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This work is divided into two parts. In the first one, a study of radiative properties (such as monochromatic

and the Rosseland and Planck mean opacities, monochromatic emissivities, and radiative power loss) and of the

average ionization and charge state distribution of xenon plasmas in a range of plasma conditions of interest in

laboratory astrophysics and extreme ultraviolet lithography is performed. We have made a particular emphasis in

the analysis of the validity of the assumption of local thermodynamic equilibrium and the influence of the atomic

description in the calculation of the radiative properties. Using the results obtained in this study, in the second

part of the work we have analyzed a radiative shock that propagated in xenon generated in an experiment carried

out at the Prague Asterix Laser System. In particular, we have addressed the effect of plasma self-absorption in

the radiative precursor, the influence of the radiation emitted from the shocked shell and the plasma self-emission

in the radiative precursor, the cooling time in the cooling layer, and the possibility of thermal instabilities in the

postshock region.
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I. INTRODUCTION

High-energy-density (HED) laboratory plasma astro-

physics is a research field whose popularity has grown consid-

erably over the past three decades. It deals with the experimen-

tal modeling of the astrophysical processes, involving studies

of microphysics and large-scale flow phenomena [1]. Two

developments in the field have contributed to the successful

design of HED laboratory astrophysical experiments. First, it

has been proved that the hydrodynamics can be scaled correctly

between laboratory and astrophysical scenarios [2–7]. Second,

the emergence of HED facilities, basically, power lasers and

fast magnetic pinch machines (Z pinches) that allow matter

to be placed in extreme states of temperature, density, and

velocity, has enabled important research [4]. The laboratory

experiments permit us to explain and predict what occurs in

astrophysical phenomena and have the advantages of being

repeatable and enabling control over the initial conditions.

Moreover, they also provide data for verification and validation

of several aspects of numerical codes such as atomic physics,

hydrodynamics, equations of state, and radiative transfer. HED

laboratory astrophysics includes, for example, experiments

on radiative effects in shock waves, blast waves launched

in atomic clusters media to emulate the ones observed in

supernova remnants, and the formation of jets associated to

newly forming stars. An extensive revision of these and other

experiments can be found in Ref. [4].

One of the most interesting astrophysical phenomena is the

shock waves which are ubiquitous throughout the universe and

play a crucial role in the transport of energy into the interstellar

medium [8]. When the radiation transport is important to the to-

tal energy budget, shock waves can be radiatively driven. Then

the radiative energy flux and/or pressure plays an essential role
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in the dynamics of a radiative shock [9]. At high shock velocity,

the shocked medium is heated and ionized, emitting radiation,

which produces radiative cooling. The radiation emitted heats

and ionizes the unshocked medium ahead of the front shock,

leading to the creation of a radiative precursor [10]. Therefore,

the structure of a radiative shock includes a radiative precursor,

a density jump, a cooling layer, and a final state [9]. Radiative

shocks are observed around astronomical objects in a wide

variety of forms, e.g., accretion shock, supernovae in their

radiative cooling stage, bow shocks of stellar jet in galactic

medium, and collision of interstellar clouds.

In laboratory astrophysics experiments, radiative shocks

have been generated by driving a solid density plastic or

beryllium piston into a xenon gas cell [4,11–18] by using a

kJ laser to irradiate a pin or foil within a moderate- to high-Z

background gas [19,20] or by depositing directly the energy

of the laser into gas formed by atomic clusters [8,21–24].

For a given shock velocity and a given initial gas pressure,

materials with high atomic numbers suit the achievement of

the radiative regime, and for this reason, xenon is commonly

used as the medium in which the radiative shock propagates.

The electron temperatures and matter densities of many of

these experiments are between 1 and 50 eV and 10−3 and

10−1 g cm−3, respectively (free electron densities between

1018 and 1023 cm−3). For that range of plasma conditions

the ion charge states that we have to consider are between

Xe0+ and Xe+15. A multiply charged xenon structure is

challenging since the ions contain 4d and/or 5p open shells,

which introduces high complexity. In the works related to

the radiative shock experiments cited previously, although

radiative-hydrodynamics simulations are performed, there are

no analyses of the influence, for instance, of the atomic or

the population kinetic models used in the determination of the

radiative properties. In Busquet et al. [25] a theoretical study of

monochromatic and Rosseland mean opacities in the range of

temperatures 5–50 eV is made but only at one value of density
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of matter (1 g cm−3). In Rodriguez et al. [26] the authors made

a study of the analysis of thermodynamic regimes of xenon

plasmas as well as of the average ionization, charge-state

distributions, and radiative power losses but for the range of

matter densities of 10−5–10−3 g cm−3. On the other hand,

xenon is a popular material that can be used for extreme

ultraviolet (EUV) sources at wavelengths near 13.5 nm for

its use in EUV lithography, which is a promising technology

in the microelectronics industry [27]. The plasma conditions

in this case are in the range described above for the radiative

shocks, and the most relevant charge stages of xenon are from

Xe8+ to Xe13+. Due to the interest on the EUV lithography

there are several theoretical and experimental works [28–32]

that analyze the atomic description for that range of xenon ions

but they are mainly focused on the calculation of the plasma

emission in the range of wavelengths 10–20 nm.
Therefore, as far as we know, there is no exhaustive study

of microscopic properties of xenon plasmas in the range of
conditions of interest of many of laboratory astrophysics exper-
iments on radiative shocks and also of the influence of several
issues on their calculations, such as the population kinetic
model, atomic description, plasma self-absorption, or external
radiation fields. These plasma properties (such as, for example,
the average ionization, charge state distribution, opacities, and
emissivities) are key ingredients in radiative-hydrodynamic
simulations or to interpret experimental spectra. These facts
have motivated this work. Accordingly, this work is organized
as follows. In Sec. II we present the theoretical model used
to calculate the microscopic properties of xenon plasmas.
Furthermore, in order to show the accuracy of our model,
comparisons with calculations performed with other codes
for some properties of xenon plasmas are made. Section III
is devoted to the analysis of the influence of the nonlocal
thermodynamic equilibrium (NLTE) effects on the simulation
of plasma-level populations and radiative properties. This
analysis is made under the detailed configuration accounting
(DCA) approach, which is sufficient for this purpose. In the fol-
lowing section, the influence of the atomic description, DCA,
or detailed level accounting (DLA) approach and configuration
mixing, in the calculation of the plasma radiative properties, is
addressed. In Sec. V, for a particular astrophysical laboratory
experiment on radiative shocks [33], we make a study of the
effect of plasma self-absorption and external radiation field in
the calculation of the microscopic properties of the plasma in
the radiative precursor. Furthermore, the determination of the
ranges of plasma conditions in the cooling region in which
thermal instabilities could occur is also addressed. Finally, in
Sec. VI the conclusions are presented.

II. MODEL DESCRIPTION

The calculation of plasma microscopic properties such as

the average ionization or the opacity requires atomic data,

such as energy levels and oscillator strengths, and atomic-level

populations. In the following the models employed in this work

to calculate them are described.

A. Atomic structure

The calculation of the atomic structure and photoionization

cross sections have been carried out using the FAC code [34]. In

this code a fully relativistic approach based on the Dirac equa-

tion is used. Thus, in the calculation of the atomic structure, the

atomic levels of an atomic ion are obtained by diagonalizing

the relativistic Hamiltonian. The photoionization cross section

is calculated using a relativistic distorted-wave approximation.

FAC is able to work either under the DCA or DLA approaches.

For the former, the transition energies include the unresolved

transition array (UTA) [35] shifts and a correction to the

oscillator strengths due to the configuration interaction (CI)

within the same nonrelativistic configurations. In the DLA

approach, FAC can include different levels of CI.

In this work the study has been made mainly in the DCA

approach although there is a section devoted to make a

qualitative analysis of the influence of the atomic description

(i.e., DCA against DLA and CI effects) in the calculation of

the radiative properties in the plasma conditions of interest

in this work. For that range of plasma conditions the ions of

xenon found are between Xe0+ and Xe13+, as we will show in

a further section. So we take Xe3+ and Xe10+ as examples to

illustrate the atomic configurations included in this work in the

DCA approach. For the former ion, the ground configuration

is [Kr]4d105s25p3 and the excited configurations considered

were the following: 5(s,p)45l (with l = d,f,g), where (s,p)4

denotes all the configurations that arise from all the possible

distributions of the four electrons in subshells 5s and 5p,

5(s,p)35d2, 5(s,p)44f 1, 5(s,p)4n′l′ (with n′ = 6–10 and

l′ = s–f ), 5(s,p)35d14f 1, 5(s,p)35(f,g)1, 5(s,p)35d1n′l′,
and 4d95(s,p)4. The ground configuration of Xe10+ is

[Kr]4d8, and the excited configurations included were

4(s,p)74d9, 4(s,p)64d10, 4(s,p)74d84f 1, 4(s,p)64d94f 1,

4(s,p)54d104f 1, 4(s,p)84d64f 2, 4(s,p)74d74f 2,

4(s,p)64d84f 2, 4(s,p)54d94f 2, 4(s,p)44d104f 2, 4d7nl,

4(s,p)74d8nl, 4d64f 1nl (with n = 5–10 and l = s–f ), and

4d6n′l′n′′l′′ (with n′,n′′ = 5,6 and l′,l′′ = s–f ).

B. Calculation of plasma atomic-level populations

At high densities, when the plasma approaches the local

thermodynamic equilibrium (LTE), the population of different

ionization stages, Nς , can be obtained by solving the Saha

equation,

Nς+1ne

Nς

= ZeZς+1

Zς

e−(Iς −�Iς )/kTe , (1)

where ne is the free electrons density, Ze and Zς are the

partition functions of free electrons and ion ς , respectively,

Iζ is the ionization potential of the ionization stage ζ , and

�Iζ is the depression of the ionization potential (continuum

lowering, CL) due to the plasma environment. In this work we

apply the formulation developed by Stewart and Pyatt [36].

The application of the CL can restrict the number of bound

states available. The Boltzmann distribution function is used

to calculate the population of each atomic level belonging to

the ionization stage ζ .

For arbitrary densities the atomic-level populations are

determined from the solution of a system of collisional-

radiative (CR) rate equations. This set of kinetic rates equations
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is given by

dNζ i(r,t)

dt
=

∑

ζ ′j

Nζ ′j (r,t)R+
ζ ′j→ζ i −

∑

ζ ′j

Nζ i(r,t)R
−
ζ i→ζ ′j ,

(2)

where Nζ i is the population density of the atomic configuration

or level (depending on the atomic approach) i of the ion with

charge state ζ . The terms R+
ζ ′j→ζ i and R−

ζ ′j→ζ i take into account

all the atomic processes, both collisional and radiative, which

contribute to populate and depopulate the state ζ i, respectively.

Two complementary equations which have to be satisfied

together with Eq. (2) are, first, the requirement that the sum of

all the partial densities equals the total ion density, nion,

Z
∑

ζ=0

Mζ −1
∑

i=0

Nζ i = nion, (3)

and, second, the charge neutrality condition in the plasma,

Z
∑

ζ=0

Mζ −1
∑

i=0

ζNζ i = ne, (4)

where Mζ is the total number of levels for the charge state ζ .

The plasma average ionization is defined as

Z =
∑Z

ζ=0 ζNζ

∑Z
ζ=0 Nζ

= ne

nion

, (5)

and the plasma charge state distribution (CSD) is defined as

the set of the population densities, (Nζ ), of the ions present in

the plasma for a given condition of density and temperature

and which is obtained from the resolution of either the rate or

Saha equations.

The set of rate equations given by Eq. (2) are coupled to the

radiative transfer equation

1

c

∂I (r,t,ν,e)

∂t
+ e · ∇I (r,t,ν,e)

= −κ(r,t,ν)I (r,t,ν,e) + j (r,t,ν), (6)

where I is the specific intensity, ν the photon frequency, and e

a unitary vector in the direction of the radiation propagation.

The emissivity and the absorption coefficients [j (r,t,ν) and

κ(r,t,ν), respectively] couple the radiative equation with the

rate equations.

The CR (for steady-state situations, CRSS) as well as the

Saha-Boltzmann (SB) equations, used in this work are imple-

mented in ABAKO code [37]. The atomic processes included in

the CRSS are collisional ionization [38] and three-body recom-

bination, spontaneous decay [34], collisional excitation [39]

and deexcitation, radiative recombination [40], autoionization,

and electron capture (obtained from the collisional excitation

cross section using a known approximation [41]). We have

added between brackets the references from which their

approximated analytical rates coefficients have been acquired.

The rates of the inverse processes are obtained through the

detailed balance principle. In order to take into account

the effect of external radiation fields in the calculation of

the atomic-level populations, the radiative-driven processes

photoexcitation, photodeexcitation, and photo-ionization are

considered in the CR model. For the latter the Kramers

photoionization cross section [40] was used. The rates of

these processes are obtained assuming that the intensity of the

radiation field can be modeled with a diluted Planck function.

The same formalism of CL as for SB equations is included in

the CR model. Because of the inclusion of the CL, both the rate

and SB equations must be solved iteratively, since the former

depends on the average ionization. In ABAKO it is assumed that

the system has had enough time to thermalize and, therefore,

both the electrons and ions have a Maxwell-Boltzmann type

energy distribution. Furthermore, in ABAKO it is also assumed

that electron and ion temperatures are equal.

Finally, plasma self-absorption (i.e., opacity effects) can be

also included in the CR model of ABAKO. This effect is modeled

in an approximate way using the escape factor formalism for

the bound-bound opacity. To compute the escape factors for

the three basic geometries (planar, cylindrical, and spherical),

the technique described in Ref. [42] was adopted, assuming a

uniform distribution for emitting atoms and isotropic emission.

This formalism avoids the need to perform a simultaneous

calculation of radiative transport and atomic physics. Due to

this fact and as the intensity of the external radiation field

for the radiative-driven processes is modeled by a Planck

function, in ABAKO the radiative transfer and rate equations

are uncoupled.

C. Calculation of the plasma radiative properties

Plasma radiative properties are calculated using the RAPCAL

code [43,44]. The monochromatic emissivity and absorption

are denoted in this work as j (ν) and κ(ν), respectively (where

we have omitted the dependence on the position and time to

simplify the notation) and both of them include the bound-

bound, bound-free, and free-free contributions

j (ν) = jbb(ν) + jbf(ν) + jff(ν), (7)

κ(ν) = κbb(ν) + κbf(ν) + κff(ν), (8)

where ν is the photon frequency. The bound-bound contribu-

tion to the emissivity is given by

jbb(ν) =
∑

ζ

∑

i,j

jζj→ζ i(ν), (9)

with

jζj→ζ i(ν) = hν

4π
NζjAζj→ζ iφij (ν), (10)

where Aζj→ζ i is the Einstein coefficient for spontaneous

deexcitation between the bound states j,i of the ion ζ and

h is the Planck’s constant. The radiative transitions rates in

FAC are calculated in the single-multipole approximation, and

in this work they were obtained by use of the electric dipole

approach. The bound-bound contribution to the absorption is

given by

κbb(ν) =
∑

ζ

∑

i,j

κζ i→ζj (ν), (11)

with

κζ i→ζj (ν) = hν

4π
Nζ i

gζj

gζ i

c2

2hν3
ij

Aζj→ζ iφij (ν)

(

1 − gζ i

gζj

Nζj

Nζ i

)

,

(12)
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where c is the speed of light and gζ i and gζj are the statistical

weights of the i and j levels. In the previous equations, φij (ν)

represents the line profile both for line emission and absorption

since in this work complete redistribution hypothesis is

assumed [45]. In the evaluation of the line profile, natural,

Doppler, and electron-impact [46] broadenings were included

as was the UTA width in the DCA approach. The line-shape

function is applied with the Voigt profile that incorporates all

these broadenings.

The bound-free contribution to the emissivity is determined

by means of

jbf(ν) =
∑

ζ,i

∑

ζ,j

jζ+1j→ζ i(ν), (13)

with

jζ+1j→ζ i(ν) = h

2πc2

(

1

2me

)3/2

Nζ+1jnef (ε)
gζ i

gζ+1j

× (hν)3

ε1/2
σ

pho

ζ i→ζ+1j (ν), (14)

with ε the energy of the free electron and me the electron mass.

As noted above, in ABAKO a Maxwell-Boltzmann distribution,

f (ε), at temperature Te for the free electrons is assumed.

Moreover, the photoionization cross section, σ
pho

ζ i→ζ+1j (ν),

has been calculated using the FAC code in the relativistic

distorted-wave approach. For the bound-free spectra the DCA

approximation for the atomic description has been used as

well. The bound-free contribution to the absorption is given

by

κbf(ν) =
∑

ζ,i

∑

ζ,j

κζ i→ζ+1j (ν), (15)

with

κζ i→ζ+1j (ν) = Nζ iσ
pho

ζ i→ζ+1j (ν)

[

1 − Nζ+1jnef (ε)gζ i

Nζ igζ+1jg(ε)

]

,

(16)

where g(ε) is the density of states with energy ε which,

assuming an ideal gas of free electrons, is given by

g(ε) = 4π

(

2me

h2

)3/2

ε1/2. (17)

For the free-free contributions to the emissivity and the

absorption the Kramers semi-classical expression for the

inverse bremsstrahlung cross section has been used [47]

σ ibr
ζ (ν) = 16π2e2h2α

3
√

3(2πme)3/2

ζ 2ne

T
1/2
e (hν)3

. (18)

Assuming a Maxwell-Boltzmann distribution for the free

electrons, we obtain

jff(ν) = 32π2e4a2
0α

3

√
3(2πme)3/2h

(

me

2πTe

)1/2

Z2nionnee
−hν/Te , (19)

κff(ν) = 16π2e2h2α

3
√

3(2πme)3/2

Z2nionne

T
1/2
e (hν)3

(1 − e−hν/Te ). (20)

In order to determine the opacity, k(ν), the absorption due to

the scattering of photons is also taken into account. In RAPCAL

this one is approximated using the Thomson scattering cross

section [48],

κscatt = neσ
Thom, (21)

with σ Thom = 6.65 × 10−25 cm2.

Finally, the opacity is given by

k(ν) = 1

ρ
[κ(ν) + κscatt], (22)

with ρ the density of matter. The source function is then

obtained as

S(ν) = j (ν)

ρk(ν)
. (23)

As noted above, RAPCAL also provides the Planck, kP , and

Rosseland, kR , mean opacities, which are given by [49]

kP =
∫ ∞

0

dνB̃(ν,T )[k(ν) − κscatt/ρ], (24)

1

kR

=
∫ ∞

0

dν
∂B̃(ν,T )

∂T

1

k(ν)
, (25)

where B̃(ν,T ) is the normalized Planckian function,

B̃(ν,T ) = 15

π4T

u3

eu − 1
, u = hν

T
. (26)

The radiative power loss (RPL) is evaluated as follows [50].

For the bound-bound contribution,

Pbb =
∑

ζ

∑

ij

hνijAijNζj . (27)

The bound-free contribution is given by

Pbf = 4π
∑

ζ

∑

ij

Nζ i

(

Nζ+1jNζ

Nζ iNζ+1

)LTE ∫ ∞

ν0

σ
pho

ζ i→ζ+1j (ν)

×
(

2hν3

c2

)

e−hν/Tedν, (28)

where ν0 is the threshold energy of the ζ i → ζ + 1j transition

and the LTE population ratio is obtained from the Saha equa-

tion. The contribution from the free-free transitions is given

for a pure Coulomb field (in eV s−1 cm−3) as follows [51]:

Pff = 9.55 × 10−14neT
1/2
e

∑

ζ

Z2
ζ Nζ , (29)

where the gaunt factor has been assumed equal to unity. The

total RPL is then obtained as the sum of the three contributions.

D. Comparisons with other models

The ABAKO and RAPCAL codes have been successfully

tested with experimental results and numerical simulations for

plasmas of both low- and high-Z elements either under LTE or

NLTE conditions in optically thin and thick (homogeneous and

nonhomogeneous) situations [37,43,44,52]. Here we present

comparisons of some plasma properties for xenon in density

and temperature conditions of interest in this work in order to

show the accuracy of our calculations in these conditions. In

particular, the average ionization, CSD, and radiative power

loss are compared.
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TABLE I. Comparison of the average ionization at several tem-

peratures and at an electron density of 1018 cm−3, with calculations

of codes from the fourth non-LTE code comparison workshop [53].

Te (eV) This work Code 1 Code 2 Code 3 Code 4 Code 5 Code 6

10 6.86 6.71 7.36 6.96 6.89 6.85 6.76

20 8.60 9.12 8.53 8.13 8.80 8.92 7.82

50 11.47 11.92 13.58 10.70 11.37 12.60 12.26

Table I shows a comparison of the average ionization for a

plasma of xenon at three temperatures (10, 20, 50 eV) and an

electron density of 1018 cm−3 with calculations performed by

NLTE kinetic codes from the fourth non-LTE code comparison

workshop [53]. From the table we observe that the agreement

among the codes is better for the first temperatures and this

worsens for the largest temperature. This fact could be due

to the fact that at 50 eV the average ionization is between

11 and 12 and therefore the 4d shell is open, which leads to

many more possible atomic levels than for the other two lower

temperatures, in which the shell is almost fully occupied. Since

the atomic description and the atomic configurations included

in each code differ, it is expected that the discrepancies are

greater at this temperature. In any case, we can observe

that our simulation agrees with most of the codes for the

two lowest temperatures. This result can also be observed in

Fig. 1, where we have represented the comparison of the CSDs

among the codes for these two temperatures. At 50 eV, where

the differences among the codes are greater, our simulation

provides an average ionization which is in the interval 11–12

as well as the calculations of most of the codes.

In Table II we present a comparison of the average ioniza-

tion and CSD for two plasma conditions of an experiment of

a laser-produced xenon plasma related to its application for

EUV lithography [28]. In this case, the results reported by the

authors were obtained using the SCO code [54] based on the

superconfiguration (SC) approach [55,56] assuming LTE. We

detect a good agreement in the average ionization and also in

the CSD at 26 eV. At 30 eV there are some differences in the

fractional abundance mainly in the three most charged ions.

In both simulations the set of configurations and the atomic

description used (DCA or SC approaches) differ and these facts

can introduce some discrepancies in the results. However, there

is an agreement in both calculations in the three most abundant

ions, the ions with fractional abundances greater than 1%, and

the behavior of the CSD.

In Table III we present a comparison of the average ioniza-

tion and CSD with a theoretical analysis carried out by Sasaki

et al. [31] using the HULLAC code [57] to calculate the atomic

structure, combining DCA and fine structure approaches, and

assuming LTE to calculate the ion populations. Our calculation

provides a quite similar average ionization. With respect to the

CSD, as was already the case for the previous comparison, the

differences between the atomic models and the configurations

considered are responsible for the discrepancies. Even so,

there are agreements in the behavior of the CSD and the ions

with fractional abundance greater than the 1% and also in the

fractional abundance of the most abundant ion.

Finally, we have compared the radiative energy loss

coefficients [58], i.e., power radiated per ion and per electron,

FIG. 1. (Color online) Comparison of the charge state distribu-

tions at two temperatures with calculations of codes from the fourth

non-LTE code comparison workshop [53].

with experimental values obtained when xenon gas was

introduced at small impurity concentration to high-density

hydrogen plasma produced in a gas-liner pinch [59]. The

plasma conditions in this case are in the range of interest

in this work. The estimated accuracy of the experimental

energy-loss coefficients was 2. The comparison is shown in

Table IV. From the table we observe that, except for the second

and third cases, our theoretical calculations are of the same

order of magnitude of the experimental calculations, even

in the DCA approach that we are using in this comparison.
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TABLE II. Comparison of the average ionization and charge state

distributions (in percentages) with calculations of Gilleron et al. [28]

for a density of matter of 10−2 g cm−3.

Te = 26 eV Te = 30 eV

This work Gilleron et al. This work Gilleron et al.

Z 9.76 9.68 10.55 10.62

Xe8+ 7.6 6.5 1.4 2.0

Xe9+ 31.3 32.2 12.4 11.4

Xe10+ 38.8 39.3 30.4 29.7

Xe11+ 19.9 19.1 42.1 35.7

Xe12+ 2.0 2.4 12.5 17.7

Xe13+ — — 1.1 3.2

RPL, and then the radiative energy loss coefficient, is more

sensitive to the atomic-level populations in the plasma than

the average ionization and the CSD. Then it seems that the

atomic description selected for the population kinetics as well

as the atomic configurations included will strongly affect the

RPL.

Therefore, from the whole set of comparisons presented,

both in LTE and NLTE, for xenon plasmas in the range of

plasma conditions of interest of this work, we can conclude

that our atomic and population kinetic models are accurate

enough for the qualitative analysis of different effects in the

calculation of the xenon plasma microscopic properties that

we present in this work.

III. NLTE AND LTE ANALYSIS

In a previous paper [60] the thermodynamic regime of

optically thin plasmas in the stationary situation was analyzed

for a wide range of electron temperatures (1–1100 eV) and

matter densities (10−5–102 g cm−3). However, in that work

the influence of NLTE or LTE simulations in the calculation

of plasma microscopic properties was not analyzed for the

range of plasma conditions of interest in this work. In order to

analyze the NLTE effects we will compare the results obtained

for the different properties using the SB and the rate equations

of the CRSS model implemented in ABAKO. We consider

that for the purpose of this section, which is mainly to give

indications about the relevance of the NLTE effects, the DCA

approach for the atomic description is enough. We started

TABLE III. Comparison of the average ionization and charge-

state distributions (in percentages) with calculations of Sasaki

et al. [31] for an electron temperature of 25 eV and electron density

of 1021 cm−3.

This work Sasaki et al.

Z 8.59 8.70

Xe6+ 1.4 1.5

Xe7+ 6.1 7.2

Xe8+ 39.0 32.0

Xe9+ 40.0 41.0

Xe10+ 12.0 16.0

Xe11+ 1.5 1.9

TABLE IV. Comparison of the radiative-energy loss coefficients

(in Wm−3) with experimental values reported by Baig and Kunze [59].

Te (eV) ne (cm−3) % of Xe This work Baig and Kunze

12.5 1.8 × 1018 0.06 0.80 × 10−32 1.70 × 10−32

10.0 1.3 × 1018 0.06 0.26 × 10−32 1.40 × 10−32

7.5 0.8 × 1018 0.06 0.31 × 10−32 1.90 × 10−32

10.0 2.0 × 1018 0.10 0.30 × 10−32 0.80 × 10−32

7.5 1.1 × 1018 0.10 0.20 × 10−32 0.70 × 10−32

7.5 2.3 × 1018 0.40 0.46 × 10−32 0.60 × 10−32

analyzing the average ionization, CSDs, and plasma-atomic-

level populations. Figure 2 displays a comparison between

the average ionizations obtained with both models. In the

figure, the comparison is shown for all the temperatures of

the range and for three matter densities, the ones of the limits

and the intermediate one. From the figure we detect that for

the highest density considered (10−1 g cm−3) the agreement

is excellent for the whole range of temperatures. We have

obtained that this good agreement is also retained for the CSDs

obtained using both models. For this density of matter, the ions

present in the plasma in the range of temperatures 1–50 eV are

those from Xe0+ to Xe13+. For the intermediate-density case

(10−2 g cm−3) we observe a noticeable agreement between

the SB and CRSS results for temperatures lower than 40 eV,

and even at larger temperatures, where some slight differences

are detected, the relative differences are always lower than

5%. At this density of matter the ions that contribute in

the range of electron temperatures are those from Xe0+ to

Xe15+. The diminution of the density of matter yields to

a decrease in the plasma recombination and therefore the

range of charge stages is larger at 10−2 than at 10−1 g cm−3.

With respect to the CSDs provided by both models in this

FIG. 2. (Color online) Comparison of the average ionizations

obtained using SB and CRSS models.
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intermediate density we obtained that they are quite similar in

the whole range of temperatures. Finally, at the lower density

of matter of the range (10−3 g cm−3), we can detect slight

differences for temperatures larger than 20 eV, although the

relative differences are greater than 5% only for temperatures

higher than 30 eV. For a fixed density of matter, as the

temperature increases the departure of the plasma from LTE

is larger. These differences in the average ionization will be

more noticeable in the CSD since the latter is a less average

quantity than the former. Figure 3 displays the comparison

between the CSDs calculated using both population kinetic

FIG. 3. (Color online) Comparison of the CSD using SB and

CRSS models as a function of the electron temperature and for a

density of matter of 10−3 g cm−3.

models for this density of matter. The differences in the

fractional abundances are beginning to emerge for Xe8+

ions at temperatures around 15 eV, although they are still

small. However, for the average ionization, as noted above,

the differences were almost undetectable until temperatures

higher than 20 eV. The differences between the CSDs continue

to grow with the temperature, and even for the highest

temperatures (35–50 eV) there are ion charge stages in the

SB simulation (Xe16+–Xe18+) that are not present in the CRSS

simulation. This result is connected to the fact that, of the LTE,

the SB equations overstimate the average ionization, as Fig. 2

shows. Therefore, LTE could be assumed for the calculation of

the average ionization and CSDs for matter densities between

10−2 and 10−1 g cm−3, whereas for densities between 10−1

and 10−2 g cm−3 this approach is accurate enough for electron

temperatures lower than 20 eV. For higher temperatures, a

NLTE simulation might be necessary.

Plasma radiative properties are more sensitive to the pop-

ulation kinetic model used than the previous properties, since

the former directly depends on the plasma-level populations,

whereas average ionization and CSD are averaged. Therefore,

the analysis of the population kinetic model on the level

populations will give us a better understanding of the effect in

the radiative properties. A typical procedure used to discern

whether the ion levels are in LTE consists of evaluating the

ratio between the population of each ion level obtained with

the CRSS model and the one in LTE determined from the SB

equations,

bςm = pζmCRSS/pζ0CRSS

pζmSB/pζ0SB

, (30)

where pζm and pζ0 are the fractional populations of the level

m and of the ground level of the ion ζ , respectively. The values

of bζm are represented in the so-called b plots [61] and there

is one b plot for each ion. In these plots, the b values for the

levels are represented against the ratio between the energies of

the levels (with respect to the energy of the ground state) and

the ionization potential of the ion considered,

em = Eζ,m − Eζ,0

Iζ

. (31)

The explanation of the b plots is simple: according to

Eq. (30), values of the parameter b near unity mean that the

distribution of populations is near the LTE one. Furthermore,

the ground state and low-lying excited levels have low values

of em; as the value of em increases the levels are more excited

and the autoionizing levels are those with em > 1. At 10 eV,

we obtained that, for the density of matter of 10−2 g cm−3,

the atomic configurations can be considered in LTE since

the values of the b parameter are very close to unity, see,

for example, Fig. 4 (top), where we have represented the b

plot for the most abundant ion at this plasma condition. This

fact implies that the monochromatic emissivities and opacities

calculated using SB and CRSS models will be almost identical.

Obviously, this result also holds true for the density of matter

of 10−1 g cm−3 at that temperature. For the lowest density,

where we had obtained that both the average ionization and

the CSDs provided by both population kinetics model are very

similar, the b plot of the most abundant ion is shown in Fig. 4

(bottom). From the figure we observe that there is a large group
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FIG. 4. b Plots of the most abundant ion for the corresponding

plasma conditions.

of atomic configurations whose values of the b parameter range

between 1.0 and 0.9, which indicates slight departures from

the LTE. However, we have verified that these differences are

not relevant enough to introduce significant deviations in the

radiative properties calculated with both models.

As noted above, as the temperature increases, for a given

density of matter, the departures from the LTE become larger.

For this reason, we also analyzed the b plots at 40 eV. From

the analysis of the level populations, we have obtained that

at this temperature for the density of matter of 10−1 g cm−3

the atomic configurations can be considered in LTE and there

are no differences between the monochromatic emissivities

FIG. 5. b Plot of the most abundant ion.

and opacities provided by SB and CRSS simulations. For the

density of 10−2 g cm−3 and the same temperature we have

represented in Fig. 5 the b plot for the most relevant ion at

this plasma condition. In this case, most of the atomic config-

urations have values of the b parameter between 0.9 and 0.8.

There are also two smaller groups of configurations with values

between 1 and 0.9 and lower than 0.8, respectively. For this

plasma condition we had obtained similar average ionizations

and CSDs between LTE and NLTE simulations. However, from

the b plot we observe that many of the atomic configurations

are in NLTE. This fact will introduce differences between the

radiative properties calculated using both models. However,

since the CSDs are quite similar, the ions involved in both

simulations are the same. Therefore, the structures in the

spectra are almost identical and there are only differences in the

height of some peaks and the depth of the valleys, although they

are not very important, as can be seen in Fig. 6. For the lowest

density of matter, the levels are in NLTE, as maybe expected

according to the results obtained for the average ionization

and CSD. In this case, the average ionization in SB and CRSS

simulations are 15.11 and 13.59, respectively, and then the

CSDs provided by both models present some differences (ions

from Xe13+ to Xe17+ assuming LTE and from Xe12+ to Xe15+

in the NLTE simulation). This fact explains that there are some

differences in the structures of the monochromatic opacities

and emissivities spectra, as shown in Fig. 7. From the figure,

more noticeable differences are detected as the photon energy

increases. This could be due to the fact that the CSD of the SB

simulation includes two more ionized ions, Xe16+ and Xe17+,

that are not present in the NLTE simulation.

Since the Planck and Rosseland mean opacities and the

RPL are obtained from the monochromatic opacities and

emissivities, respectively, the differences between the SB and

CRSS simulations will be related. Thus, from Fig. 8 we

observe that the Planck and Rosseland mean opacities for the
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FIG. 6. (Color online) Comparison between the monochromatic

emissivities calculated using SB and CRSS models for the plasma

condition displayed in the legend.

two largest densities are almost identical. On the other hand,

for the density of matter of 10−3 g cm−3 the differences are

beginning to be detected for temperatures greater than 20 eV,

and they reach their maximum values (around 30% and 50%

for the Planck and Rosseland mean opacities, respectively)

in the range of temperatures 40–50 eV, being the values of

the mean opacities provided by the SB model lower than

the ones obtained with the CRSS model. For the RPL we

have obtained something similar: there are differences only

for the lowest density, although in this case the values of the

RPL obtained using SB model is greater than the ones given

by the CRSS simulation, being the maximum values of the

differences around 30%.

IV. STUDY OF THE ATOMIC DESCRIPTION

In this section we have made an analysis of the influence

of the atomic description in the calculation of the radiative

properties of xenon plasmas in the range of conditions under

interest. In particular, we compare the DCA approach with

the single-configuration DLA one and the DLA approach

including configuration interaction (CI) that we will denote as

DLA+IC in the following. We have detected that, for the range

of temperatures under study, the most relevant contribution to

both the absorption and emission spectra is the bound-bound.

Therefore, for simplicity, we have opted to retain the DCA

approach for the bound-free contribution.

A previous analysis of the general features of the wave

functions of the orbitals and their overlapping gives us

information about the relevance of the contribution of their

transitions to the spectra. This is very useful for medium-

or high-Z elements, like xenon, as performing a complete

CI calculation to obtain all necessary bound-bound oscillator

strengths is intractable in these cases. Therefore, large-scale

FIG. 7. (Color online) Comparison between the monochromatic

emissivities and opacities calculated using SB and CRSS models for

the plasma condition displayed in the legend.

CI calculations are only made for strong transitions while for

the other less-relevant transitions a single-configuration DLA

approach has been used. In Fig. 9 we show the square of the

radial wave functions of the orbitals 4d,5s,5p,5d,6s,6p,6d

for Xe2+ and orbitals 4s,4p,4d,4f,5s,5p,5d,5f for Xe9+. As

noted above, the atomic structure was obtained in a relativistic

context. However, as the difference between the relativistic

radial wave functions of the same orbital angular momentum

is small, we have represented in the figure the wave functions

of nonrelativistic orbitals according to their statistical average.

For both ions, the wave functions of 5s,5p and 5p,5d

have large overlaps, and, as a result, the oscillator strengths
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FIG. 8. (Color online) Comparison between the Planck (top) and

Rosseland (bottom) mean opacities calculated using SB and CRSS

models.

of the transitions between 5s and 5p and between 5p and

5d should be large. Besides, for Xe2+, 5p and 6s orbitals

are moderately overlapped. As the quantum number increases,

(n > 6), the overlap of the wave functions with 5s and 5p

orbitals decreases. For Xe9+ we observe a very large overlap

between between 4p and 4d and then the oscillator strength

should be large for the transition between these orbitals. More

moderate is the overlapping between 4d and 4f and even more

between 4d and 5p, although they are still relevant.

Therefore, we have included in the DLA+CI model

interaction among atomic configurations according to the

FIG. 9. (Color online) Overlap of the square of the radial wave

functions of orbitals 4d,5s,5p,5d,6s,6p,6d for Xe2+ and orbitals

4s,4p,4d,4f,5s,5p,5d,5f for Xe9+.

results obtained from the previous study. We take Xe2+

and Xe9+ as examples of the scale of CIs included in the

calculations carried out in this section. For the former ion

fully CI has been considered for the following configura-

tions: 5s25p4, 5s15p5, 5p6, 5s25p35l, 5s15p45l (with l =
d,f ), 5s25p25d2, 5s25p25d15f 1, 5s15p35d2, 5s15p35d15f 1,

5s25p34f 1, 5s15p44f 1, 5s25p36l′, and 5s15p46l′ (with l′ =
s − f ). For Xe9+ the CI among the following configurations

has been considered: 4d9, 4p54d10, 4s14d10, 4d84f 1, 4d74f 2,

4p54d94f 1, and 4d85l1 (with l = s − d). Since the simula-

tions including CI increase the computing time considerably,
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we have only considered them in the most abundant ions at

each plasma condition analyzed. For the other ions, a DLA

description has been used but only in the single-configuration

approach.

We have made a qualitative analysis of the influence of these

atomic descriptions in the plasma properties. In particular, we

have selected two electron temperatures in the range analyzed,

5 and 20 eV. This is due to the fact that these temperatures

can be present in the kind of experiments that we analyze in

the next section. For these two temperatures and in the range

of matter densities of interest we can assume the plasma in

LTE according to Sec. III. We have found a good agreement

both for the average ionization and the CSDs provided by

the three models. This result is expected since they were

determined using the Saha equation whose dependence on

the atomic description is not too strong. On the other hand,

the differences are more noticeable for the monochromatic

opacities and emissivities. In Fig. 10 we have represented the

bound-bound contribution to the monochromatic opacities at

these two temperatures. First, we can observe that the DCA

approach predicts the gross profile of the DLA calculation.

However, the DLA+CI simulation provides a fine structure of

the opacity since it includes transitions that were not allowed

in the DCA and single-configuration DLA approaches. This

fact is more evident for the case of lowest temperature and

density of matter represented, since the collisional and Doppler

broadenings are lower than in the other two conditions and

because of the overlapping among the lines. These differences

in the monochromatic opacities, and in the emissivities as well,

imply differences in the average radiative properties. Thus, for

these plasma conditions, we have obtained relative differences

in the Planck and Rosseland mean opacities between DCA

and DLA+CI simulations that can reach 60% and 20%,

respectively. Between DLA and DLA+CI calculations the

relative differences can reach 40% and 20%, respectively.

Therefore, it is clear that single-configuration DLA description

does not introduce a significant improvement respect to the

DCA approach. With respect to the RPL, in Fig. 11 we show

the results obtained from its calculation under the three atomic

descriptions. From the figure we can observe that, as happens in

the mean opacities, the three models provide values of the RPL

of the same order of magnitude but the differences between

the DCA and DLA+CI simulations can reach 100% in the

worst case. Between the DLA and DLA+CI simulations the

maximum error is about 45%.

Therefore, we have obtained that, for the average radiative

properties, the three models provide values of the same order

of magnitude but with relative errors that can reach 100% in

the DCA approach and 40% in the DLA one with respect to

the DLA+CI description. Therefore, it seems that the logical

choice would be the DLA+CI description. However, we point

out that both the generation of the atomic databases and the

calculation of the radiative properties in this atomic description

imply a considerable increase of the computational times.

This is even more true in NLTE situations, where the set of

rate equations must be solved and in which external radiation

fields or plasma self-absorption could be involved. All these

facts should be taken into account when we select an atomic

description to perform, for example, radiative hydrodynamics

simulations of the type of experiments considered in this work.

FIG. 10. (Color online) Comparison of the bound-bound contri-

butions to the monochromatic opacities obtained with the different

atomic models.

On the other hand, if we are interested in the analysis of

either the absorption or emission spectra, then the DLA+CI
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FIG. 11. (Color online) Comparison of the RPL obtained with

the different atomic models for two electron temperatures as a

function of the density of matter.

description should be used since the changes both in the

position of the peaks and their number are significant. These

changes might be more important in the NLTE regime since the

rate equations are more sensitive to the atomic description than

the SB equations and, therefore, even the average ionization

and CSDs provided by the three models may differ.

V. STUDY OF AN EXPERIMENTAL RADIATIVE SHOCK

In this section we analyze the influence of the effect of the

external radiation field and the plasma self-absorption on the

microscopic properties of the radiative precursor of a radiative

shock wave generated by a laser beam and propagating in

xenon. Furthermore, we also study the possibility of the onset

of thermal instabilities in the cooling layer behind the shock.

For these purposes we have selected a particular experiment

which is briefly described in the following.

A. Description of the experimental setup

The experiments were conducted at the Prague Asterix

Laser System (PALS) and an extensive description of them

can be found in Ref. [33]. We have limited ourselves here to

point out some aspects relevant to our discussion. A beam from

an iodine laser (λ = 1.315 μm) with a pulse duration of 0.3 ns

drives a shock wave inside a target filled with a xenon gas at low

pressure (≈0.3 bar, i.e., ρ = 1.5 × 10−3g cm−3). The targets

used for the shock generation consist of a miniaturized shock

“tube,” closed by a foil of gilded polystyrene (CH and Au). The

beam is focused on this foil and the ablation of the polystyrene,

due to the laser, propels by rocket effect the small section of the

Au-CH foil, which acts like a piston inside the shock tube. Then

a radiative shock wave propagates in xenon with an average

velocity around 50–60 km s−1 from 3 to 30 ns after the time of

FIG. 12. (Color online) Snapshot of the plasma at 20 ns from

MULTI 1D simulations [62].

the arrival of the laser beam on the CH-Au piston. By means of

a one-dimensional (1D) radiative hydrodynamical simulation

using the MULTI code [62] the structure of the plasma was

simulated. As an example, in Fig. 12 this is displayed at 20

ns. The shock is moving from the right to the left and only the

simulation for the plasma of xenon is shown. The position of

the shock front is located at −0.003 cm. At this position the

electron density peaks at 1021 cm−2 (a density of matter around

4 × 10−3 g cm−3, which is also the density of the shocked

shell) and the electron temperature at 18 eV. The thickness of

the shocked xenon layer was around 10 μm. Behind the shock

front is the postshock region with a temperature between 12

and 17 eV and a density of matter around 4 × 10−3 g cm−3.

Ahead of the front shock is observed the radiative precursor

(between −0.22 and −0.03 cm, approximately). The Au-CH

piston is not represented in the figure.

B. Plasma self-absorption in the radiative precursor

We have analyzed the influence of the plasma self-

absorption in the calculation of the population of the atomic

configurations of the radiative precursor. As said before, in

ABAKO the bound-bound opacity effects are taken into account

in population kinetics calculations by means of the escape

factor formalism. For a given line transition ζ i ↔ ζj , the

escape factor �ji is introduced as an alternative way of

writing the net rate of line emission. The escape factors enter

in the calculations in two ways: first, in the atomic physics

calculations of excited-state populations. As a result there is

an effective reduction in the Einstein spontaneous emission

coefficient Aζj→ζ i , which is written as �jiAζj→ζ i . Second,

they appear in the determination of the total emergent line

intensity. This modification circumvents the need to perform

a simultaneous calculation of radiation transport and atomic

physics. To compute the escape factors we have adopted the

technique described in Ref. [42]. Thus, assuming a uniform
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distribution of emitting atoms and isotropic emission, for the

three basic geometries—plane, cylindrical, and spherical—the

escape factor �ji is written as

�ji =
∫ ∞

0

φij (ν)
1

τij (ν)
F [τij (ν)]dν, (32)

where τij (ν) = κζ i→ζj (ν)L is the optical depth, where L

denotes the characteristic plasma dimension, i.e., slab width,

cylinder, or sphere radius. Finally, F (τij ) is a functional of the

optical depth whose particular form depends on the considered

geometry. On the other hand, for each line transition, the escape

factor depends implicitly on the populations of the lower, Nζ i ,

and upper levels, Nζj , since they are required to compute the

absorption coefficient [see Eq. (12)] and then the optical depth.

Hence, in the case of optically thick plasmas, the system of

rate equations must be solved iteratively until convergence is

achieved within a prescribed tolerance. For our simulation we

have employed the electron temperature profile provided by the

hydrodynamic simulation at 20 ns (see Fig. 12) and, therefore,

our calculations are a postprocessing of the hydrodynamic

results. We have assumed that the radiative precursor has plane

geometry and we have divided it into homogeneous layers

characterized by average electron temperatures at the same

density of matter of 1.5 × 10−3 g cm−3 and they are listed

in Table V. For the plane geometry, the functional F (τij ) in

Eq. (32) is given by [37]

F (τij ) = 1
2

− E3(τ ), (33)

where E3(τ ) is the third-order exponential integral.

We have analyzed the influence on the average ionization,

the mean opacities, and the RPL. For the average ionization,

we have obtained that the relative differences between both

simulations are always lower than 2%, and the discrepancies

diminish as the layer is more distant from the shock front,

i.e., as the electron temperature decreases (see Table V). This

behavior is also obtained for the RPL, as Fig. 13 shows, but

the differences are noticeably greater than for the average

ionization, since the RPL is more sensitive to changes in the

population of the atomic configurations, reaching maximum

differences around 29%. In both properties the self-absorption

TABLE V. Division in homogeneous layers of planar geometry

of the radiative precursor. The density of matter is 1.5 × 10−3 g cm−3

in all the layers.

Layer Te (eV) D (μm)

1 15.73 5

2 14.50 313

3 13.54 260

4 12.53 193

5 11.53 140

6 10.56 104

7 9.55 45

8 8.57 9

9 6.08 9

10 4.72 9

11 3.54 19

12 2.40 37

FIG. 13. (Color online) Comparison of the RPL calculated with

or without including self-absorption in the population kinetics.

effect leads to an increase of them with respect to the

simulation without opacity effects. As said before, the escape

factor reduces the rate coefficient of the spontaneous decay

process and then excited levels will be more populated,

encouraging ionization by collisional processes.

With respect to the mean opacities the relative differences

between both simulations are lower than the 5% and 14% for

Rosseland and Planck mean opacities, respectively. Rosseland

mean opacity is determined by the depth of the valleys (and

then on the line shapes) of the spectrum, whereas the Planck

mean is determined mainly by the position and height of the

peaks. Including self-absorption effects in the rate equations

will change the populations of the atomic configurations

and then the height of the peaks while the changes in the

line shapes will be lower and this could explain why the

differences are greater for the Planck mean opacity. Unlike

for the average ionization and RPL, the relative differences

between simulations with or without self-absorption effects

do not present a regular trend with the temperature. Thus, we

have obtained increases and decreases of these discrepancies

as the temperature decreases, although the behavior of these

fluctuations with the temperature is the same for both mean

opacities. Unlike the radiative power loss, which is obtained

from direct integration over frequency of the emissivity, mean

opacities are computed by integrating the monochromatic

opacities with their corresponding weighting functions [see

Eqs. (24) and (25)], and therefore the result depends not only

on the effect of the self-absorption on the monochromatic

opacities but also on these functions, and this fact could explain

the nonregular behavior with temperature of the relative

differences of the mean opacities between both models.

In Fig. 14 we present the monochromatic opacity and

emissivity for the layer number three of the radiative precursor.

As we can see the differences are more relevant for the
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FIG. 14. (Color online) Comparison of the monochromatic opac-

ity and emissivity calculated with or without including self-absorption

in the population kinetic model for the layer number 3 of the radiative

precursor.

emissivity than for the opacity. This fact implies that the

self-absorption effects are more important in the excited

configurations, since the opacity is more sensitive to the

populations of the ground and first excited configurations than

the emissivity.

We have not obtained differences between the radiative

properties calculated with both models for the last five layers.

The temperatures in these ones are always lower than 5 eV

(see Table V). In Sec. III we concluded that at this density of

matter and for those temperatures the plasma can be considered

in LTE. In this thermodynamic regime, collisional processes

are the dominant ones and radiative processes are less relevant.

This fact could explain why, for these layers, self-absorption

effects are not noticeable. Finally, we would like to point out

that the real differences between NLTE simulations with and

without reabsorption effects might be lower than the ones

presented before. This is due to the fact that the 1D planar

model used in the escape factor formalism implemented in

our code could overestimate them. Therefore, self-absorption

would has no noticeable influence in the average ionization

and mean opacities and for the RPL introduces changes

for the first three layers and for layers. NLTE simulations

including self-absorption in the layers significantly increase

the computing time. Therefore, since the effects in the situation

under analysis are not too relevant in the calculation of the

mean radiative properties, they may not be considered in the

population kinetics model. However, if we are interested in the

comparison between experimental and simulated spectra or in

spectroscopic diagnostics, which are more detailed analysis,

these effects should be taken into account since as Fig. 14

shows there are differences in the intensity of some peaks of

the spectra.

C. Effects of the shock radiation in the radiative precursor

We have employed the discretization of the radiative

precursor in layers at 20 ns presented in the previous section

to analyze the influence of external radiation fields in the

collisional-radiative simulations of this region at that time. At

each layer the incoming radiation will include the one emitted

by the shock front and the radiation due to the self-emission

of the previous layers, since we have not taken into account

the radiation that comes from layers ahead of the one under

consideration. The specific intensities are calculated from

Eq. (6), assuming stationary situation for the radiation, along

the beam in the propagation direction, which is given by

Iν(τν) = Iν(0)e−τν +
∫ τν

0

Sν(tν)e(τν−tν )dtν, (34)

where τν is now the monochromatic optical thickness mea-

sured along the beam

τν(r) =
∫ r

0

κsds. (35)

To compute the outgoing intensity from the shock shell

we assumed that the plasma was homogeneous in which the

source function did not change with the position, with planar

geometry of thickness DS calculated as the full width at half

maximum of the shock shell (10 μm). Then, assuming Iν(0)

in Eq. (34), the outgoing intensity would be given by

Iν,S(DS) = Sν[1 − e−τν (DS )]. (36)

Assuming that a layer j has a length denoted by Dj , the

specific intensity of the incoming radiation to that layer is

given by

Iν,j = Iν,j−1(Dj−1) + Sν,j−1[1 − e−τν,j−1(Dj−1)], (37)

and this radiation will be responsible for the radiative-driven

processes in that layer. For j = 1, i.e., the first layer, Iν,j =
Iν,S(DS).
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FIG. 15. (Color online) Outgoing specific intensity from the

shock front along the beam in the propagation direction at 20 ns

(ne = 1021 cm−3 and Te = 18 eV) and Planck function with a

radiation temperature of 18 eV and a dilution factor α = 0.6.

First, we have studied the outgoing intensity of the shock

front at 20 ns. For this purpose we have assumed the shocked

shell to be a homogeneous plasma with planar geometry

with a width of 10 μm. We have taken as electron density

and temperature the ones provided by the hydrodynamic

simulation at the shock front at this time, i.e., 1021 cm−3 and

18 eV, respectively. Then the specific intensity along the beam

in the propagation direction will be given by Eq. (36). In Fig. 15

we have represented this property and the Planck function at

18 eV and with a dilution factor, α = 0.6, since, as noted

above, in the radiative-driven processes in our NLTE kinetic

model the radiation field is modeled by a Planck function.

Qualitatively, the agreement between both curves is acceptable

in the range of photon energies represented. Therefore, we

will approximate the specific intensity by that diluted Planck

function. In Fig. 16 we have represented the monochromatic

opacities calculated at the density of matter of the radiative

precursor and at two extreme temperatures, 15 and 2 eV.

At temperatures close to 15 eV, i.e., the first layers of the

radiative precursor, the absorption mainly occurs in the range

60–120 eV as the figure shows. As the temperature decreases

the ionization also does, and the range of photon energies in

which the absorption is more significant is shifted toward lower

energies. Thus, at the temperature of 2 eV, the range is about

15–70 eV and the absorption for energies larger than 100 eV

is considerably lower. Therefore, the range of photon energies

in which the radiative precursor will have a larger absorption

will be between 10 and 150 eV.

In Fig. 17 we have represented the intensity of the incoming

radiation to the layer, which is modeled by a diluted Planck

function and denoted as Bν,in(0) in the figure and this intensity

at the end of the layer, i.e., propagated through the layer of

width D, is denoted as Bν,in(D). Furthermore, the figure also

FIG. 16. Monochromatic opacities at two extreme temperatures

of the radiative precursor.

shows the intensity of the radiation emitted by the layer itself,

i.e., plasma self-emission, at the end of the layer [Iν(D)], the

layer outgoing intensity [Bν,in(D) + Iν(D)], and the diluted

Planck function that is used to approximate it, Bν,out(D), that

will be the incoming intensity to the following layer. All of

them are represented for two layers, 2 and 5, of the radiative

precursor, the former very near to the shock front and the latter

somewhat further away. We have obtained that the contribution

of the plasma self-emission radiation is very relevant and

has to be taken into account. In the figures we can observe

that, for example, in the range of photon energies 60–80 eV

there is a very strong absorption in the layer which is partially
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FIG. 17. (Color online) Incoming and outgoing intensities of

layers 2 and 5 of the radiative precursor. Both intensities are

approached by diluted Planck functions.

compensated by the radiation emitted by the layer itself. If this

one was not included in the outgoing intensity, then the effect

of the radiation in the following layer would be reduced. On

the other hand, the radiation due to the plasma self-emission

decreases as the layer is further away from the shock front,

since the temperature decreases with the distance as Fig. 18

shows.

With respect to the influence of the radiation field on

the microscopic properties, in Fig. 19 we have represented

a comparison between the average ionization of the layers

obtained including or not the external radiation field. As

expected, the average ionization is greater when the radiation

is included in the simulation, the relative differences always

FIG. 18. (Color online) Specific intensities of the outgoing self-

emission radiation of some layers of the radiative precursor.

being lower than 3%. We observe that for the layer number

9 both simulations provide very close values. These two facts

combined could contribute to this result. First, the radiation

of the self-emission of the previous layer may be not too

relevant. Second, the electron temperature of the plasma in this

layer is about 6 eV (see Table V). According to the discussion

presented in Sec. III, for this density and this temperature the

FIG. 19. (Color online) Comparison between the average ioniza-

tion of the layers obtained including or not the external radiation

field.
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FIG. 20. (Color online) Comparison between the CSDs of layer

2 obtained including or not the external radiation field.

average ionization provided by NLTE was the same as the one

of a LTE simulation and this means that collisional processes

are more relevant than radiative ones. Therefore, if the external

radiation is not too strong its effect will be small, although

in this layer some slight differences are still observed in the

CSD and the radiative properties. These differences continue

to decrease in the following layers.

In Fig. 20 we have represented the comparison between the

CSDs calculated including or not the external radiation field

for layer 2. From the figure we observe that the radiation field

appreciably modifies the fractional abundance of the charge

states. Obviously, these changes will affect the monochromatic

opacities and emissivities as Fig. 21 illustrates. In the figure

we observe that since the ions that contribute to the spectra

are the same in both simulations, the spectra present similar

structures. However, the increase of the ionization due to the

induced radiative processes produces an increase of the heights

of the peaks associated to transitions in the range of photon

energies higher than 80 eV and also in the free-bound emission,

whereas the contribution of the transitions of lower energies is

reduced. Finally, the variations in the monochromatic radiative

properties will affect the mean radiative properties. Thus, for

the Planck and Rosseland mean opacities we have obtained

maximum relative differences between both simulations lower

than 20%, whereas for the RPL these differences can be

larger, about 50%. We have also observed that although both

simulations provide similar average ionizations and CSDs

there are differences in the mean opacities and in the RPLs. In

particular, for the simulation including the radiative induced

processes the mean opacities are lower and the RPLs are larger

than the ones obtained when the radiation is not considered.

In this case, for each ion charge state we have observed

that the populations of the excited configurations obtained

when the external radiation field is included are larger than

FIG. 21. (Color online) Comparison between the monochro-

matic emissivities of layer 2 obtained including or not the external

radiation field.

when the radiation is not considered. As a consequence, the

opposite occurs for the populations of the ground and first

excited configurations. This could be due to the fact that

the photoexcitation rate is greater than the photodeexcitation

one. These facts may explain the results obtained for the

monochromatic opacity and emissivity.

Therefore, from this qualitative analysis it seems that

the radiation field due to both the shock front and the

plasma self-emission affects the calculation of the plasma-level

populations and the radiative properties in the precursor overall

in the regions nearest to the shock front. Obviously, a precise

calculation would imply a more appropriate treatment of the

radiation field than the qualitative one made in this work.

D. Radiative cooling time

The radiative cooling time, tcool, is given (in s) by

tcool = 2.42 × 10−12 (Z + 1)nionTe

∇ · 	Frad

, (38)

where 	Frad is the radiative flux and its divergence (given in

erg cm−3 s−1 in the previous equation), and if the radiation

does not depend explicitly on time, it is given by

∇ · 	Frad = 4π

∫ ∞

0

j (ν)dν − 4π

∫ ∞

0

κ(ν)J (ν)dν, (39)

where J (ν) is the mean spectral intensity. For simplicity, we

have omitted in the previous equation the dependence of the ra-

diative properties on time, position, and propagation direction,

although they depend on them. Radiative cooling time is an

interesting parameter since it allows us to determine whether

the shock is radiative. With that purpose we have to compare

tcool with the convective transport time (tconv = h/s with s

the speed of the sound in the medium and h hydrodynamic
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characteristic size). When tcool << tconv, then the shock can

be considered radiative. Furthermore, the radiative cooling

time is also useful in order to classify the thermal cooling

instabilities as we will show in the next section. For these

reasons, we have made a previous analysis of the cooling time

for the plasma conditions of interest in the experiment under

analysis. First, we have studied the effect of the opacity on

the calculation of the divergence of the radiative flux. With

that purpose we have approached the mean spectral intensity

in Eq. (39) by a diluted Planck function of a certain radiation

temperature. We have obtained that the relevance of this term

is considerably lower than the other one in the calculation of

the divergence of the radiative flux and, therefore, this one

can be approximated to the RPL. According to this result,

we computed the radiative cooling time which is represented

in Fig. 22 as a function of the temperature for three matter

densities, 10−3, 10−1, and 4 × 10−2 g cm−3, where the latter is

approximately the density of matter of the cooling layer. The

electron temperature in the cooling layer in this experiment

is between 17 and 12 eV. From the figure we observe that

the cooling time shows a slight dependence with density of

matter. With respect to the temperature, we detect an abrupt

diminution up to temperatures around 10 eV, which means

that the RPL increases considerably with the temperature,

and for higher temperatures the cooling time presents a

slight dependence with temperature, being almost constant for

temperatures between 30 and 50 eV, and these results could

be related to the behavior of the average ionization. This one

includes a fast increase of 1–10 eV from almost 0 to 4 (or 6 in

the lowest-density case), see Fig. 2, removing electrons from

the 5p shell. On the contrary, in the range 30 and 50 eV the

increase is more moderate (from 9.88 to 13.63 for a density of

4 × 10−2 g cm−3, for example) since the electrons belonging

to the 4d shell are now involved and higher temperatures are

required to remove them.

FIG. 22. (Color online) Radiative cooling time as a function of

the temperature at three matter densities.

For the temperatures corresponding to the cooling layer

(15–17 eV) the cooling time is always around 3 × 10−11 s. On

the other hand, the convective transport time is of the order

of 1–10 ns, which is two orders of magnitude greater than the

radiative cooling time, which corroborates the classification

of the shock as radiative. We showed in Sec. IV that although

the RPL provided by the DLA+CI simulations can differ from

the ones obtained in the DCA simulations, they were of the

same order of magnitude, and, therefore, this result is also

maintained in the DLA+CI atomic description.

E. Thermal instabilities in the cooling layer

Thermal instabilities describe those instabilities that occur

due to a balance between heating and cooling rates and

they have been a topic of high interest in astrophysics over

the past four decades [63–69]. This is due to the fact that

they could be related to the formation of many astrophysical

objects (for instance, the stars from the interstellar clouds).

Nowadays, since scaled version of astrophysical phenomena

can be recreated in the laboratory, interest in the study of

thermal instabilities has been heightened.

Field [63] established the criteria for thermal instability,

focusing particularly on the thermodynamics of the gas,

assuming the unperturbed initial states as uniform and

isothermal with no preexisting velocity fields. Thereafter,

Hunter [64] made the first attempt to generalize the criteria

for thermal instability in a nonstationary medium in the limit

of short-wavelength perturbations. Shchenikov [65] obtained

criteria for the thermal instability for nonstationary mediums

both for short-wave and long-wave perturbations. For our

purpose, which is the analysis of the possibility that thermal

instabilities can occur in the cooling region behind the shock,

we consider it to be more appropriate that the medium

is nonstationary. Therefore, we have followed the method

developed by Shchenikov [65]. A full description of the

procedure can be found in that reference. Here we have limited

ourselves a brief explanation.

The thermal energy equation, taking into account volume

losses for a nonstationary medium, is given by

dU

dt
= P

ρ2

dρ

dt
− L, (40)

where U is the internal energy of the gas per gram, U = p

(γ−1)ρ
,

P is its pressure, γ denotes the adiabatic index, and L is

the rate of heat loss (the cooling rate minus the heating

rate) per gram. The thermal energy is then perturbed by

small changes in density, ρ = ρu + δρ, and pressure, P =
Pu + δP , where the subscript u denotes the variables in

the unperturbed medium. Then, for short-wave perturbations

whose characteristic frequency is considerably greater than

the inverse thermal cooling time (tcool), we have adiabatic

perturbations [65] and the condition that must be verified for

the thermal instability is

1

γ − 1

ρu

Tu

(

∂L

∂ρ

)

Tu

+
(

∂L

∂T

)

ρu

− Lu

Tu

< 0. (41)

For perturbations of longer wavelength, with characteristic

hydrodynamic times comparable to the cooling time, they can
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be considered as isobaric. In this case the criterion for the

instability is

ρu

Tu

(

∂L

∂ρ

)

Tu

−
(

∂L

∂T

)

ρu

− Lu

Tu

> 0. (42)

Finally, for long-wavelength perturbations, whose charac-

teristic hydrodynamic time is considerably larger than the

cooling time, we have isochoric perturbations and the criteria

is then given by [65]

(

∂L

∂T

)

ρu

− Lu

Tu

< 0. (43)

From the equations we can observe that the criteria mainly

depend on L and its derivatives with respect to temperature

and density. We are dealing with radiative shocks in which

the radiative cooling becomes a dominant process. For this

reason, we can neglect the heating rate in L and consider

only the radiative cooling rate per gram. The radiative cooling

rate is obtained from the divergence of the radiative flux that

is given by Eq. (39). We have already obtained that in the

range of plasma conditions under analysis we can approximate

this quantity to the radiative power loss and assume that

L ≈ RPL/ρ. For radiative shocks it is usual to fit the RPL to a

power law of the temperature and the density of matter. Most of

these fittings are made assuming that RPL = ρ2�(T ), where

�(T ) is the cooling function, with �(T ) ∝ T β . This approach

is valid when the bremsstrahlung is the dominant radiative

process or when the plasma can be considered in corona

equilibrium, but neither of these requirements is fulfilled in

the plasma conditions of this work. For this reason, we have

locally fitted the RPL by the power law CραT β using the

PARPRA code [70] and imposing a maximum relative error of

0.1% in the fitting. By substituting this expression for the RPL

and L into Eqs. (41)–(43) we obtain the criteria for the thermal

instabilities in terms of the cooling power as

β <

⎧

⎨

⎩

1 isochoric

α isobaric
γ−α

γ−1
adiabatic.

(44)

We have already used our fitting of the RPL and these

criteria to predict the possibility of isobaric radiative cooling

instabilities experiments of convergent radiative shocks in

argon and neon generated in a cylindrical liner Z-pinch

configuration, obtaining results that are consistent with the

experimental observations [71].

In Fig. 23 we have represented the parameter β and the three

criteria for the thermal instabilities against the temperature

and for the density of matter in the cooling layer. From the

figure we detect two regions of temperatures in which the

criteria are fulfilled, 12–15 and 22–28 eV, respectively. As

said before, in our case the temperatures in postshock are

between 12 and 17 eV and thermal instabilities may arise

in that region, according to Fig. 23. We have also made the

analysis for the lowest and largest matter densities of the

range considered in this work. In both cases, two regions

of temperatures where the instabilities can occur are also

obtained. As the density increases the two regions are shifted

toward higher temperatures (13–17 and 23–31 eV, respectively,

FIG. 23. (Color online) Values of the exponent of the tempera-

ture, β (black solid line), as a function of the temperature and the

three criteria for thermal instabilities.

at 10−3 g cm−3), while the opposite is happening as the density

decreases (8–12 and 17–22 eV, respectively, at 10−3 g cm−3).

Langer et al. [66] proposed theoretically a new kind of

thermal instability while modeling the accretion of matter on

to stellar surfaces. They discovered that the cooling region

can be subject to oscillations due to the onset of this kind

of thermal instability. Its physical basis is that while the

shock is moving out, it heats the gas to a higher temperature,

increasing the cooling time with respect to the steady-state

case [72] and, as a consequence, the shock structure can

maintain a larger cooling region. On the contrary, when the

shock wave is moving in, the situation is reversed, leading

to amplified oscillations, i.e., overstability [73]. The analysis

of the onset of the oscillatory instability is made in terms

of the cooling law of the gas. Langer et al. [66] assumed

RPL ∝ ρ2T 1/2, i.e., bremsstrahlung cooling. Chevalier and

Imamura [72] performed a linear analysis with RPL ∝ ρ2T β .

Imamura et al. [74] presented a linear analysis for RPL ∝
ραT β , showing that the instability criterion depends more on

α − β than on α or β separately [73]. We have previously

employed this model using the RPLs obtained with our

collisional-radiative model to analyze the possibility of this

kind of instability in blast waves launched in clusters of

krypton and xenon, obtaining results that are consistent with

the experimental observations [26].

In this work the cooling law is RPL ∝ ραT β and for

the study of the oscillatory instability we have followed the

analysis performed by Ramachandran and Smith [73]. They

consider a similar cooling law and study atomic gas impacting

against a rigid wall in 1D, a situation that might be analogous

to our experiment. From our fitting we have obtained that

α ≈ 1 for the whole range of temperatures considered, overall

as the density of matter increases. When the energy levels

053106-19
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of the atoms which provide the dominant cooling are in

LTE then α = 1 [73]. We showed in Sec. III that for low

temperatures in the low-density regime and for the whole range

of electron temperatures for larger densities the plasma could

be considered in LTE and this fact explains why we obtain

α ≈ 1 in our power law for the RPL. Taking into account

that γ = 5/3, the overstability sets in for values of β below

0.051, 0.149, 0.028, and 0.147 (the fundamental, first, second,

and third overtones, respectively) according to Ref. [73]. For

the experiment under analysis, the regions of temperatures

in which the previous criteria are fulfilled are 13–14 eV and

24–26 eV as Fig. 23 shows. The temperatures obtained in the

hydrodynamic simulation for the cooling layer are in these

ranges and, therefore, the medium could be unstable.

The hydrodynamic simulation using MULTI (1D) shows

neither of the thermal instabilities commented above. On the

other hand, in a 2D simulation performed using the ARWEN

code [75] instabilities are detected, although it is not clear

that they are due to radiative cooling. Unfortunately, there are

not enough experimental images that allow us to conclude

whether there are thermal instabilities in this experiment.

However, as noted above, we have already successfully applied

our analysis of thermal instabilities to other experiments on

radiative shocks and, therefore, we expect that our predictions

for this experiment will be correct as well.

VI. CONCLUSIONS

In this work we have analyzed the microscopic prop-

erties of xenon plasmas in ranges of matter densities

(10−3–10−1 g cm−3) and electron temperatures (1–50 eV)

typically found in EUV lithography and some laboratory

astrophysical experiments such as those related to the study

of radiative shocks. In particular, we have studied the effect

of both theoretical approaches and the influence of plasma

self-absorption and external radiation fields in the calculation

of the plasma-level populations and radiative properties.

Thus, making use of a CRSS model, where accuracy for

the simulation of microscopic properties of xenon plasmas

is previously checked, we have analyzed the validity of

the LTE assumption for that range of plasma conditions.

We have obtained that for the densities between 10−2 and

10−1 g cm−3 and for the whole range of electron temperatures

LTE assumption is accurate to calculate the plasma radiative

properties. On the other hand, as the density decreases the

maximum value of the electron temperature where LTE can

be assumed also does. We have also analyzed the influence of

the atomic description by means of the comparison among the

radiative calculated using DCA, DLA, an DLA+CI atomic

approaches. We have found that the DLA description does

not introduce significant improvements with respect to the

DCA description, whereas the configuration interaction effects

are considerable in both monochromatic and mean radiative

properties. We have also made in this work a study of the

influence of plasma self-absorption and external radiation field

in the calculation of the plasma-level populations. In particular,

this study was made for the radiative precursor generated in

a experiment of a radiative shock launched in xenon carried

out at PALS. Plasma self-absorption was modeled assuming

the plasma with planar geometry and making use of the

escape factor formalism to take into account the opacity

effects in the population kinetic calculations. We found that

plasma self-absorption effects in the monochromatic opacities

and emissivities were observable mainly for the regions of

the radiative precursor nearest to the shock front where the

temperature in the precursor is higher. On the other hand,

the effect on the mean properties, even in those regions,

is small. Therefore, in principle, for those calculations that

do not require monochromatic radiative properties, it seems

that including self-absorption effects would not be necessary.

However, in order to analyze experimental spectra, they should

be considered. The influence of the radiation field on the

simulation of the microscopic properties of the precursor was

analyzed, including both the radiation field coming from the

shock front and the one due to plasma self-emission in the

precursor. We detected that the latter is very relevant since

it compensates the absorption of the radiation coming from

the shock front in some ranges of photon energies. We made

a qualitative analysis of the influence of the radiation in the

CRSS simulations approaching the external radiation field by a

diluted Planck function. We found that the plasma microscopic

properties significantly change when the radiation is included

in the simulation. The differences decrease as the distance in

the precursor from the shock front increases, and this may

be due to the diminution of the incoming radiation and of

the electron temperature in the precursor that encourages

the LTE regime, i.e., the collisional processes. In any case,

in this work we have only made a qualitative analysis of

the effect and a more accurate calculation could require a

more properly modeling of the radiation field. Finally, we

have analyzed the possibility of thermal instabilities in this

experiment due to radiative cooling in the cooling layer

and of thermal oscillations (overstability) in the shock front.

This study was made in terms of a power-law fitting of the

radiative power loss. We found that for the density of matter

in the postshock region and the temperatures provided by

the hydrodynamic simulation for this region, the criteria for

isochoric, isobaric, and adiabatic instabilities are fulfilled and

then they could occur, depending on the relation between the

hydrodynamic characteristic time of the perturbation and the

cooling time. The criteria for the fundamental and the three

first overtones for the overstability of the shock front are also

fulfilled and then this thermal instability could also arise. It is

clear from this work that some aspects such as the population

kinetic model (e.g., LTE or NLTE, plasma self-absorption,

external radiation field) or the atomic description selected

might affect the calculation of the plasma-level populations

and radiative properties in the range of plasma conditions

analyzed. However, the inclusion of such often involve a

considerable increase of the computational times and this

fact must be appropriately assessed depending on the kind

of simulation in which we are interested.
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