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Shear Jamming (SJ) occurs for frictional granular materials with packing fractions φ in φS < φ <
φ0

J , when the material is subject to shear strain, γ, starting from a force-free state. Here, φµ
J is the

isotropic jamming point for particles with friction coefficient µ. SJ states have mechanically stable
anisotropic force networks, e.g. force chains. Here, we investigate the origins of SJ by considering
small-scale structures, trimers and branches, whose response to shear leads to SJ. Trimers are any
three grains where the two outer grains contacts a center one. Branches occur where three or more
quasi-linear force chain segments intersect. Certain trimers respond to shear by compressing and
bending; bending is a nonlinear symmetry-breaking process that can push particles in the dilation
direction faster than the affine dilation. We identify these structures in physical experiments on
systems of two dimensional frictional discs, and verify their role in SJ. Trimer bending and branch
creation both increase Z above Ziso ≃ 3 needed for jamming 2D frictional grains, and grow the
strong force network, leading to SJ.

The transition of fluid-like to solid-like granular states,
i.e. jamming, is of great theoretical and practical inter-
est [1, 2]. Spherical grains with friction coefficient µ jam
isotropically above a packing fraction, φµ

J [3, 4]. For fric-
tional grains (discs) [5, 6] with φS < φ < φ0

J there are
unjammed, jammed, or highly anisotropic fragile states
[5, 7]. According to recently reported data, φS < φµ

J

[4, 5]. Shear jamming (SJ) in a closed system [5] and
dilation in a deformable system [8] presumably share a
similar origin. SJ has also been reported in suspensions
[9–11], granular impacts [12] and flow [13]. Nevertheless,
the origins of mechanically stable (MS) force and con-
tact networks associated with SJ for frictional systems
remain unclear. The nature of shear jamming in friction-
less systems is still under investigation [14–18]. Since
force networks play key roles in SJ, understanding their
origins is of broad importance.

Here, we seek mechanisms for creating stress and MS
force chains during shear, hence the origins of SJ. By
contrast, shear transformation zones (STZ’s), have been
used extensively to model deformation and failure in
amorphous molecular or frictionless systems [19–22] and
have been applied to granular systems [23–25]. For fric-
tional granular systems, buckling of force chains is the
key meso-scopic failure mechanism [26]. Both STZ’s and
force chain buckling are failure mechanisms. However,
we seek mechanisms for creating and strengthening force
networks.

We propose new approaches that account for SJ:
trimers (Fig. 1(c)), i.e. sequences of three particles
with the center particle contacting the other two, and
branches, which occur at the convergence of three or more
force chain segments. We identify all trimers/branches in
an experimental system and show that: 1) trimers that
are roughly straight and in the compression direction,

FIG. 1. (a) Sketch of simple shear with solid lines showing the
principal strain directions, and neutral lines (dashed) along
which there is neither compression nor dilation. (b) Sketch
of pure shear showing principal directions and neutral lines
similar to those of (a). In (a) and (b), the shaded regions
undergo compression. (c) A sequence of three frictional grains
(solid circles with numbers indicating indices) forms a trimer.
θ characterizes the straightness of the trimer. α indicates the
angle between the principal strain axis, and the line through
the contacts between particles 1 and 2 and particles 2 and
3. In (a) – (c), C and D indicate the directions of maximum
compression and dilation, respectively.

and 2) branches, play central roles in the SJ process. For
any given trimer, we track as a function of shear strain,
γ, its orientation relative to the compressive strain direc-
tion, α, (Fig. 1(c)), its bending angle, θ, the pressure, P ,
on the center particle, etc. During shear, these measures
show a series of sharply defined transitions associated
with the local dynamics near the trimer. To track the
collective behavior of trimers, we construct a filter, O,
that extracts important dynamics leading to SJ.

The experiments involved shearing a quasi-2D system
of photoelastic discs, using a special simple-shear appa-
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FIG. 2. (color online). Contact data vs. fNR for one run with
φ = 0.805. (a) Blue symbols: fraction of NR particles with
the indicated normalized number of contacts. Red circles:
coordination number, Z. (b) Ni, the total number of particles
with i strong (f ≥ f̄) contacts (and possibly other weaker
contacts), normalized by N , the total number of particles in
the system. The color bar gives the average Z, including
moderate and weak contacts, for a given symbol.

ratus [27] with a base that deformed affinely with the
boundaries, providing spatially uniform φ [6]. The sys-
tem contained ∼ 1000 bi-disperse photoelastic (Vishay
PSM-4) discs (friction coefficient µ ≃ 0.7) of diameters
16 mm and 12.8 mm in a ratio 1 : 3.3 (large to small)
whose optical properties under cross polarization yielded
forces on each particle [28]. Data were obtained for five
experiments for each of five φ’s in 0.758 ≤ φ ≤ 0.816.
Before each experiment, the inter-particle forces were re-
laxed to zero by tapping. Shear was applied in steps
of δγ = 0.0027. After each step, we obtained images
yielding positions, rotations and photoelastic responses
of all particles. These data yielded contact forces, f , con-
tact numbers on each particle, Z, and the force-moment
and stress tensors. A system was deemed to be SJ if Z
averaged over all non-rattler (NR) particles (those with
Z ≥ 2) was Z ≥ 3, the minimum for mechanical stability
in frictional systems [1, 2, 5].

SJ with Z ≥ 3 occurred for all the above φ’s, as in
the representative data of Fig. 2(a) (φ = 0.805) for the
average Z vs. fNR (red circles). fNR is the fraction of
NR’s [5]. Z grows from Z ≃ 2.5, and exceeds 3. Fig. 2(a)
also shows the fraction of particles, Ni/NNR vs. fNR for
the same run. NNR is the total number of NR particles
and Ni is the number of particles with Z = i for i ≥ 2.
Initially, the majority of NR’s have Z = 2, but N2/NNR

decreases with γ or fNR, and the fractions of NR’s with
Z = 3 and Z = 4 grow. The data for i ≥ 3 provide
a measure of branches. Crucially, shear increases the
number of particles with Z ≥ Ziso, creating a MS state.
The question is: what microscale processes enable this
response?

Also important is the relation between a particle’s con-
tact number and the mean force it experiences. Here,
we consider two groups, based on the particle’s contact
forces, f , relative to the system-wide mean, f̄ , at a given
γ. ‘Strong’ force particles have at least one f ≥ f̄ . ‘Weak’

FIG. 3. (color online) Displacements (blue arrows) for each
particle in units of the small particle radius, R, for φ = 0.805,
just at shear jamming when γ = 0.0999. Red arrows indicate
the direction of simple shear.

force particles have all f < f̄ . A similar thresholding was
validated by k-core percolation analysis [5].

We now restrict Ni to the total number of particles
with i strong contacts (and possibly other weaker con-
tacts), normalized by N , the total number of particles
in the system. These are the ‘force chain’ particles.
Fig. 2(b) shows data for these Ni/N , where color gives
the mean Z; e.g., crosses give the number fraction of
particles with exactly two strong contacts, and possibly
other weaker contacts. Initially, the Ni = 2 particles
have Z close to 2, but as fNR increases, Z reaches Z ∼ 3
near fNR ≃ 0.7. This means that initially, quasi-linear
force chains (with strong binary contacts) dominate the
strong network. But, as shear progresses the strong force
network particles gain contacts, modifying the network
structure as force chains emerge in the dilation direction
[5]. This is a hallmark of SJ.

During shear, particles follow trajectories that are close
to affine, as shown in Fig. 3. Hence, understanding
changes in the contact network, requires measures that
are sensitive to the small departures from affine motion.
We need: 1) a basic building block that accounts for local
bending/curvature of force chains, and 2) an accounting
of branches. A minimal structure for 1) is captured by
trimers, exemplified by three consecutive particles in a
force chain. Force chains consist of a series of partially
overlapping trimers. More generally, a trimer, Fig. 1(c),
is three particles (e.g. 1, 2, 3), where the central particle
contacts the other two. Branches occur where three or
more force chain segments converge, e.g., particles with
three or more contacts as in Fig. 4(c). The number of
branches reflects the random structure of packings, the
improbability of finding long stable chains with only two
contacts per particle, and the shear-induced growth of
contacts, in particular by trimer bending.

We consider the response to shear of a trimer that is
part of, or becomes part of, a force chain. Shear consists
of compression and dilation in orthogonal directions, e.g.



3

FIG. 4. (color online). Representative example of trimer re-
sponse to shear. (a) P for particle 2 and photoelastic images
of the trimer (particles 1-2-3) vs. γ. Z for particle 2 is indi-
cated by different symbols. At γ = 0.1161, 2 contacts 4, and
P on 2 starts to rise quickly. When Z = 4, 2 makes weak
contact with 5. In the lab frame (inset) the coordinates are
x-y, with shear along y. The compression direction is along
∼ 45◦. (b) Opening angle, θ (black triangles), and orientation
α (red circles) of the trimer. (b)-inset: distance from particle
2 to the line connecting the centers of 1 and 3 (blue circles)
and the corresponding distance if every particle moved affinely
with the shear (red squares). (c) A broader region around the
trimer of (a) for γ = 0.108.

Fig. 1(a)-(b). Intuitively, trimer response to shear de-
pends on the angle α relative to the compression direc-
tion (Fig. 1(c)). For small α, compression pushes parti-
cles 1 and 3 toward 2, closing contacts/increasing contact
forces on 2. This may also bend the trimer, increasing
θ. For trimers aligned in the dilation direction (large α),
shear tends not to directly act on the trimer (assuming
non-cohesive particles); rather, such a trimer may ex-
hibit nonaffine motion due to collisions with neighboring
particles.
Since particles move close to their affine trajectories,

how does shear increase Z and P , and enable the force
network in the dilation direction? Roughly straight
trimers with small α bend under shear, and in so do-
ing, push the central particle (particle 2, Fig. 1(c)) in
the dilation direction faster than the rate of affine dila-
tion (see proof in [27] that bending of a trimer with α = 0
after a shear strain of γ pushes the center particle by a
distance ∆ = cot2 θ(1 + γ)−1 times that induced by the
affine dilation; ∆ > 1 for most relevant θ’s. See example
in Fig. 4(b)-inset discussed below). That is, compression-
induced bending pushes 2 toward 4 faster than 4 could
move away under affine dilation. This leads to 1) an ad-

ditional contact on 2 from 4, 2) a new branch point, 3)
the formation of force networks in the dilation direction,
and 4) SJ and/or dilatancy, with only moderate relative
motion of particles. In experiments, bending is routine
for trimers that are roughly in the compression direction.
Unlike STZ’s, trimer bending in force chains corresponds
to local displacements that break the symmetry about
the y-axis: particles 1 and 3 move symmetrically about
the x-axis. But generally, there is no mirror image par-
ticle for 2 due to the low probability of adjacent force
chains.

To demonstrate the importance of trimers in an ex-
periment, we first show that under shear, a single typical
trimer lying in the compression cone, |α| < π/4, under-
goes complex dynamics, including bending and contact
formation. We then present a measure, O, that captures
the collective evolution of trimers.

Fig. 4 tracks the geometric and force response of a
trimer in the compression direction. We label the par-
ticles 1, 2 and 3 in the insets of Fig. 4(a), which show
photoelastic images of the region around this trimer. A
broader region is shown in Fig. 4(c) and [27]. At first,
Fig. 4(b), the trimer bends slowly with γ, i.e. |θ| in-
creases, and α rotates somewhat faster than the affine
strain. Initially, there is no force on particle 2, but at
γ ≃ 0.051, P on particle 2 shows a sharp transition, and
grows roughly linearly with γ due to compressive strain
pushing 1 and 3 against 2. At γ = 0.0918, θ shows a sharp
transition. The trimer bends much more rapidly with γ,
creating a contact between 2 and 4 when γ = 0.1161,
hence a branch. This initially weak contact is along the
dilation direction, and associated with a second transi-
tion in the P vs. γ data for 2. Eventually, more complex
behavior occurs; P on particle 2, α, and θ all grow. By
γ = 0.18, θ ≃ 30◦, has nearly doubled, indicating sub-
stantial bending. The force network in the dilation direc-
tion associated with 4 has grown significantly. Fig. 4(b)-
inset shows the distance from particle 2 to the line con-
necting the centers of particles 1 and 3 (blue circles), vs.
the same distance if every particle moved affinely with
the applied shear strain (red squares). Clearly trimer
bending pushes the center particle faster than the affine
strain.

The above example typifies trimer bending, creation
of new contacts, and the emergence of the network in
the dilation direction. Here we define a measure, O, to
capture the key geometric trimer properties θ and α. A
simple though not unique measure with both properties
of a trimer is O = −[(b̂i · b̂j − cij)/[A(1 + cij)] · cos(2α)],

where b̂i and b̂j are unit vectors from the origin of the
central particle (e.g. 2 in Fig. 1(c)) to the two other
trimer particles (e.g. 1 and 3), and cij is the maximum

value of b̂i · b̂j (when 1 and 3 touch). cos(2α) is > 0 (< 0)
for the compression (dilation) cone. O will decrease if a
trimer in the compression direction bends or if one in the
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FIG. 5. (color online). (a) Ō, for trimers in the force network
at SJ for five runs with φ = 0.805, with the black crosses
indicating when Z just reaches 3. (b) Ō values averaged over
five runs for each density, blue squares: γ = 0; red squares:
γSJ . (c) Two dimensional PDF of O vs. −(b̂i · b̂j − cij)/(1 +
cij) and cos(2α) for run 1 in (a) when Z just reaches 3. (d)
Rescaled pressure Pr for the trimers with O ≥ 0 vs. fNR, for
five φ’s. Black dashed line: fit for Pr for trimers with O < 0
(see SM for more details [27]).

dilation direction straightens. If θ and α for a collection
of trimers are uniformly distributed, the mean value of
O for the compression (dilation) cone would be 0.378 (-
0.378) for the normalization constant A = 1. Henceforth,
we choose A = 0.378, so that a uniform distribution of
trimers in the compression cone is unit normalized.

To characterize global trimer evolution, we first com-
pute the average, Ō, of a special set (SS) of trimers that
form the force network in an experiment at the onset of
SJ, Z = 3. This collectively describes dynamics of the
most important trimers that might otherwise appear as
random motion. Fig. 5(a) shows Ō vs. γ for five runs at
φ = 0.805, for which SJ occurs at γSJ ≃ 0.1. Ō starts
at a positive value because trimers in the SS, i.e. in the
strong network at jamming, are often roughly straight
trimers aligned in the compression region. Ō decreases
nearly linearly with γ, supporting the expectation that,
statistically, force chains in the compression cone bend
under shear. Ō at γ = 0 varies from run to run due to
different initial conditions, but the slope dŌ/dγ is nearly
the same for each run.

Fig. 5(b) compares Ō at γ = 0, and at SJ, for which
γ = γSJ . Given that the data of Fig. 5 correspond to only
the fraction of trimers that become part of the force net-
work at jamming, the initial values of Ō are significant.
Ō(γSJ) is less than Ō(0), and is nearly independent of
φ, indicating a common/universal Ō at SJ. The nonzero
value of Ō(γSJ ) indicates an anisotropic network when

the system reaches a shear jammed state. The fact that
Ō(0) increases as φ decreases towards φS , the lower limit
for SJ, indicates that the force network at jamming draws
increasingly from trimers that tend to be straighter and
more compression-aligned.
We note that trimers in the dilation cone with moder-

ate θ have negative values of O, and tend to straighten
under shear. But for γ < γSJ , these trimers typically do
not experience large forces unless one of the particles is
also part of a trimer that is oriented in the compression
cone (or until the system has become jammed).
More details on the individual contributions of the θ

and α components of O are given in Fig. 5(c). This shows
the 2D probability function (PDF) of O for the SS at

shear jamming as a function of −(b̂i · b̂j − cij)/(1 + cij)
(x-axis) and cos(2α) (y axis). There are two peaks; the
largest by far is near (x, y) ∼ (1, 1); a smaller one is
near (0,−1). The smaller corresponds to largely bent
trimers in the dilation direction. The larger corresponds
to fairly straight trimers in the compression direction, i.e.
to much of the strong force network.
We next examine the correlation between the geomet-

ric evolution of trimers and stresses by computing Pr, the
pressure for trimers, rescaled by P at jamming. Fig. 5(d)
shows Pr vs. fNR for particles belonging to all trimers
with O ≥ 0. Data for different φ tend to collapse at and
above fNR ≈ 0.7, indicating universal behavior. The
dashed lines show the contribution from the remainder
of the particles; for clarity, these data are represented by
fits to results shown in Fig. S3 of the SM [27]. Pr for
O ≥ 0 dominates and begins to rise at a much lower fNR

than Pr for the O < 0 trimers. Thus, O ≥ 0 trimers, dis-
tinguished by their geometry, form the backbone of force
networks in the shear jammed state.
In summary, we propose novel structures and mech-

anisms enabling shear jamming for frictional discs: 1)
particular trimers, roughly straight triplets of particles
aligned in the compression direction, can strengthen and
bend under shear, pushing particles in the dilation di-
rection faster than the affine dilation; and 2) branches,
which connect force chain segments. Trimer bending is an
intrinsic part of SJ. It helps generate the transverse net-
work, increasing Z and the number of branches. Trimers
with moderate α typically respond to increasing γ with
increasing local pressure, bending, and rotation. O iden-
tifies collective geometric trimer properties, and is cor-
related with the particles carrying the majority of the
forces/pressure. Branches provide a second mechanism
for generating stable structures and for raising Z above
Ziso. Initially, force chain branches are present because
the probability of long nearly straight force chains is low.
But bending increases Z and the number of branches.
Trimer bending and branch formation are not unique

to shear. They presumably occur during other types of
strain. Since the resulting force networks, particularly
for SJ, are not isotropic, bulk response functions must
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reflect this anisotropy. Force networks and microscopic
structures in three dimensions present a future challenge,
where generalized trimer bending may be relevant. The
mechanism of trimer bending considered here for fric-
tional particles may apply for frictionless particles. For
µ = 0, if bending occurs, larger bending angles would be
needed to reach the 2D Ziso = 4 for frictionless particles,
in comparison to Ziso = 3 for 2D frictional ones.
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