dθ2

∆θ
+

sin2 θ

Ξa
dφ2 +

cos2 θ

Ξb
dψ2 , (3.42)

and the boundary gauge field is

Abdry = α dt . (3.43)

The spacelike part of ds2bdry is a regular, conformally-flat metric on S3. The boundary

metric acquires a simpler form if before taking the large-r limit we perform a change of

coordinates in the bulk transforming (r, θ) into (r̂, θ̂) as in [42]:

Ξa r̂
2 sin2 θ̂ = (r2 + a2) sin2 θ , Ξb r̂

2 cos2 θ̂ = (r2 + b2) cos2 θ . (3.44)

Asymptotically, this induces a (regular) Weyl transformation

ds2bdry =
∆θ

ΞaΞb
dŝ2bdry , (3.45)

such that the new metric on the conformal boundary reads

dŝ2bdry = −dt2 + dθ̂2 + sin2 θ̂ dφ2 + cos2 θ̂ dψ2 . (3.46)

We have thus obtained the canonical metric on the direct product of R with an S3 of unit

radius.

From these computations we conclude that locally the conformal boundary does not

contain any information about the chemical potentials. These instead arise from a global

analysis, as we now demonstrate by studying regularity of the Euclidean section.

The Lorentzian metric (2.2) can be analytically continued to an Euclidean metric by

introducing the Euclidean time τ = i t and taking a, b purely imaginary, while m, q remain

real. Recalling their expression (2.7), (2.8), (2.10), it is easy to see that after this analytic
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continuation the quantities β, iΩ1, iΩ2, Φ are real. Introducing a shifted radial coordinate

R2 = r − r+, one can see that at leading order as R→ 0, the metric takes the form

ds2 = hRR

(
dR2 +R2

(
2π

β
dτ

)2
)

+ hθθ dθ
2 + hφφ(dφ+ iΩ1dτ)

2 + hψψ(dψ + iΩ2dτ)
2

+ 2hφψ(dφ+ iΩ1dτ)(dψ + iΩ2dτ) , (3.47)

where hRR, hθθ, hφφ, hψψ, hφψ are specific functions of the coordinate θ and of the pa-

rameters a, b, r+, q, whose explicit expression will not be needed here. The metric (3.47)

describes a warped fibration of the deformed S3 parameterized by (θ, φ, ψ) over the R2 pa-

rameterized by polar coordinates (R, τ). Absence of conical singularities at R = 0 requires

the twisted identification

(τ , φ , ψ ) ∼ (τ + β , φ− iΩ1β , ψ − iΩ2β ) (3.48)

when one goes around the Euclidean time circle one full time [36, 42]. Equivalently, one

can notice that the (real) one-forms iΩ1dτ and iΩ2dτ describing the fibration of S3 over

the Euclidean time circle in (3.47) are not well-defined as R→ 0, where the latter shrinks.

The offensive terms are removed by the change of angular coordinates

τ = τ̂ , φ = φ1 − iΩ1τ̂ , ψ = φ2 − iΩ2τ̂ , (3.49)

where it should be noted that φ1, φ2 are still 2π-periodic. Now one can impose the standard

identifications

(τ̂ , φ1 , φ2 ) ∼ (τ̂ + β , φ1 , φ2 ) . (3.50)

This identification is clearly equivalent to the twisted identification (3.48) of the old coordi-

nates. We observe that in the new coordinates (τ̂ , θ, φ1, φ2, r), the Killing vector becoming

null at the horizon reads simply V = i ∂∂τ̂ .

We can now turn back to the boundary geometry. After also performing the change

of coordinates (3.44), the boundary metric reads

dŝ2bdry = dτ̂2 +
1

g2

(
dθ̂2 + sin2 θ̂ (dφ1 − iΩ1dτ̂ )

2 + cos2 θ̂ (dφ2 − iΩ2dτ̂ )
2
)
. (3.51)

Although this is locally equivalent to the metric (3.46), the identification (3.50) implies

that it is globally different from the geometry described by (3.46) with the identifications

(t, φ, ψ) ∼ (t − iβ, φ, ψ). It is instead equivalent to the twisted background described

by (3.46) if one assumes the identifications (t, φ, ψ) ∼ (t− iβ, φ− iΩ1β, ψ − iΩ2β).

Let us also look at the gauge field. As already discussed, regularity close to the origin

of the space requires ιVA|r=r+ = 0, which is achieved by fixing the gauge choice in A as

α = −Φ. Hence the boundary gauge field is

Abdry = iΦdτ̂ . (3.52)

Since Φ is real in the Euclidean section, the gauge field is pure imaginary.
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We have thus explained how the chemical potentials β,Ω1,Ω2,Φ affect the boundary

geometry and gauge field, as a consequence of regularity of the Euclideanized bulk solution.

The chemical potentials essentially correspond to holonomies around the Euclidean time

circle at the boundary. As such, they map directly into the corresponding quantities in a

dual field theory background.

We also observe that the energy Ê associated with translations along the new time

coordinate τ̂ reads, in terms of the charges defined previously,

Ê = E − Ω1J1 − Ω2J2 . (3.53)

Taking into account the gauge transformation leading to (3.52), the superalgebra (3.25)

now takes the form

{Q,Q} = Ê + (Ω1 − Ω∗
1)J1 + (Ω2 − Ω∗

2)J2 + (Φ− Φ∗)Q

= Ê +
1

β
(ω1J1 + ω2J2 + ϕQ) . (3.54)

This will also be the field theory superalgebra and will play an important role in the

following.

At this point we can analytically continue the parameters of the supergravity solution

allowing them to take more general complex values. In particular, we can impose the

supersymmetry condition and the constraint between the chemical potentials described

previously. Recall that under this constraint the Killing spinor is antiperiodic; this should

be regarded as a further boundary condition which is inherited by the SCFT spinor fields.

We regard the four-dimensional background identified above as the one on which the SCFT

should be defined in order to describe the holographic dual of the black hole. In the

following section we will use the metric (3.51) and gauge field (3.52), but we drop the hats

in the notation. This should not be confused with our unhatted variables used earlier in

this section.

4 Calculation of the field theory partition function

We now discuss the dual field theory calculation of the BPS black hole entropy. The black

hole solutions that we discussed in the previous sections are solutions to five-dimensional

minimal gauged supergravity, whose duals are four-dimensional N = 1 SCFTs. In this

section we consider a generic four-dimensional N = 1 SQFT with a chiral U(1)R symmetry,

which include N = 1 SCFTs. In particular, we consider theories which admit a Lagrangian

formulation whose field content consists of vector and chiral multiplets. For such theories

we compute the exact partition function using supersymmetric localization, and discuss

the relation to the entropy of the black hole. We also briefly discuss the Hamiltonian

interpretation of our calculation.

4.1 The definition and the set up of the functional integral

We consider the background metric

ds2 = dτ2 + dθ2 + sin2 θ (dφ1 − iΩ1dτ)
2 + cos2 θ (dφ2 − iΩ2dτ)

2 , (4.1)
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with the three independent coordinate identifications τ ∼ τ + β, φ1 ∼ φ1 + 2π, and

φ2 ∼ φ2 + 2π. This describes a fibration of a round S3 of unit radius over S1. In accor-

dance with the bulk analysis, we allow the quantities Ω1,Ω2, β to be complex. In order

to study supersymmetric field theories on this geometry, we couple the theory to off-shell

supergravity and consider its rigid limit [43]. The asymptotic analysis of the bulk super-

gravity shows that the dual SCFT couples to the four-dimensional background conformal

supergravity which is defined at the boundary (see e.g. [44, 45]). The boundary value of

the bulk gauge field defines the gauge field Acs in the conformal supergravity multiplet,

which couples canonically to the SCFT R-current. In agreement with (3.52), we take this

to be the flat connection Acs = iΦdτ . For the moment we can forget about the bulk origin

of Φ and regard it just as a complex parameter. The supersymmetric coupling of the field

theory to the background described above can also be formulated in terms of new minimal

supergravity [46, 47]. This allows us to work more generally and consider an N = 1 SQFT

(not necessarily superconformal) with a U(1)R symmetry. The bosonic content of the new

minimal supergravity multiplet consists of the vielbein, a gauge field Anm
µ for U(1)R sym-

metry, and a vector field V nm
µ which is conserved, i.e. ∇µV nm

µ = 0. The relation between

the conformal and the new minimal supergravity gauge fields is Acs = Anm − 3
2V

nm. A

consistent choice for the new minimal background fields is6

Anm = i

(
Φ− 3

2

)
dτ , V nm = −i dτ . (4.2)

Before starting the actual computation we spell out the conventions used in this section.

We use 4-component (Dirac) spinors ψ which can be split into their left- and right-chiral

parts ψL,R = 1
2(1 ± γ5)ψ. In the Euclidean theory the left and right parts are taken to

be independent with a choice of real slice to eventually be made in the functional integral.

We use ∇µ for the derivative covariant with respect to the minimal coupling to gravity, so

that for integer spin fields it is defined using the Christoffel connection, and for a spinor ψ

we use the spin connection, i.e.,

∇µψ = ∂µψ +
1

4
ωabµ γab ψ . (4.3)

The flat indices a, b are with respect to vielbeins ea, a = 1, · · · , 4, that are presented in

equations (C.4). The basis for γ matrices is written in equation (C.1). Here γab =
1
2 [γa, γb].

In the following we also use Dµ for the derivative covariant with respect to the coupling to

all the gauge fields (as well as gravity). In addition to gravity and the U(1)R gauge field

mentioned above, we will also have dynamical gauge fields Aµ, so that the generic form of

the covariant derivative is

Dµ := ∇µ − iAnm
µ γ5 − iAµ , (4.4)

6The new minimal supergravity fields Anm, V nm are not uniquely defined by the conformal supergravity

field Acs. As shown in [48], they can be shifted by a term proportional to Kµdx
µ, where Kµ∂µ is the

supersymmetric Killing vector obtained as a bilinear of the Killing spinors, which in our case coincides

with (2.17). We fix this ambiguity by demanding that Anm, V nm only have components along dτ . We also

note that our Anm describes the fluctuation of the electric chemical potential Φ over the particular value

Φ∗ = 3
2
.

– 20 –



J
H
E
P
1
0
(
2
0
1
9
)
0
6
2

where the γ5 acts as usual on spinors and is taken to be unity on integer-spin fields. Our

convention is that the gauge field acts according to the representation of the corresponding

field under the gauge symmetry, so that e.g. for an adjoint scalar φ we have Aµφ = [Aµ, φ].

In particular, we will not explicitly write the R-charge in the covariant derivative.

The Killing spinor equation of new minimal supergravity in the four-component lan-

guage is [46]

Dµε+ iV nm
µ γ5 ε−

i

2
(V nm)νγµνγ5 ε = 0 . (4.5)

We want to solve this equation with the given metric (4.1) and background vector

fields (4.2). The set of solutions that we are interested in is



u1 e
τ
2
(1−2Φ+Ω1+Ω2)

u2 e
τ
2
(1−2Φ−Ω1−Ω2)

v1 e
τ
2
(−1+2Φ+Ω1+Ω2)

v2 e
τ
2
(−1+2Φ−Ω1−Ω2)


 , (4.6)

for arbitrary constants ui, vi, i = 1, 2, that we will constrain below with the help of global

conditions. We note that the term linear in Anm
µ in the covariant derivative contains γ5, and

so the R-charge of a given mode is correlated with its chirality. In our basis the chirality

matrix reads γ5 = diag(1, 1,−1,−1), and therefore we can interpret the modes ui, i = 1, 2,

as left-chiral with γ5 = +1 with R-charge +1, and the modes vi, i = 1, 2, as right-chiral

with γ5 = −1 with R-charge −1.

The globally well-defined Killing spinor is either periodic or antiperiodic around the

time cycle. This enforces the phases in (4.6) to be a specific multiple of π times τ . Now,

the fact that the relative sign between (1 − 2Φ) and (Ω1 + Ω2) is one value (+1) for

the modes u1 and v2, and another (−1) for u2 and v1 implies that a well-defined Killing

spinor must have either u2 = v1 = 0, or u1 = v2 = 0. These two set of solutions are

related by the charge conjugation matrix C defined in appendix C. We will make the first

choice in the following. Then we choose one supercharge which is a combination of a left-

and a right-chiral supercharge. In our four-component language, this is implemented by

imposing the condition (C.3). Demanding the norm of the spinor, ε∗ε, to be one gives us

our Killing spinor

ε =




e
τ
2
(1−2Φ+Ω1+Ω2)

0

0

e−
τ
2
(1−2Φ+Ω1+Ω2)


 . (4.7)

The two non-zero modes in ε correspond to the left- and right-chiral parts of the Killing

spinor. The periodicity condition ε(τ + β) = ±ε(τ) gives

β
(
1 + Ω1 +Ω2 − 2Φ

)
= 2πin , n ∈ Z . (4.8)

Recalling the definition (3.11) of the supersymmetric chemical potentials, we see that the

new minimal supergravity gauge field can be rewritten as

βAnm = i β

(
Φ− 3

2

)
dτ = i ϕ dτ . (4.9)
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and the periodicity constraint (4.8) takes the form

ω1 + ω2 − 2ϕ = 2πin , n ∈ Z . (4.10)

The constraint (4.10) was derived here as an independent computation in the field theory by

demanding supersymmetry. Of course the same analysis can be performed — and the same

conclusion can be drawn — by looking at the boundary (UV) values of the bulk Killing

spinor. In the bulk we actually say more — supersymmetry of the family of solutions

reviewed in section 2 and regularity of the solution in the deep IR fixes n = ±1.

As we have already mentioned, this constraint can be only satisfied by complex values

of the chemical potential. It is not clear to us at the moment what, if any, is the physical

meaning of the other values of n, apart from n = 0 which could be interpreted as the

Euclidean pure AdS5 solution.

We now want to compute the partition function of the field theory in the above back-

ground for which we use localization with respect to the supercharge generated by ε. We

write the partition function schematically as a path integral over all the fields φ of the

theory,

Z =

∫
[Dφ] exp

(
−Sphys(φ)

)
. (4.11)

Here the physical action of the theory is supersymmetric, i.e. δεSphys = 0. The localization

computation of the supersymmetric partition function proceeds by deforming the action by

a δε-exact term Sphys(φ) → Sphys(φ)+ t δεV . One then shows that corresponding deformed

path integral Z(t) is independent of t, and therefore Z ≡ Z(0) = Z(∞). In the t → ∞
limit the integral is dominated by the BPS configurations δεψ = 0, so that we obtain7

Z =

∫

Mloc

[Dφ] exp
(
−Sphys(φ)

)
Z1-loop(δεV) , Mloc := {δεψ = 0} . (4.12)

This technique has been applied to perform similar computations of the partition

function of N = 1 SQFTs on various manifolds diffeomorphic to S1 × S3 [18, 53–55]8

including twisted S1×S3 [57]. In all these treatments, the Killing spinor is time independent

(and in particular periodic) in the circle direction, i.e. n = 0, while in our case the gravity

solution imposes n = ±1, which leads to antiperiodic spinors. A related technical point is

that one often solves for one of the potentials, say ϕ, in terms of the others (ω1, ω2) before

going through the computation. Here we consider all the potentials separately and obtain

a simple-looking expression in terms of these three potentials, on which we impose the

constraint at the end. As we shall see, the localization computation goes through as usual,

7Here we assume that one can define a supersymmetric scheme. Starting from a holographic analysis,

it has been argued in [49] (see also [50]) that four-dimensional N = 1 SCFTs have an anomaly in the

supersymmetry variation of the supercurrent which modifies the superalgebra in curved space. Along the

lines of [51, 52], here we are assuming that there exists a local counterterm which removes the anomaly

from the variation of the supercurrent in the background of interest (at the expense of breaking another

symmetry of the background).
8The computations of [53, 54] rely on a nice technique presented in [56] which identifies a path integral

representation of twisted generalizations of Witten’s index.
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and therefore the final result for the partition function, expressed as a function of ω1, ω2, ϕ,

is essentially independent of n except in that the constraint (4.10) is obeyed.

Given this new feature, we will revisit the localization computation. Before doing so we

comment on an important conceptual point. The fact of having an antiperiodic spinor does

not mean supersymmetry is broken. The periodicity n affects both the spinor periodicities

as well as the background chemical potentials under which the spinor is charged, so that

the Killing spinor equation is satisfied for any value of n. Assuming as usual that the

bosonic fields are periodic, anti-periodicity of the supercharge implies that all the fermionic

fields are also anti-periodic in the supersymmetric functional integral. In particular, the

partition function that we compute is not the physical thermal partition function, but

rather a supersymmetric partition function with an unusual constraint. As a consequence,

the partition function is independent of β as is usual in supersymmetric situations. We

will comment more on this in the following.

4.2 The localization computation

We now begin the localization computation by considering the chiral multiplet (φ, ψ, F )

coupled to the background supergravity and in a representation R with weights {ρ} of

the dynamical vector multiplet (Aµ, λ, λ,D). The fields ψ, λ are left-chiral fields. The

corresponding R-charges of the fields in the chiral multiplet are (r, r − 1, r − 2). The

variations of the chiral fields are [47] (with ∗ denoting complex conjugation)

δεφ =
√
2 i εR

∗
γ1ψ ,

δεψ =
√
2FεL + i

√
2γµεRDµφ , (4.13)

δεF = −
√
2 εL

∗
γ1γ

µ

(
Dµψ − i

2
V nm
µ ψ

)
+ 2 εL

∗
γ1λφ .

The anti-chiral fields (φ, ψ, F ) are in the representation R̄ with weights {−ρ}, and have

R-charges (−r,−r + 1,−r + 2). Their supersymmetry variations are

δεφ =
√
2 i εL

∗
γ1ψ̄ , (4.14)

δεψ =
√
2FεR + i

√
2γµεLDµφ , (4.15)

δεF̄ = −
√
2 εR

∗
γ1γ

µ

(
Dµψ +

i

2
V nm
µ ψ

)
+ 2 εR

∗
γ1λφ . (4.16)

For further use we define the following operators

PRµ := −e
2πi n τ

β ei(φ1+φ2) εL∗ γµ ε
R , (4.17)

PLµ := −e
−2πi n τ

β e−i(φ1+φ2) εR∗ γµ ε
L , (4.18)

Kµ := ε∗ γ1 γµ ε . (4.19)

Denoting a generic vector built from the components vµ as v = vµ∂µ, we have

PR = ∂θ − i cot θ ∂φ1 + i tan θ ∂φ2 , (4.20)

PL = ∂θ + i cot θ ∂φ1 − i tan θ ∂φ2 , (4.21)

K = 2

(
∂τ +

i ω1

β
∂φ1 +

i ω2

β
∂φ2

)
. (4.22)
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The operators PL and PR have R-charges +2 and −2, respectively, and K has R-charge 0.

Note that (up to a trivial rescaling), K is the same supersymmetric Killing vector (2.17)

of the bulk solution, just expressed in different coordinates defined in (3.49).9 The action

of this vector, covariantized by the gauge field (4.9), represents on the physical fields

the superalgebra (3.54), where Q is now identified with the R-charge and the chemical

potentials satisfy the constraint (4.10).

It is convenient to define the twisted or cohomological variables {φ, ψε, ψε̂, Fφ} with

R-charges (r, r − 2, r, r − 2) as follows,

ψε := ε∗ψ , (4.23)

ψε̂ := ε∗γ1ψ , (4.24)

Fφ := F + i εL∗ γµ εRDµφ . (4.25)

In terms of these variables, the supersymmetry transformations read

δεφ = i
√
2ψε̂ , δεψε̂ = i

√
2Hφ , (4.26)

δεψε =
√
2Fφ , δεFφ = −

√
2Hψε . (4.27)

Acting on the (scalar) twisted variables, the previous supersymmetry variations obey the

algebra

δ2ε = −KµDµ ≡ −2H . (4.28)

Note that the operators PL, PR commute with H:

[PR, H] = [PL, H] = 0 . (4.29)

We group the cohomological variables in terms of “elementary” bosons and fermions

and their superpartners as follows,

XB = {φ, φ} , δεX
B =

{√
2 iψε̂,

√
2 iψε̂

}
, (4.30)

XF = {ψε, ψε} , δεX
F =

{√
2Fφ,

√
2F φ

}
. (4.31)

The deformation term that we add to the original Lagrangian of the theory is δε V with

the following choice of V which is fairly standard10

V = −1

2

(
δεX

B XF
)(D00 D01

D10 D11

)(
XB

δεX
F

)
, (4.32)

9This is equivalent to the prescription of [56] which exchanges twisted boundary conditions along time

circle for dynamical fields for periodic boundary conditions supplemented by a twist of the time component

of the new covariant derivative.
10The positivity of the action of the fluctuations of this deformation action needs to be studied with care.

We do not enter this discussion here, because our main intention is to show the key differences with respect

to earlier treatments, like for instance the one presented in section 4 of [57]. Such differences really come

from the new constraint (4.9).
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where

D00 =

(
0 H

H 0

)
, D01 =

(
0 0

0 0

)
, (4.33)

D10 =

(
0 PL

PR 0

)
, D11 =

(
0 −1

−1 0

)
, (4.34)

so that we have

δεV =
(
XB δεX

F
)(H 0

0 1

)(
D00 D01

D10 D11

)(
XB

δεX
F

)

−
(
δεX

B XF
)(D00 D01

D10 D11

)(
1 0

0 H

)(
δεX

B

XF

)
. (4.35)

With this deformation term we need to solve for the localization locus and the one-loop

determinant of quadratic fluctuations of this deformation action evaluated on the space of

off-shell fluctuations around this locus. We assume11 here, based on a similar analysis

in [18], that the localization locus is given by the conditions that all the fields of the chiral

multiplet vanish, and the only-non-zero fields in the vector multiplet is a constant Wilson

line, with holonomy u around the time-circle

Aτ =
u

β
. (4.36)

The one-loop determinant Z1-loop(δεV) that we want to compute is the square root of

the ratio of determinants of the fermionic and bosonic kinetic operators Kf and Kb in the

expression (4.35). From linear algebra we have that this ratio of determinants reduces to

a ratio defined only on the elementary fields,

det Kf

det Kb
=

detXF H

detXB H
. (4.37)

Further, using the commutation relations (4.29), given a mode of φ with a certain H-

eigenvalue, the operator PR produces a mode of ψε with the same eigenvalue, and sim-

ilarly PL pairs up the fluctuations of φ with those of ψε̂. This pairing produces a can-

cellation of eigenvalues in (4.37) except if any of these modes vanish. The bosonic modes

contributing to the ratio of determinants are those obeying

φ : PR φ = 0 , φ : PL φ = 0 , (4.38)

i.e. those in the kernel of D10. Similarly the fermionic modes contributing to the determi-

nant are those in the cokernel of D10, i.e.,

ψε : P
L ψε = 0 , PR ψε = 0 . (4.39)

11One should revisit this more with a more rigorous and detailed analysis for the localizing term that we

choose above.
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The ratio of determinants thus reduces to

detXF H

detXB H
=

detCoker(D10)H

detKer(D10)H
. (4.40)

The determinant that we seek to compute is thus a ratio of the product of the eigen-

values of H in the cokernel of D10 and the corresponding product in the kernel. Since

we are using twisted field variables, the kernel and cokernel conditions are simply linear

first-order equations acting on scalars which can be solved easily. In particular, both the

bosons as well as the fermions (which are bilinears in ε and ψ) are periodic around the

Euclidean time and angular circles. Therefore we can use basis functions of the form

f(θ) e
i 2π
β
n0τein1φ1ein2φ2 , n0, n1, n2 ∈ Z for all the twisted variables. Basis functions of this

form are in the kernel of PL and PR if and only if, respectively,

fL(θ) ∼ cosn2(θ) sinn1(θ) ,

fR(θ) ∼ cos−n2(θ) sin−n1(θ) .
(4.41)

We immediately see that the modes fL are regular if and only if

n1 ≥ 0 , n2 ≥ 0 . (4.42)

Similarly, the modes fR are regular if and only if

n1 ≤ 0 , n2 ≤ 0 . (4.43)

The eigenvalues of these modes under − i
2K

µ∂µ, which we denote by λ, are

λψε =
2πn0
β

+ i
n1
β
ω1 + i

n2
β
ω2 , n1 , n2 ≥ 0 ,

λψε
=

2πn0
β

+ i
n1
β
ω1 + i

n2
β
ω2 , n1 , n2 ≤ 0 ,

λφ =
2πn0
β

+ i
n1
β
ω1 + i

n2
β
ω2 , n1 , n2 ≤ 0 ,

λφ =
2πn0
β

+ i
n1
β
ω1 + i

n2
β
ω2 , n1 , n2 ≥ 0 .

(4.44)

To obtain the final result for the 1-loop determinant, we have to use the full covariant

derivative in the operator H = 1
2K

µDµ. This includes terms proportional to the Wilson

line Aτ =
u
β of the dynamical gauge field as well as the R-symmetry gauge field.12 Putting

the above results together, we have

Zchiral,ρ
1-loop (u) =

∏

n0∈Z

∏

n1,n2≥0

2πn0 + ρ · u− i (r − 2)ϕ+ i n1 ω1 + i n2 ω2

2πn0 + ρ · u− irϕ− i n1 ω1 − i n2 ω2
. (4.45)

Note that this expression is independent of β. The result for the vector multiplet is related

to that of a chiral multiplet with R-charge r = 2. Denoting the roots by α, we get

Zvector,α
1-loop (u) =

∏

n0∈Z

∏

n1,n2≥0

2πn0 + α · u+ i n1 ω1 + i n2 ω2

2πn0 + α · u− 2i ϕ− i n1 ω1 − i n2 ω2
, (4.46)

where we are omitting a factor that eventually cancels out with the integration measure

and the gauge-fixing term [18].

12Notice that we have normalized the holonomy of the color Wilson line to be u and independent of β.
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4.3 Regularization and the result for the partition function

The result for the one-loop partition function of a chiral multiplet in a representation R of

gauge group G with R-charge r is recovered by collecting the corresponding result (4.45)

for each weight ρ. We perform this computation in appendix D. As explained there in

some detail, there are two choices of regulator parameterized by s = ±1. The answer can

be summarized in terms of the elliptic gamma function (D.10) as follows,

exp
(
−iπΨ

(
w,α1, α2

))
Γe(w + γ;α1, α2) , (4.47)

where the arguments are given by

α1 = s
iω1

2π
, α2 = s

iω2

2π
, γ = s

iϕ

2π
,

w(ρ, r) = −s 1

2π
(ρ · u− (r − 1)iϕ) . (4.48)

The infinite product expression for the elliptic gamma function is convergent for α1,2 in

the upper half plane. In order to compare with the BPS black hole solutions discussed in

section 3 which have Re(ω1,2) < 0, it is natural to choose the regularization corresponding

to s = −1.13

The result can be written as follows14

Zchiral,R,r
1-loop (u) = e−i π dim(R)Ψ(0)(r)e−iπΨ

(1)(u,r)
∏

ρ∈R

Γe

(
v(ρ, r);

ω1

2πi
,
ω2

2πi

)
, (4.49)

where Γe is the elliptic Gamma function defined in (D.10) and

v(ρ, r) =
1

2π

(
ρ · u− i r ϕ

)
, (4.50)

Ψ(0)(r) = i
(
(r − 1)3 − (r − 1)

) 1

6π

ϕ3

ω1ω2
+ (r − 1)Ψ

(0)
2 , (4.51)

Ψ
(0)
2 =

i ϕ

12π

(
1− 2πin

(
1

ω1
+

1

ω2

)
− 4π2

(
2n2 + 3n+ 1

)

ω1 ω2

)
. (4.52)

13In v1, v2 of this paper, the regularization s = +1 was chosen. In this case, one could still make sense

of the elliptic gamma funtion in the black hole region Re(ω1,2) < 0 region using an analytic continuation

from the region of convergence as described in [58]. This procedure leads to an expression for the index as

in (4.57), but with the R-charges shifted with respect to the physical values, which makes this choice less

appealing. The consequence of choosing this regulator would be that the result for the leading prefactor Ψ(0)

has the opposite sign as for the s = −1 case. This sign then propagates on to the prefactor F in (4.59) below.
14We note that we have used the “one-step” regularization in reaching this result as in [18, 55]. In the

case n = 0, the expression (4.52) for Ψ
(0)
2 obtained by using this regularization differs from the one obtained

by using the improved “two-step” regularization of [19] (see also [59]). However, the results of [18] and [19]

agree at leading order in N , which is what we focus on in this paper. In the n = 0 situation analyzed

in these papers, it was important for consistency with the β → 0 limit [60] that the factor Ψ
(0)
2 does

not contain the second and third terms, and indeed the two-step regularization was consistent with that

requirement. At present it is not clear to us at a technical level how to do the two-step regularization with

the n 6= 0 constraint. In section 4.5 we will show that a naive application of the regularization prescription

discussed in [61] suggests that the correct result may be Ψ
(0)
2 = i ϕ

12π

(
1− 2πin

(
1
ω1

+ 1
ω2

)
− 8π2n2

ω1 ω2

)
, which

is of course consistent with the n = 0 case; but we intend to return to this problem in the future. As it will

become clear momentarily, this issue does not arise in theories with a = c, such as N = 4 SYM.
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Here the expression Ψ(1), defined in (D.18), does not contribute to the final answer if

the theory is anomaly-free [18], which we assume is the case. For a vector multiplet we

specialize to r = 2, and R = Adj to obtain

Zvector
1-loop(u) = e−i π dim(G)Ψ(0)(2) e−iπΨ(1)(2)

∏

ρ∈Adj(G)

Γe

(
v(ρ, 2);

ω1

2πi
,
ω2

2πi

)
. (4.53)

We can now write down the answer for the localized partition function (4.12) of an

N = 1 supersymmetric gauge theory with nC chiral multiplets I = 1, . . . , nC , with R-

charges rI and in representations RI of the gauge group G. We recall that the localization

locus is labelled by the Wilson lines of the dynamical gauge field. We thus obtain the result

for the partition function as a rank(G)-dimensional integral,

Z =
1

|W|

∫ rk(G)∏

i=1

dui
2π

Zvector
1-loop(u)

nC∏

I=1

Zchiral,RI ,rI
1-loop (u) , (4.54)

where |W| is the order of the Weyl group and the ui, i = 1, . . . , rk(G) are real angle

variables ranging from −π to π, parameterizing the maximal torus of G.

Putting together the expressions (4.49), (4.53), (4.54), we obtain

Z(ω1, ω2, ϕ) = e−F(ω1,ω2,ϕ) I(ω1, ω2, ϕ) , (4.55)

where the prefactor

F(ω1, ω2, ϕ) =−
∑

I

dim(RI)
(
(rI − 1)3 − (rI − 1)

)1
6

ϕ3

ω1ω2

+
(
dim(G) +

∑

I

dim(RI)(rI − 1)
)
i πΨ

(0)
2 ,

(4.56)

is independent of the Wilson line u,15 and

I(ω1, ω2, ϕ) =
1

|W|

∫ rk(G)∏

i=1

dui
2π

∏

ρ∈Adj(G)

Γe

(
v(ρ, 2);

ω1

2πi
,
ω2

2πi

)∏

I

∏

ρ∈RI

Γe

(
v(ρ, rI);

ω1

2πi
,
ω2

2πi

)
.

(4.57)

The elliptic Gamma functions associated with the vanishing roots of the gauge group G

have a zero mode, these are understood to be removed from the above expression. After

this is done, these Gamma functions can be expressed in terms of Pochhammer symbols

(while those associated with non-vanishing roots may be rewritten in terms of Jacobi theta

functions). When n = 0, we immediately see that I reduces to the usual expression of

the Hamiltonian index [62]. As we discuss in the next subsection, the quantity I, for

arbitrary n, is essentially the Hamiltonian index.

From now on we focus on the prefactor F and leave the analysis of the large N

asymptotic behaviour of the index to the future. Using the definition of the central charges

15In reaching the right-hand side of (4.56) we have used that Ψ(0)(r = 2) = Ψ
(0)
2 .
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that appear in the Weyl anomaly,

a =
3

32

(
2 dim(G) +

∑

I

dim(RI)
(
3(rI − 1)3 − (rI − 1)

))
,

c =
1

32

(
4 dim(G) +

∑

I

dim(RI)
(
9(rI − 1)3 − 5(rI − 1)

))
,

(4.58)

we can rewrite (4.56) as16

F(ω1, ω2, ϕ) = −(3c− 2a)
16

27

ϕ3

ω1ω2
+ (a− c)16πiΨ

(0)
2 . (4.59)

Recall that using the constraint (4.10), the chemical potential ϕ can be eliminated in favour

of ω1, ω2 and n. The prefactor F can be seen as a generalization of the supersymmetric

Casimir energy [18, 19]. The latter corresponds to real fugacities ω1 = −|b1|, ω2 = −|b2|
and n = 0, leading to zero entropy upon a Legendre transform.

The inclusion of chemical potentials for flavor symmetries is quite straightforward. We

simply introduce background gauge fields that couple to the flavor symmetries and identify

the chemical potentials with the Wilson lines of these background gauge fields. The flavor

chemical potentials thus enter the covariant derivative expressions in the standard manner,

and all our calculations go through as before. The product expression (4.45) for the one-

loop determinant now contains a term proportional to the flavor chemical potentials, this

is presented in appendix D. In the following we assume the flavor symmetries to be abelian

for convenience of presentation.

As an illustration we can now apply these considerations to the case ofN = 4 SYMwith

gauge group SU(N). In the N = 1 language the theory consists of three chiral multiplets

of R-charge r = 2
3 , and one vector multiplet with r = 2. Besides the N = 1 R-symmetry,

we now have two other independent flavor symmetries whose charges we denote F1, F2.

We denote the three corresponding chemical potentials as ϕ, ϕ̃1, ϕ̃2, respectively. We can

choose the flavor symmetries to be the ones that rotate the first and the third chiral mul-

tiplet, respectively, so that they have charges (F1, F2) = (1, 0) and (0, 1), respectively. The

second chiral then has flavor charges (−1,−1). The relation of these charges to the SU(4)

R-symmetry of N = 4 SYM is as follows.17 Denoting the Cartan generators of the SU(4)

as Ti, i = 1, 2, 3, we have

Q = T1 +
2

3
T2 +

1

3
T3 , F1 = T2 , F2 = −T3 , (4.60)

where Q is the R-charge operator. Putting these facts together, we obtain

−FN=4 =
N2 − 1

6ω1ω2

((
−1

3
ϕ+ ϕ̃1

)3

+

(
−1

3
ϕ+ ϕ̃2

)3

+

(
−1

3
ϕ− ϕ̃1 − ϕ̃2

)3

+ ϕ 3

)

=
(N2 − 1)

2

ϕ1ϕ2ϕ3

ω1ω2
, (4.61)

16The sign of F here is correlated to the choice of regulator s, see footnote 13 above.
17In appendix D, we work out the expression for F in the language of the SU(4) R-symmetry.
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where, in going to the second line, we have defined the linear combinations

ϕ1 =
1

3
(3ϕ̃1 + 2ϕ) , ϕ2 =

1

3
(3ϕ̃2 + 2ϕ) , ϕ3 =

1

3
(−3ϕ̃1 − 3ϕ̃2 + 2ϕ) . (4.62)

We note that there is no term proportional to a − c because the sum of each of the

charges F1, F2, and r − 1 over the four multiplets vanish. The earlier case when only

the R-symmetry chemical potential is turned on is recovered by setting ϕ̃1 = ϕ̃2 = 0.

We now go back to our general N = 1 field theory result (4.59) and compare with the

corresponding supergravity result. In the large-N limit we have that a = c and converting

to gravity units, we obtain

−F −−−−→
N→∞

2π

27g3G5

ϕ3

ω1ω2
= I . (4.63)

Upon setting n = ±1 in the constraint (4.10) between the chemical potentials, this

matches precisely the result (3.17) for the supergravity on-shell action and therefore the

entropy function. Notice that we have in fact matched the on-shell action of the whole

set of complexified supersymmetric solutions discussed in section 3.1, which contains the

physical, extremal black hole as a particular case. We can now evaluate the constrained

Legendre transform of (4.63) as described in detail in appendix B. Upon imposing that the

charges as well as the entropy are real, and again setting n = ±1, this gives precisely the

BPS black hole entropy (2.27). For N = 4 SYM we can also turn on the other two flavor

chemical potentials as discussed above and, by the same constrained Legendre transform

of appendix B, we can derive the entropy of the supersymmetric AdS5 black holes with

multiple electric charges and an uplift to type IIB supergravity on S5 presented in [6, 8, 9].

4.4 Relation to the Hamiltonian index

In this section we discuss the factor I in the split (4.55). We will show that I(ω1, ω2, ϕ)

is, in a very precise sense, related to the Hamiltonian index computation of [10, 11]. We

will first discuss a specific computation in the context of a chiral multiplet as a way to

illustrate this relation, and then use this to make a more general comment about (4.55).

When the supercharge is independent of τ (n = 0), it is known that after subtraction

of zero point energies the supersymmetric path integral on a twisted S1 × S3 is equivalent

to the Hamiltonian index in N = 4 SYM [10, 63, 64], and more generally in N = 1

theories [11]. Here we revisit this and check that the corresponding analysis holds for the

more general case of n 6= 0.

Let us start by focusing on the complex chiral multiplet. In the twisted notation that

we introduced in the previous section, the elementary fields are

{φ, φ, ψε, ψε}. (4.64)

We recall that all these four twisted variables are scalars and, in particular, both the bosonic

as well as the fermionic components are periodic. We will need the charge assignments

under the charges (Q,Qgauge, F, J1, J2) where Q is the R-charge, Qgauge is the charge vector

under Cartan generators of the gauge group G, F is the fermion number, and J1,2 are
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the angular momenta on the sphere. The fields φ and φ have charges (r, ρ, 0, 0, 0) and

(−r,−ρ, 0, 0, 0) respectively, and the fermions ψε and ψε have charges (r− 2, ρ, 1, 0, 0) and

(−r + 2,−ρ, 1, 0, 0) respectively.
In terms of the Wilson line u and the chemical potentials (ω1, ω2, ϕ) defined in the

previous subsection, we define

s = e i u , t = eϕ , p = eω1 , q = eω2 , (4.65)

dual to the charges ρ, Q, J1, and J2, respectively. By a reduction on S3, the Hamilto-

nian index is equivalent to a counting problem in quantum mechanics. In this quantum

mechanics, we are instructed to first compute the trace

Iρ, rchiral(u) := Tr (−1)F tQsQgaugep J1q J2 . (4.66)

In order to obtain the final answer for the complete index, one multiplies contributions

from every multiplet in the theory and integrates over the color holonomies u as in the

previous subsection. Thus we see that the result of this computation is very close to the

localization computation that we performed in the previous subsection, up to the subtlety

about zero-point energy.

The trace (4.66) is computed in two steps. First we compute the trace over the set

of elementary “letters” and their descendants.18 The reality conditions and regularity of

the wave functions (4.44) only allow a subset of the Kaluza-Klein modes on the S3. In

the quantum mechanics computation, this can be thought of as effectively reducing the

number of single letters to two complex letters and all their descendants. We choose these

two letters to have the quantum numbers of the zero modes of {φ, ψε}. The calculation

of the single letter index is a very simple adaptation of the analogous n = 0 calculation

in [62]. We find that the answer for a chiral multiplet of R-charge Q = r and gauge group

weight ρ is

fρ,rchiral(s, t, p, q) :=
tr sρ

(1− p)(1− q)
− t2−rs−ρ

(1− p)(1− q)
. (4.67)

The second step is to calculate the multiparticle contribution, which is captured in an

elegant manner by the plethystic exponential

Iρ, rchiral(u) = exp

(
∞∑

n=1

1

n
fρ,rchiral(s

n, tn, pn, qn)

)
. (4.68)

Using the following identity (which is a particular case of (5.6) in [65]),

exp

(
∞∑

n=1

1

n

(χυ)n

(1− pn)(1− qn)

)
=

∞∏

k, l=0

1

(1− χυ pk ql)
, (4.69)

18The descendants are obtained by spacetime derivative action ∂φ1
and ∂φ2

on the elementary let-

ters. The quantum numbers of ∂φ1
and ∂φ2

are (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1), respectively. The charges

(Q,Qgauge, F, J1, J2) commute with our supercharge δε.
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we obtain

Iρ, rchiral(u) =
∞∏

k, l=0

(
1− s−ρ t2−r pk ql

)

(1− sρ tr pk ql)
= Γe

(
1

2π
(ρ · u− r i ϕ) ;

ω1

2πi
,
ω2

2πi

)
. (4.70)

The definition of elliptic gamma function Γe appearing on the right-hand side is the same

one appearing in (4.49). In proving the second equality in (4.70) we have used the con-

straint (4.10) and the fact that n ∈ Z.

We can also write down the analogous expression Ivector(u) for the vector multiplet by

using the fact that the vector multiplet in these calculations behaves like a chiral one with

R-charge 2. To obtain the final result for the index, we are instructed to project to gauge

invariant states by integrating over u. Doing so, we land precisely on the expression (4.57).

We have thus shown that the factor I in equation (4.55) is a Hamiltonian index. This

supports our interpretation of the prefactor F as the supersymmetric Casimir energy for

arbitrary n.

We now make the relation between the index computed above (valid for arbitrary n)

and the index computed in [10, 11] (valid for n = 0). For the purposes of presentation of

this argument, it is enough to focus our attention to s = 1 (u = 0). Our calculation above

corresponds to the following trace,

Iρ, rchiral(u = 0) = TrHtw (−1)F eω1 J1 +ω2 J2 +ϕQ . (4.71)

where the twisted Hilbert space Htw consists of all elements of the Hilbert space generated

by the letters (4.64). Substituting the constraint (4.10) in (4.71), we obtain

Iρ,rchiral(u = 0;n) = TrHtw (−1)F eπinQ eω1( J1+Q
2 )+ω2 (J2+Q

2 ) . (4.72)

Adding and subtracting a factor of 2πinJ1 in the exponent, we obtain19

Iρ, rchiral(u = 0) = TrHtw (−1)F e2πinJ1 e (ω1−2πin)(J1+Q
2 )+ω2 (J2+Q

2 ) . (4.73)

At this point we note that

e2πinJ1 = 1 on Htw . (4.74)

This can be confirmed from the charge assignments given in the beginning of this subsection.

This statement is a simple consequence of the fact that the twisted bosons as well as the

twisted fermions are spacetime scalars. Of course the physical fermionic field still obeys

the spin-statistics relation. We thus obtain

Iρ, rchiral(u = 0) = TrHtw (−1)F e (ω1−2πin)(J1+Q
2 )+ω2 (J2+Q

2 ) . (4.75)

In the discussion in the previous subsection we treated the index I as a function of the

three chemical potentials, implicitly assuming the constraint between them. After having

solved for ϕ we can also write I as a function of the independent potentials ω1, ω2, and n.

Making this notation explicit, we obtain:

Iρ, rchiral(u = 0, ω1, ω2;n) = Iρ, rchiral(u = 0, ω1 − 2πin, ω2; 0) . (4.76)

19In this argument we could have equally well chosen J2 and shifted ω2 instead of ω1.

– 32 –



J
H
E
P
1
0
(
2
0
1
9
)
0
6
2

Indeed this equality can be checked explicitly by writing ϕ = 1
2(ω1+ω2)−πin in (4.70), and

using invariance properties of the elliptic gamma function. Plugging the expression (4.76)

into the expression for the full index (after integrating over u), we obtain the relation that

we wanted between the index I at arbitrary n and the one of [10, 11] which has n = 0.

We can equivalently rephrase this above argument as a trace over the Hilbert space

of physical fields in which all the fermions are spinors and are antiperiodic around the

time circle. Once we have understood the quantity F in (4.55) as a generalization of the

supersymmetric Casimir energy, we can make the identification of the quantity I in (4.55)

with the Hamiltonian trace over the physical Hilbert space Hphys,

I(ω1, ω2, ϕ) = TrHphys
eπi(n+1)F e−β{Q,Q}+ω1J1+ω2J2+ϕQ , (4.77)

where the three potentials are constrained by (4.10).20 Here F is the fermion number opera-

tor, and we have an insertion of eπi(n+1)F because for even (odd) n, the fermions are periodic

(anti-periodic) when we translate the functional integral into the Hamiltonian formalism.

The dependence of I on n appears implicitly as usual through the constraint (4.10) that

relates the three chemical potentials, and also explicitly through the insertion of eπi(n+1)F .

Solving the constraint for ϕ as above, we obtain this trace as a function of two inde-

pendent chemical potentials and n,

I(ω1, ω2;n) = TrHphys
eπi(n+1)F−πinQ e−β{Q,Q}+ω1(J1+

1
2
Q)+ω2(J2+

1
2
Q) . (4.78)

In this case we insert in the above equation, a factor of unity in the following form given

by the spin-statistics theorem valid for the physical fermions,

e2πin(J1+
1
2
F ) = 1 on the physical Hilbert space , (4.79)

in order to obtain

I(ω1, ω2;n) = TrHphys
eπiF e−β{Q,Q}+(ω1−2πin)(J1+

1
2
Q)+ω2(J2+

1
2
Q) . (4.80)

In other words, the n-dependence of the quantity I can be completely absorbed in a

shift of one21 of the chemical potentials, i.e.,

I(ω1, ω2;n) = I(ω1 − 2πin, ω2; 0) , (4.81)

where the right-hand side is the familiar index

I(ω1, ω2; 0) = TrHphys
(−1)F e−β{Q,Q}+ω1(J1+

1
2
Q)+ω2(J2+

1
2
Q) . (4.82)

We would like to make a comment here about the relevance of the constraint (4.10) in

the field theory calculation. Naively one may say that taking the spinor antiperiodic and

20The superalgebra (3.54) implies that this trace can also be written as Tr eπi(n+1)F e−βÊ . We understand

the index (4.77) as a trace where this energy operator Ê is normal ordered, and the path integral Z = e−FI

as the same trace, albeit with a Weyl ordered operator. The prefactor F thus essentially corresponds to

the expectation value of Ê.
21Mirroring footnote 19, here we could have equally well chosen ω2 instead of ω1 in writing the spin-

statistics theorem.

– 33 –



J
H
E
P
1
0
(
2
0
1
9
)
0
6
2

n = 1 is not particularly meaningful, because the same n = 1 appears in the background

gauge field that is proportional to ϕ entering the constraint equation, and therefore one

could simply “gauge-shift it away” to reach the usual situation with n = 0 and periodic

spinors. Indeed the calculations in the present subsection of the Hamiltonian index and, in

particular, equation (4.81) bear this out. On the other hand, as we saw in section 4.3, the

quantity F does depend on n, and indeed this is what leads to a non-vanishing entropy.

This is reminiscent of an anomaly mechanism, which we think is one of the interesting

questions that should be addressed in the future.

4.5 F from single letter index

In this subsection we provide an alternative derivation for the generalization of the super-

symmetric Casimir energy, including arbitrary flavor fugacities, following the discussion

in [61]. In this reference it was shown that the supersymmetric Casimir energy, defined as

the vacuum expectation value of the supersymmetric Hamiltonian, may be computed from

a limit of an “index-character” counting zero modes of a twisted Dirac operator, in the

spirit of [66]. This in turn was shown to be closely related to the single letter indices22 and

the limit was interpreted physically as a heat-kernel regularization. We expect that simple

modifications of the arguments of [61] will show that for n 6= 0 the prefactor F is still

computed by the same limit of the modified single letter index (4.70). Below we describe

this limit, leaving a more rigorous justification for future work.

We have seen that the contribution of the one-loop determinant of the chiral multiplet

may be written as the plethystic exponential of a single letter index as in (4.67). This

generalizes the usual single letter index because it has three independent global fugacities

(t, p, q). We start rewriting the above expression as

f rchiral(x, p, q) =
xr − x2−r

(1− p)(1− q)
, (4.83)

where here we changed the notation for the fugacity t as x and from now on we suppress

the gauge fugacity s. This extends the usual expression, which depends on two fugacities

only, reflecting the constraint n = 0.

We also noted the fact that the one-loop determinant of the vector multiplet can be

obtained from that of the chiral multiplet by replacing r → 2. On the other hand, it is

known that this can also be expressed as the plethystic expenential of a single letter index,

which is not equivalent to the single letter chiral index with r → 2; however, we have the

following relation

fvector(x, p, q) = 1 + f r=2
chiral(x, p, q)

= 1 +
x2 − 1

(1− p)(1− q)
. (4.84)

Before proceeding with the limit, let us note that “flavor” (namely global symmetries

that commute with the supercharge) fugacities can be included straighforwardly in our

22The relevance of this limit for the computation of Casimir energies was anticipated in [67].
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computations. Denoting the fugacity as h, and the corresponding charge as qf , the elliptic

gamma function becomes

Ir,qfchiral(x, p, q, h) =
∞∏

k, l=0

1− h−qf x2−r pk ql

1− hqf xr pk ql
, (4.85)

which in turn can be written as the plethystic expenential of a single letter index with the

extra fugacity, namely

f
r,qf
chiral(x, p, q, h) =

xrhqf − x2−rh−qf

(1− p)(1− q)
, (4.86)

Here hqf can be immediately generalized to

hqf =

nf∏

i

h
qif
i (4.87)

where nf is the number of U(1) flavor symmetries, but for simplicity we will write formulas

with only one flavor.23 Armed with (4.84) and (4.86) we can derive expressions for the

generalized supersymmetric Casimir energy, including arbitrary flavor fugacities, following

the limiting procedure explained in [61]. For simplicity we present the computations in

the case of an Abelian vector multiplet plus one chiral multiplet with R-charge r and

flavor U(1)f charge qf . As we shall see, the extension to arbitrary gauge groups and chiral

multiplets in general representations can be easily reconstructed from this simple case. We

thus start with the total single letter index

fvector(x, p, q) + f
r,qf
chiral(x, p, q, h) = 1 +

x2 − 1

(1− p)(1− q)
+
xrhqf − x2−rh−qf

(1− p)(1− q)
(4.88)

we set

x = ecϕ , p = ecω1 , q = ecω2 , h = ecuf . (4.89)

Taylor expanding around c → 0 and picking up the linear term in −c, after using the

constraint

ω1 + ω2 − 2ϕ = 2πin , (4.90)

we get the following contribution from the vector single letter

Fvector(ω1, ω2, ϕ) =
ϕ(−ω1ω2 + 2iπn(ω1 + ω2) + 8π2n2)

12ω1ω2
. (4.91)

For the chiral multiplet we get the contribution

Fchiral(ω1, ω2, ϕ) = − 1

6ω1ω2
(ϕ(r − 1) + ufqf )

3

+
−ω1ω2 + 2iπn(ω1 + ω2) + 8π2n2 + 2ϕ2

12ω1ω2
(ϕ(r − 1) + ufqf ) . (4.92)

23We do not consider non-Abelian flavor symmetries here, but it is straighforward to include them too.
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Recalling the expressions for the anomalies (4.58), and setting temporarily qf = 0, we see

that the total contribution can be rewritten as

F(ω1, ω2, ϕ) = −(3c− 2a)
16

27

ϕ3

ω1ω2
+ (a− c)16πiΨ

(0)
2 , (4.93)

which is precisely the expression that we derived with the path integral method, but with

Ψ
(0)
2 =

iϕ

12π

(ω1ω2 − 2iπn(ω1 + ω2)− 8π2n2)

ω1ω2

=
iϕ

12π

(−8ϕ2 − 6ϕ(ω1 + ω2) + ω2
1 + 3ω1ω2 + ω2

2)

ω1ω2
. (4.94)

The first line is the result anticipated in footnote 14. The second line, where we have elim-

inated n by writing it in terms of the three fugacities, makes it manifest that F(ω1, ω2, ϕ)

is homogeneous of degree one. This implies that when n = 0 its Legendre transform, which

is the entropy at order O(N), vanishes. As we have discussed, this is no more true for

n 6= 0.

After restoring the flavor fugacity, the general expression reads

F(ω1, ω2, ϕ, uf ) = −ϕ
3(1 + (r − 1)3)

6ω1ω2
−

u3fq
3
f

6ω1ω2
− ϕ2uf (r − 1)2qf

2ω1ω2
−
ϕu2f (r − 1)q2f

2ω1ω2

+
ω2
1 + ω2

2 + 12π2n2

24ω1ω2
(ϕ(1 + (r − 1)) + ufqf ) . (4.95)

This extends to general n the result (4.19) presented in [68], that is recovered setting

n = 0.24 This can be compactly written in terms of ’t Hooft anomaly coeefficients as

F(ω1, ω2, ϕ, uf ) = −
ϕ3krrr + 3ϕ2ufkrrf + 3ϕu2fkrff + u3fkfff

6ω1ω2

+
ω2
1 + ω2

2 + 12π2n2

24ω1ω2
(krϕ+ kfuf ) , (4.96)

which exactly reduces to (4.19) of [68] for n = 0.

A slightly different perspective on the result (4.93) is given by thinking of this as

arising from a regularised sum of eigenvalues of a supersymmetric Hamiltonian, namely

imagining that

F(ω1, ω2, ϕ) =
1

2

∑

n1,n2≥0

λφn1,n2
+

1

2

∑

n1,n2≥0

λBn1,n2
, (4.97)

where, in the notation of [19], λφn1,n2 , λ
B
n1,n2

are the eigenvalues of unpaired modes, which

upon reduction on S3 are chiral and Fermi multiplets, respectively. Assuming that these

eigenvalues can be read off simply from the one-loop determinants (4.45), (4.46), as in the

n = 0 case, then for the four-dimensional chiral multiplet we have

λφn1,n2
= −n1ω1 − n2ω2 − rϕ ,

λBn1,n2
= n1 ω1 + n2 ω2 − (r − 2)ϕ , (4.98)

24To compare with [68] we have to make the identificatons ϕ → −βσ, ωhere
i = −βωthere

i , (r − 1)3 + 1 →

krrr, (r − 1)2qf → krrf , uf → −βmI , etc.
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with similar expressions for the contributions of the vector multiplet. If we regularise the

two infinite sums separately, using the insight of [19], we conclude that the regularised

sum is

F(ω1, ω2, ϕ) =
1

2
ζ2(−1;−ω1,−ω2,−rϕ)−

1

2
ζ2(−1;−ω1,−ω2,−(2− r)ϕ) , (4.99)

which coincides with the chiral multiplet contribution to (4.93). Indeed, as discussed in [61],

the two methods for computing F described here are simply two equivalent regularizations

of (4.97).

The example of N = 4 SYM. Let us finally return to the example of N = 4 SYM,

and reproduce the result (4.61), applying the procedure discussed above. In principle we

can use the expressions derived above, specified to the case of N = 4 SYM viewed as of

N = 1 theory with three chiral multiplets. It is however more efficient to derive the desired

result from a limit of a single letter index that generalizes that presented in [10]. Let us

therefore consider the following single letter index

fN=4(x, p, q, v, w) = 1 +
x2 − 1

(1− p)(1− q)

+
xr1 1

w − x2−r1w + xr2 wv − x2−r2 vw + xr3v − x2−r3 1
v

(1− p)(1− q)
. (4.100)

This is obtained as the sum of generalized vector multiplet single letter index and three

chiral multiplets, with two flavor fugacities v, w for the charges commuting with one su-

percharge. Setting r1 = r2 = r3 = 2/3, x = t3, and further making the change of variables

p = t3y, q =
t3

y
, (4.101)

this reduces exactly to the index written in equation (4.2) of [10], depending on four

fugacities. Setting r1 = r2 = r3 = 2/3 and further changing variables as follows

u1 =
x2/3

w
, u2 =

x2/3w

v
, u3 = x2/3v , (4.102)

we get the expression

fN=4(p, q, u1, u2, u3) = 1− (1− u1)(1− u2)(1− u3)

(1− p)(1− q)
. (4.103)

To implement the limit we now set

p = ecω1 , q = ecω2 , u1 = ecϕ1 , u2 = ecϕ2 , u3 = ecϕ3 , (4.104)

expand near to c→ 0 and pick up the linear term in −c, getting

FN=4 = −1

2
(N2 − 1)

ϕ1ϕ2ϕ3

ω1ω2
(4.105)
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where we have reintroduced the dimension of the gauge group SU(N). Now we have that

ec(ϕ1+ϕ2+ϕ3) = u1u2u3 = x2 = e2cϕ (4.106)

implying that

ϕ1 + ϕ2 + ϕ3 = 2ϕ = ω1 + ω2 − 2πin , (4.107)

which agrees with our Lagrangian analysis in (4.61), and for n = 0 reproduces the formula

presented in [68]. In the special case that ϕ1 = ϕ2 = ϕ3 =
2
3ϕ, this reduces to

FN=4 = −4(N2 − 1)

27

ϕ3

ω1ω2
, (4.108)

in agreement with our general formula (4.59).

5 Summary and discussion

In this paper we presented a holographic computation of the entropy of supersymmetric

AdS5 black holes. In particular, we reproduced the grand-canonical partition function

whose constrained Legendre transform yields the Bekenstein-Hawking entropy both on the

supergravity and on the SCFT side. In this manner, we clarified the extremization prin-

ciple proposed in [23]. One of our main results is the identification of the holographic

dictionary, in particular the precise match of the SCFT chemical potentials (namely, the

background fields entering in the SCFT partition function) with the chemical potentials

arising in the BPS limit of black hole thermodynamics and appearing in the supergravity

on-shell action. We defined the BPS limit by starting from a complexified solution that is

supersymmetric but non-extremal, and taking the limit to extremality. We have explained

how the resulting chemical potentials are different from those obtained previously in [22]

with a similar approach but another definition of the BPS limit. In particular, the super-

symmetric chemical potentials that we defined are complex, while those defined in [22] are

real, and therefore cannot satisfy the key relation (1.1). We have noted that this relation

enforces antiperiodic boundary conditions for the spinors around the thermal circle in the

black hole geometry.

Our gravitational analysis determines the correct functional integral in the holographic

field theory. In the large-N limit, we found that the degeneracy of states in the boundary

SCFT carrying the same charges as the black hole is captured by a generalization of the

supersymmetric Casimir energy, which can essentially be viewed as the vacuum energy.

This vacuum energy is completely controlled, in this limit, by one anomaly coefficient,

namely the central charge c (=a) of the four-dimensional theory. This phenomenon is

of course very reminiscent of the Cardy formula in two-dimensional CFTs. It would be

very interesting if this line of thought can be made more precise as it would then lead

to predictions about the subleading quantum properties of supersymmetric black holes

similar to the case of black holes in asymptotically flat space, which were governed by

the modular transformation of two-dimensional SCFTs, or their refinements [21, 69–72].

In order to do this for four-dimensional SCFTs, we need to understand the details of
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the modular-like properties of the elliptic gamma functions that appear in the boundary

partition function [73], and how exactly they are related to our physical computation. A

duality of the type proposed in [74] may also shed some light on this problem.

Another point worth noting is that we studied the full asymptotically AdS5 black hole

solution in the context of the AdS5/CFT4 correspondence, rather than the near-horizon

AdS2/CFT1 correspondence as in Sen’s entropy function approach [75]. In fact, the entropy

of BPS AdS5 black holes has been studied in [76–78] in the entropy function formalism. It

was found in [77, 78] that the supersymmetric chemical potentials obtained in this limit

can be mapped to the near horizon field strengths in the AdS2 region, and using this

dictionary the BPS Euclidean on-shell action coincides with Sen’s entropy function. It

would be interesting to study the relation between our BPS limit and the entropy function

formalism. Perhaps this could teach us about the details of the CFT1 relevant to the black

hole entropy through an embedding into a better understood CFT4, such as the N = 4

SYM theory.

The strategy of this paper may also be employed in other contexts, for instance it

could clarify further the holographic dictionary for the static supersymmetric AdS4 black

holes studied in [3, 24, 27], and possibly for their rotating generalizations. In particular, it

would be interesting to see if a regularity condition in the bulk can explain on the gravity

side the constraint
∑

a∆a = 2π, where ∆a are background gauge field holonomies, that

arises when evaluating the large N limit of the topologically twisted index for the ABJM

theory [3, 79].

The results we derived in section 4 have an independent interest from the main thread

of the paper, and are valid for arbitrary (Lagrangian) four dimensional N = 1 field theories

with an R-symmetry, not necessarily having any gravity dual. In particular, using localiza-

tion, we have computed a supersymmetric partition function on twisted S1×S3 manifolds,

generalizing the results of [18], allowing for an additional discrete chemical potential la-

beled by an integer n. These are exact results, valid for general gauge groups, and without

involving any large N limit. We have shown that this partition function factorizes into a

trace part, which is the supersymmetric index [11], and a prefactor that is the n-dependent

version of the supersymmetric Casimir energy, that we calculate using a regularization

procedure for the one-loop determinant arising from localization. We have also calculated

this prefactor by a limiting procedure on the single-letter index along the lines of [61]. It

will be nice to complement our analysis with the study of the supersymmetric quantum

mechanics obtained by reduction on the S3 extending [19, 61, 80].

We anticipate that it will be possible to expand the results of this paper in several

directions. Here we derived the microscopic entropy of the multi-charge BPS black holes

of [6, 8, 9]. These multi-charge solutions feature running scalar fields, and it will be

interesting to investigate whether the extremization of the on-shell action is related to a

five-dimensional attractor mechanism for the scalars as suggested in [23]. It will also be

worth considering the recently constructed asymptotically locally AdS5 black holes with a

squashed boundary [81, 82]. The squashing deformations studied in these papers should not

affect the SCFT partition function, so one could expect the story to work similarly to the

case with no squashing; however the subtleties related to the non-trivial gauge field at the
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boundary noted in [82] deserve a careful study. In another direction, one may wonder what

field theory computation reproduces the entropy of the hairy black holes found in [83, 84].

It will also be interesting to extend our findings to AdS7 black holes and thus provide a

physical explanation for the corresponding extremization principle proposed in [85].

Note added. Some of the statements in earlier versions of this paper were based on

the assumption that at large N the index I(ω1, ω2, ϕ) scales as O(1), as originally argued

in [10]. In particular, this led us to conclude that the field theory supersymmetric partition

function

Z(ω1, ω2, ϕ) = e−F(ω1,ω2,ϕ) I(ω1, ω2, ϕ) , (5.1)

behaves as − logZ(ω1, ω2, ϕ) → F(ω1, ω2, ϕ) in this limit. However, it has been later

pointed out in [32] that at least forN = 4 SYM, for a suitable domain of complex fugacities,

the index itself scales as

− log IN=4 −−−−→
N→∞

N2

2

ϕ1ϕ2ϕ3

ω1ω2
= −FN=4 , (5.2)

thus matching precisely the gravitational on-shell action of the black hole, I. This, together

with our findings, suggests that for generic N = 1 field theories (at least those with a

type IIB gravity dual), the large N asymptotics of the index will be governed by the

generalization of the supersymmetric Casimir energy, that we computed in this paper, and

therefore generically the on-shell action should be identified with the large N limit of

− log I(ω1, ω2, ϕ) −−−−→
N→∞

−F(ω1, ω2, ϕ) = I(ω1, ω2, ϕ) . (5.3)

It also suggests that the background subtraction renormalization scheme that we employed

to compute the on-shell action corresponds in the field theory to a scheme in which the

supersymmetric Casimir energy is subtracted from the path integral calculation of the

partition function, so that in this scheme Z = I.
While on the one hand this supports the expectation that the index I carries infor-

mation about the IR physics, corresponding to the horizon of the black hole, on the other

hand it leads to the intriguing prediction that the large N asymptotics of the index (as well

as the Cardy-like limit [28, 29]) are controlled by the generalization of the supersymmetric

Casimir energy, which is by definition related to the “small temperature” limit of the full

partition function. As we already noticed, this phenomenon is reminiscent of the Cardy

behaviour and modular invariance in two-dimensional CFTs, and it will be very interesting

to explore this in depth.
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A The bulk Killing spinor

In this appendix we explicitly solve the Killing spinor equation in the background given by

the metric and gauge field of section 2. We work in Lorentzian signature and comment on

the analytic continuation at the end.

In general, a bosonic solution to five-dimensional minimal gauged supergravity is su-

persymmetric if there exists a non-zero Dirac spinor ǫ solving the Killing spinor equation

which arises from setting to zero the supersymmetry variation of the gravitino. In the

conventions of [7] (recalling our footnote 3), the Killing spinor equation reads:

[
∇µ −

i

12g

(
Γµ

νκ − 4δνµΓ
κ
)
Fνκ −

g

2
Γµ − iAµ

]
ǫ = 0 , (A.1)

where the gamma-matrices obey the Clifford algebra {Γµ,Γν} = 2gµν and in this appendix

µ, ν are five-dimensional indices. One can see that the integrability condition of this equa-

tion is satisfied in the background of [7] if the parameters a, b,m, q satisfy relation (2.16).

We assume this condition is imposed and describe the supersymmetric solution using the

three parameters a, b,m.

It is convenient to choose a set of coordinates and a frame adapted to the general

structure of supersymmetric solutions first described in [86]; this will make it easier to solve

the equation. For the three-parameter supersymmetric solution of [7], the form adapted to

supersymmetry was given in [87]. While we refer to that paper for a detailed discussion,

here we just provide the information needed to solve (A.1).

We start by introducing new “orthotoric” coordinates (y, η, ξ,Φ,Ψ), related to those

of [7] as:

t = y,

θ =
1

2
arccos η,

r2 =
1

2
(a2 − b2)m̃ ξ +

1

g
[(a+ b)m̃+ a+ b+ abg] +

1

2
(a+ b)2m̃ ,

φ = g y − 4(1− a2g2)

(a2 − b2)g2m̃
(Φ−Ψ) ,

ψ = g y − 4(1− b2g2)

(a2 − b2)g2m̃
(Φ + Ψ) , (A.2)

where for convenience we traded the parameter m for

m̃ =
mg

(a+ b)(1 + ag)(1 + bg)(1 + ag + bg)
− 1 . (A.3)
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In these coordinates, one can choose the relatively simple frame:

E0 = f (dy + ω) ,

E1 =
1

gf1/2

√
η − ξ

F(ξ)
dξ , E2 =

1

gf1/2

√
F(ξ)

η − ξ
(dΦ + η dΨ) ,

E3 = − 1

gf1/2

√
η − ξ

G(η) dη , E4 =
1

gf1/2

√
G(η)
η − ξ

(dΦ + ξ dΨ) , (A.4)

where F(ξ), G(η) are the cubic polynomials:

G(η) = − 4

(a2 − b2)g2m̃
(1− η2)

[
(1− a2g2)(1 + η) + (1− b2g2)(1− η)

]
,

F(ξ) = −G(ξ)− 4
1 + m̃

m̃

(
2 + ag + bg

(a− b)g
+ ξ

)3

, (A.5)

while

f =
24(η − ξ)

F ′′(ξ) + G′′(η)
,

ω =
F ′′′ + G′′′

48g(η − ξ)2

{[
F(ξ) + (η − ξ)

(
1

2
F ′(ξ)− 1

4

(
2 + ag + bg

(a− b)g
+ ξ

)2

F ′′′

)]
(dΦ + η dΨ)

+ G(η)(dΦ + ξ dΨ)

}
− F ′′′G′′′

288g
[(η + ξ)dΦ + ηξ dΨ]− 2

gm̃
dΨ . (A.6)

Then the five-dimensional metric (2.2) — with q fixed as in (2.16) — is just

ds2 = −(E0)2 + (E1)2 + (E2)2 + (E3)2 + (E4)2 , (A.7)

while the graviphoton field (2.3) reads:

A = −3

2

(
gE0 +

1

3
P

)
+

(
3

2
g + α

)
dy − 2

(1− a2g2)(dΦ− dΨ) + (1− b2g2)(dΦ + dΨ)

(a2 − b2)g2m̃
,

(A.8)

with

P = −F ′(ξ)(dΦ + η dΨ) + G′(η)(dΦ + ξ dΨ)

2(η − ξ)
. (A.9)

Within this framework it is not hard to find an explicit solution to the Killing spinor

equation. Imposing the projection

i

2

(
Γ12 − Γ34

)
ǫ = ǫ , (A.10)

which also implies iΓ0ǫ = ǫ, the four complex degrees of freedom of the Dirac spinor

reduce to a single complex function to be solved for (corresponding to the two supercharges
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preserved by the solution). We find the explicit solution:

ǫ = e
i
2

(
(3g+2α)y− 4(1−a2g2)

(a2−b2)g2m̃
(Φ−Ψ)− 4(1−b2g2)

(a2−b2)g2m̃
(Φ+Ψ)

)

×
[

m̃(a− b)(η − ξ)(
2
g + a+ b

)
(1 + m̃) + (a− b)(η + m̃ξ)

]1/2
ǫ0 , (A.11)

where ǫ0 is a constant spinor satisfying the projection (A.10).

We can also express the Killing spinor in the original coordinates (t, θ, φ, ψ, r). We

obtain:

ǫ = e
i
2
((g+2α)t+φ+ψ)

[
g−1(a+ b+ abg)(1 + m̃) + m̃(a2 cos2 θ + b2 sin2 θ)− r2

a2 cos2 θ + b2 sin2 θ + r2

]1/2
ǫ0 .

(A.12)

One can check that choosing ǫ0 so that it has unit norm, the spinor bilinear

K = ǭΓµǫ ∂µ (A.13)

is precisely the Killing vector given in (2.17).

In the main text we will need the spinorial Lie derivative along the Killing vectors
∂
∂t ,

∂
∂φ and ∂

∂ψ . The spinorial Lie derivative along a Killing vector X is defined as

LXǫ = Xµ∇µǫ−
1

4
∇µXνΓ

µνǫ . (A.14)

This has the nice property of being covariant under local Lorentz transformations (see

e.g. [88]). An explicit computation shows that the spinorial Lie derivatives along the

directions ∂
∂t ,

∂
∂φ ,

∂
∂ψ simply reduce to partial derivatives, hence the Killing spinor (A.12)

satisfies:

L ∂
∂t
ǫ =

i

2
(g + 2α) ǫ , L ∂

∂φ
ǫ =

i

2
ǫ , L ∂

∂ψ
ǫ =

i

2
ǫ . (A.15)

We observe that even after coming back to the original coordinates (t, θ, φ, ψ, r), the

frame (A.4) is not adapted to a Fefferman-Graham asymptotic expansion, where the metric

takes the form (3.41). In order to achieve this, one should perform a frame rotation. In

the rotated frame such that E5 = dr
gr , the leading term of the Killing spinor is O(r1/2) and

is annihilated by the projector 1
2(1 − Γ5). Since the spinorial Lie derivative is covariant

under local Lorentz transformations, the properties (A.15) also hold in the new frame and

are inherited by the boundary Killing spinor.

As a final step, the Killing spinor equation and its solution can be analytically continued

by taking t = −iτ and m = −(1 + ag + bg)(a ∓ ir+)(b ∓ ir+)(1 ∓ igr+). The resulting

Killing spinor is the one associated with the complexified supersymmetric solution discussed

in section 3. The Lorentzian charge conjugate spinor ǫ̃, which in the analytically continued

solution should a priori be considered independent of ǫ, satisfies an equation that is obtained

from (A.1) by formally sending ǫ→ ǫ̃ and g → −g. It follows that the complexified solution

admits one Killing spinor ǫ and one Killing spinor ǫ̃.
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B Revisiting the extremization principle

We revisit here the extremization principle proposed in [23]. We first review how it works

mathematically in a slightly more general setup than the one discussed in the main text,

then we apply it to the black holes of [7].

In general, a supersymmetric, asymptotically AdS5 × S5 black hole solution to type

IIB supergravity may carry two angular momenta Ji, i = 1, 2 (associated with the U(1)2 ⊂
SO(4) symmetry of the asymptotic AdS5) and three electric charges QK , K = 1, 2, 3

(associated with the U(1)3 ⊂ SO(6) symmetry of S5). We thus consider a set of chemical

potentials ωi, conjugate to the two angular momenta, and ∆K , conjugate to the three

electric charges.25 We assume that the chemical potentials satisfy the linear constraint

∆1 +∆2 +∆3 + ω1 + ω2 = 2πin , (B.1)

where n is a fixed number. Moreover we assume that the grand-canonical partition function

Z(∆, ω) describing our system is given by:

− logZ(∆, ω) ≡ I(∆, ω) = µ
∆1∆2∆3

ω1ω2
, (B.2)

where µ is another fixed (real) number. We are interested in the Legendre transform

S(Q, J) = ext{∆,ω,Λ}
[
− I −∆KQK − ωiJi − Λ(∆1 +∆2 +∆3 + ω1 + ω2 − 2πin)

]
, (B.3)

where Λ is a Lagrange multiplier implementing the constraint (B.1). The function of the

charges S(Q, J) can be seen as the logarithm of the microcanonical partition function, that

is the entropy. Since we must work over the complex numbers, we defined the Legendre

trasform above as a (complex) extremum of the function on the right hand side of (B.3).

There are six extremization equations: the five equations

− ∂I

∂∆K
= QK + Λ , − ∂I

∂ωi
= Ji + Λ , (B.4)

that follow from varying (B.3) with respect to the chemical potentials, plus the con-

straint (B.1) that is obtained by varying with respect to the Lagrange multiplier Λ. It

is straightforward to see that the equations in (B.4) imply the following cubic equation

for Λ:

0 = (Q1 + Λ)(Q2 + Λ)(Q3 + Λ) + µ(J1 + Λ)(J2 + Λ)

= p0 + p1Λ + p2Λ
2 + Λ3 , (B.5)

where we defined

p0 = Q1Q2Q3 + µJ1J2 ,

p1 = Q1Q2 +Q2Q3 +Q3Q1 + µ(J1 + J2) ,

p2 = Q1 +Q2 +Q3 + µ . (B.6)

25In supergravity, the position of the index on the electric charge is usually taken as QK , thus the position

of the index on the symplectically conjugate chemical potential should rather be ∆K (same for the angular

momenta). In this paper however we will not distinguish between upper and lower indices on the chemical

potentials.
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We denote by “Roots” the set of three solutions to (B.5). The saddle point values of

(∆K , ωi) solving the rest of the equations are:

∆1 = Ξ Q̃2Q̃3J̃1J̃2 , ∆2 = Ξ Q̃1Q̃3J̃1J̃2 , ∆3 = Ξ Q̃1Q̃2J̃1J̃2 ,

ω1 = −Ξ Q̃1Q̃2Q̃3J̃2 , ω2 = −Ξ Q̃1Q̃2Q̃3J̃1 , (B.7)

where we introduced Q̃K = QK + Λ, J̃i = Ji + Λ, as well as

Ξ =
2πin

J̃1J̃2(Q̃1Q̃2 + Q̃2Q̃3 + Q̃1Q̃3)− (J̃1 + J̃2)Q̃1Q̃2Q̃3

, (B.8)

and it is understood that Λ ∈ Roots.

Then without further work we can write down the Legendre transform. Indeed noting

that the function I is homogeneous of degree one, by Euler’s theorem we have that

∆K
∂I

∂∆K
+ ωi

∂I

∂ωi
= I , (B.9)

which implies that (B.3) reduces to:

S = extΛ∈Roots (2πinΛ) . (B.10)

Note that if the constraint (B.1) is satisfied with n = 0, then S necessarily vanishes.

In general the roots of the cubic equation (B.5) for Λ may be real or complex. If

we require reality of the entropy, as it should be in a physical black hole solution, then

from (B.10) we see that we need to pick a purely imaginary root. Since complex roots

come in complex conjugate pairs, we must be in the situation that there are two complex

conjugate purely imaginary roots. It is straightforward to see that, assuming the charges

are all real, this is equivalent to the condition

p0 = p1p2 . (B.11)

In this case the cubic equation (B.5) for Λ factorizes as

(Λ2 + p1)(Λ + p2) = 0 , (B.12)

and the three roots are

Roots = {−p2 , ± i
√
p1 } . (B.13)

Depending on the sign of n, we choose either Λ = i
√
p1, or Λ = −i√p1, so that we get a

positive entropy. We conclude that, assuming both the entropy and the charges are real,

the result of our extremization problem is

S = 2π|n| √p1 . (B.14)

Plugging the chosen imaginary root Λ in the saddle point solution (B.7) for the chemical

potentials, one finds that these are complex functions of the charges.
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The assumptions (B.1), (B.2) which were put forward in [23], follow naturally from

our analysis in the main text. Indeed the general discussion above applies to the black hole

of [7] and the BPS limit defined in section 3. We identify:

∆1 = ∆2 = ∆3 = −2

3
ϕ , µ = −π

4
. (B.15)

Then the linear constraint (B.1) between the chemical potentials matches the one obtained

in the main text by choosing n = 1 and the function (B.2) coincides with the supersym-

metric on-shell action (3.29). Upon identifying further

Qhere
1 = Qhere

2 = Qhere
3 = −1

2
Q∗ , Jhere

1 = J∗
1 , Jhere

2 = J∗
2 , (B.16)

the BPS quantum statistical relation (3.30) agrees with (B.3). Moreover, one can check

that the factorization condition (B.11) is satisfied by the BPS charges (2.23), as it had to be

since both the charges and the entropy are real. With these identifications, the result (B.14)

precisely reproduces the BPS black hole entropy (2.27). Moreover the saddles (B.7) agree

with the BPS chemical potentials (3.27).

We note that the analysis presented here is valid even in the more general setting of

supersymmetric, but non-extremal solution, where the charges and the entropy are complex.

In particular, we note that in the solutions discussed in the main text the factorization

condition (B.11) is not satisfied if one just uses the supersymmetry condition (3.3) in the

expressions (2.5) for the charges, without imposing the extremality condition r+ = r∗. In

fact, one can see that if the black hole parameters a, b, r+ are assumed real and a, b are

independent, then (B.11) is satisfied if and only if r+ = r∗, that is at extremality. Therefore

the simple form (B.14) of the entropy will in general not hold if one only imposes (3.3).

Nevertheless, remarkably, it remains true that, for appropriate choices of roots of (B.5),

the expression (B.10) reproduces the complex entropy (3.18).

C Field theory conventions

We work with Euclidean signature (+,+,+,+). Our choice of representation for gamma

matrices in section 4.1 is:

γ1 = +σ2 ⊗ 12×2 ,

γ2 = −σ1 ⊗ σ1 ,

γ3 = +σ1 ⊗ σ2 , (C.1)

γ4 = +σ1 ⊗ σ3 .

The charge conjugation matrix C = γ2γ4 obeys

C = −CT = −C−1 = 12×2 ⊗ iσ2 . (C.2)

The Killing spinor denoted by ε in (4.7) obeys the following reality condition

i ε∗γ1 = εC−1, (C.3)
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provided the constraint (4.8) is imposed (this implies that the two non vanishing compo-

nents of ε are pure phases, complex conjugate to each other).

The frame used in section 4.1 to find angular independent form of Killing spinors is

e1 = dτ ,

e2 = dθ cos(φ2 + φ1) +
1

2
sin(2θ) sin(φ2 + φ1) (idτ (Ω1 − Ω2) + dφ2 − dφ1) ,

e3 = −dθ sin(φ2 + φ1) +
1

2
sin(2θ) cos(φ2 + φ1) (idτ (Ω1 − Ω2) + dφ2 − dφ1) ,

e4 = sin2 θ(dφ1 − iΩ1dτ) + cos2 θ(dφ2 − iΩ2dτ) .

(C.4)

D Regularization of 1-loop determinants

In this appendix we regularize the infinite product in the r.h.s. of (4.45), i.e.,

Zchiral,ρ
1-loop (u) =

∏

n0∈Z

∏

n1,n2≥0

2πn0 + ρ · u− i (r − 2)ϕ+ i n1 ω1 + i n2 ω2

2πn0 + ρ · u− irϕ− i n1 ω1 − i n2 ω2
. (D.1)

We use the “one-step” regularization as in [18, 55] which uses the properties of triple gamma

functions. The mathematical analysis of [58, 89] may be useful in performing the two-step

regularization, as in [19], with the n 6= 0 constraint, but at present it is not clear to us at

a technical level how exactly this would work out.

We follow the conventions and definitions of multiple gamma and zeta functions given

in [90]. The r.h.s. of (D.1) can be written as

Z+ =
∞∏

n0, n1, n2 =0

ρ·u−irϕ+2iϕ
2π + n0 +

iω1n1+iω2n2
2π

−ρ·u+irϕ
2π + n0 +

iω1n1+iω2n2
2π

×
ρ·u−irϕ+2iϕ

2π − (1 + n0) +
iω1n1+iω2n2

2π
−ρ·u+irϕ

2π − (1 + n0) +
iω1n1+iω2n2

2π

=

∞∏

n0, n1, n2 =0

ρ·u−irϕ+2iϕ
2π + n0 +

iω1n1+iω2n2
2π

−ρ·u+irϕ
2π + n0 +

iω1n1+iω2n2
2π

× 1− ρ·u−irϕ+2iϕ
2π + n0 − iω1n1+iω2n2

2π

1− −ρ·u+irϕ
2π + n0 − iω1n1+iω2n2

2π

.

(D.2)

Note that here we have made an implicit choice to place the term n0 = 0 in the first ratio

of Γ3 functions, but we could as well have placed it in the second ratio, in which case we

would get:

Z− =
∞∏

n0, n1, n2 =0

ρ·u−irϕ+2iϕ
2π + 1 + n0 +

iω1n1+iω2n2
2π

−ρ·u+irϕ
2π + 1 + n0 +

iω1n1+iω2n2
2π

×
ρ·u−irϕ+2iϕ

2π − n0 +
iω1n1+iω2n2

2π
−ρ·u+irϕ

2π − n0 +
iω1n1+iω2n2

2π

=
∞∏

n0, n1, n2 =0

ρ·u−irϕ+2iϕ
2π + 1 + n0 +

iω1n1+iω2n2
2π

−ρ·u+irϕ
2π + 1 + n0 +

iω1n1+iω2n2
2π

× −ρ·u−irϕ+2iϕ
2π + n0 − iω1n1+iω2n2

2π

−−ρ·u+irϕ
2π + n0 − iω1n1+iω2n2

2π

.

(D.3)

The above two expressions (D.2), (D.3) are formally the same infinite products, we have

denoted them by Z± in anticipation of the fact that there are two natural regulators which

lead to two different expressions.
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These infinite products can be summarized in terms of Γ3 functions as

Zs =
Γ3(w + γ | 1, α1, α2)

Γ3(−w + γ | 1, α1, α2)

Γ3(1− w − γ | 1,−α1,−α2)

Γ3(1 + w − γ | 1,−α1,−α2)
, s = ±1 , (D.4)

where the parameters in the arguments are given by the following expressions:

α1 = s
iω1

2π
, α2 = s

iω2

2π
, γ = s

iϕ

2π
,

w(ρ, r) = −s 1

2π
(ρ · u− (r − 1)iϕ) . (D.5)

In terms of these variables, our constraint −2ϕ+ ω1 + ω2 = 2πin translates to

γ =
α1 + α2 + s n

2
. (D.6)

At this point we use the following identity [90] in both the numerator and the denom-

inator of (D.4) which holds if Im(α1,2)> 0,

Γ3(z | 1, α1, α2) Γ3(1− z | 1,−α1,−α2) = e−πi ζ3(0,z;1,α1,α2)

(∞,∞)∏

→
m=(0,0)

1

(1− e2πi(z+
→
m·

→
α))

,

(D.7)

Here the zeta function of third order ζ3 is defined as (see [90]):

ζ3(0, z | 1, α1, α2) := − z3

6α1α2
+

(α1 + α2 + 1)z2

4α1α2

−
(
α2
1 + α2

2 + 1 + 3 (α1 + α2 + α1α2)
)
z

12α1α2
(D.8)

+
(1 + α1 + α2)(α1 + α2 + α1α2)

24α1α2
.

We can now transform the product of triple gamma functions as follows,

Γ3(w + γ | 1, α1, α2)

Γ3(−w + γ | 1, α1, α2)

Γ3(1− w − γ | 1,−α1,−α2)

Γ3(1 + w − γ | 1,−α1,−α2)

= e−iπΨ(w,α1,α2)

(∞,∞)∏

→
m=(0,0)

(1− e2πi((−w+γ)+
→
m·

→
α))

(1− e2πi((w+γ)+
→
m·

→
α))

= e−iπΨ(w,α1,α2) Γe(w + γ;α1, α2) .

(D.9)

Here the elliptic Gamma function is defined as (for z ∈ C, Im(α1,2) > 0)

Γe(z;α1, α2) :=

∞∏

j,k=0

1− e−2πize2πiα1(j+1)e2πiα2(k+1)

1− e2πiz e2πiα1j e2πiα2k
. (D.10)

In reaching the second equality in (D.9) we have used the second equality in the last line of

equation (D.5), together with the fact that n ∈ Z. The prefactor in the exponential, that

is denoted as Ψ, is defined as follows

Ψ(w;α1, α2) := ζ3(0, w + γ | 1, α1, α2)− ζ3(0,−w + γ | 1, α1, α2) (D.11)

= − w3

3α1α2
+A(γ;α1, α2)w, (D.12)
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where

A(γ;α1, α2) := −3α1 (α2 − 2γ + 1) + α2 (3− 6γ) + α2
1 + α2

2 + 6γ2 − 6γ + 1

6α1α2
. (D.13)

Upon substituting the relation (D.6) we obtain

A =
α2
1 + α2

2 − 2 + 6sn− 3n2

12α1α2
. (D.14)

The expression A, after summing over all the multiplets, gives rise to the term in the

prefactor that is proportional to Ψ
(0)
2 , which, as discussed in the main text, does not

contribute to any theory with a = c, and therefore any holographic N = 1 SCFT in the

large N limit.

Putting everything together, the one loop determinant Z takes the form

Zs = exp
(
−iπΨ

(
w,α1, α2

))
Γe (w + γ;α1, α2) , (D.15)

where the arguments are given in (D.5). The BPS black hole solutions discussed in section 3

have Re(ω1,2) < 0. In order to compare the field theory result to these black holes, it is

natural to choose the regularization corresponding to s = −1 in (D.4), (D.5).26 This is

indeed the expression quoted in (4.49) with

w + γ =
1

2π
(ρ · u− riϕ) ≡ v(ρ, r) , (D.16)

and

Ψ(0) := Ψ
∣∣∣
u→0

, (D.17)

Ψ(1) := Ψ−Ψ(0) . (D.18)

The contribution of the quantity Ψ(1) to the final partition function of a generic N = 1

SQFT theory can be easily checked to vanish if the corresponding matter content satisfies

the anomaly vanishing conditions quoted in section 5.1 of [18].

Turning on flavor fugacities and the case of N = 4 SYM. The calculation with

flavor chemical potentials goes through as above. We begin with the situation when we

have a collection of U(1) flavor symmetries F p, p = 1, · · · ,M with corresponding po-

tentials ϕp. In the calculation of the determinant, the only change is that the covariant

derivative now has factors proportional to ϕp. As the result, choosing s = −1 we obtain

equation (D.4) with

wI = wI(ρ, ρI , r) =
1

2π

(
ρ · u− (r − 1)iϕ− i

M∑

p=1

F pI ϕp

)
, (D.19)

where F pI is the flavor charge of the Ith multiplet in the theory.

26If we take s = 1 then the infinite product representation of the elliptic gamma function (D.10) would be

divergent in the region Re(ω1,2) < 0, which is the region chosen by the BPS black hole chemical potentials.

The elliptic gamma funtion could also be defined in this region using an analytic continuation from the

region of convergence as described in [58]. In this case the result for the prefactor will have the opposite

sign as for the s = −1 as mentioned in the main text.
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The case of N = 4 SYM can be treated in this N = 1 language by embedding the U(1)

R-symmetry into the SU(4) R-symmetry, and by treating the other two Cartan generators

of the SU(4) as flavor rotations, as in the main text. Alternatively, we can directly treat

the full non-abelian R-symmetry as follows.

We denote by ϕp, p = 1, 2, 3, the chemical potentials for the three Cartan generators

of the SU(4). The three fermions of the chiral multiplets together with the gaugino fall

into the fundamental of the SU(4)R. We label these four fermions by I = 1, · · · , 4, and
denote their weights by ρI , which in our conventions are

ρ1 = (+1, 0, 0), (D.20)

ρ2 = (−1,+1, 0), (D.21)

ρ3 = (0,−1, 1), (D.22)

ρ4 = (0, 0,−1). (D.23)

For each fermion degree of freedom the quantity w in equation (D.4) is now refined to

wI = wI(ρ, ρI) =
1

2π

(
ρ · u− i

3∑

p=1

ρpI ϕ̂p

)
, (D.24)

The prefactor F is now

− 1

6ω1ω2

4∑

I=1

dim(RI)
3∑

p1, p2, p3=1

ρp1I ρp2I ρp3I ϕ̂p1 ϕ̂p2 ϕ̂p3 (D.25)

where RI = Adj. The weights of the fundamental obey the following identities,

∑

I

ρp1I ρp2I ρp3I = Cp1 p2 p3 , (D.26)

∑

I

ρp1I ρp2I = Cp1 p2 , (D.27)

∑

I

ρp1I = 0 , (D.28)

where Cp1 p2 is the Cartan matrix of SU(4), and Cp1 p2 p3 is such that

3∑

p1, p2, p3=1

Cp1 p2 p3 ϕ̂p1ϕ̂p2ϕ̂p3 = 3 ϕ̂2 (ϕ̂1 − ϕ̂3) (ϕ̂1 − ϕ̂2 + ϕ̂3) . (D.29)

After the redefinition

ϕ1 = 2(ϕ̂1 − ϕ̂3) , ϕ2 =
2

3
ϕ̂2 , ϕ3 =

2

3
(ϕ̂1 − ϕ̂2 + ϕ̂3) , (D.30)

one obtains, for the gauge group G,

−FN=4 =
4dim(G)

27

ϕ1ϕ2ϕ3

ω1ω2
. (D.31)

The contributions proportional to c− a vanish due to property (D.28).
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