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Microscopic theory for the light-induced anomalous Hall effect in graphene
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We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect
in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate
that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast,
in the strong-field regime, the system is driven into a nonequilibrium steady state that is well described by
topologically nontrivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination
of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising
from their Berry curvature. This robust and general finding enables the simulation of electrical transport from
light-induced Floquet-Bloch bands in an experimentally relevant parameter regime and creates a pathway to
designing ultrafast quantum devices with Floquet-engineered transport properties.
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Optical control of functional materials has emerged
as an important research front bridging condensed matter
physics [1] and ultrafast spectroscopy [2]. Many noteworthy
phenomena have been discovered in optically driven quantum
solids, including light-induced superconductivity [3,4], vari-
ous types of photo-initiated insulator-metal transitions [5–8],
light control of microscopic interactions like electron-
phonon coupling [9–11], and theoretically predicted Floquet-
topological phases of matter [12–16]. Floquet-topological
phases in particular have stimulated much interest but direct
evidence of electron-photon Floquet-dressed states in solids
is scarce to date [17,18], in contrast to the field of artificial
lattices [19–35].

Recently, a light-induced anomalous Hall effect was ob-
served in graphene using ultrafast transport techniques [36].
A key challenge for the interpretation of the reported effects
lies in the competition between Floquet engineering of Hamil-
tonians versus the role of electronic population effects. For the
case of laser-driven graphene, the latter are particularly impor-
tant as the pump laser is generically resonant with electronic
excitations. Here we provide a theoretical framework within
which this class of experiments [36] can be interpreted.

A graphene lattice subjected to circular driving
has been studied theoretically in a variety of frame-
works [12–15,22,37–43]. We focus here on the low-frequency
driving regime and find that the driven-dissipative dynamics
together with the applied bias field plays a crucial role
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in understanding the transport properties of the Floquet-
engineered state. Our real-time simulations contain both the
population imbalance of excited photocarriers in the Dirac
cone of graphene as well as the Floquet-topological Berry
curvature of photon-dressed bands. We find that population
effects play an important role under the low-frequency
driving used in the experiments in both weak and strong
driving limits. In the weak-driving regime, light-induced Hall
transport originates mainly from population imbalance of
photocarriers in the bare bands. By contrast, in the strong
field regime clear topological-Floquet states are formed, and
the light-induced Hall effect is characterized by a population
imbalance of these Floquet bands that outweighs, however,
the Floquet-Berry curvature contribution which is predicted
to dominate in the high-frequency regime [12,38,41]. Our
results demonstrate that Floquet engineering in solids is
a reality, even with significant dissipation. These findings
are in good agreement with the experimental results [36]
and provide a microscopic interpretation of the observed
light-induced anomalous Hall effect.

To model the electron dynamics in graphene under electro-
magnetic fields, we employ a quantum Liouville equation for
the one-particle reduced density matrix ρK(t ),

d

dt
ρK(t )(t ) =

[HK(t ), ρK(t )(t )]

ih̄
+ D̂K(t )ρK(t )(t ), (1)

with phenomenological relaxation D̂K(t ) and the Dirac Hamil-
tonian, HK(t ) = h̄vF τzσxKx(t ) + h̄vF σyKy(t ), where vF is the
Fermi velocity, σx/y are the Pauli matrices, and K(t ) = k +
eA(t )/h̄c is the lattice momentum coupled to an external
vector potential A(t ). The linear Dirac-cone approximation is
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justified in the present context of low-frequency driving and
moderate deviations from half-filled bands with a chemical
potential shift μ [36]. The different chirality of the Dirac
fermions at the K and K ′ points is given by τz = ±1. The
phenomenological dissipation D̂K(t ) based on the relaxation
time approximation is added to account for relaxation and
dephasing effects [44] (see also Appendix A). We note that
effects of dissipatively coupled Floquet-topological systems
have been discussed previously [40–42,45], but not in the con-
crete context of the present paper. Here we set the relaxation
time T1 to 100 fs, and the dephasing time T2 to 20 fs. However,
the qualitative behavior of the light-induced Hall effect does
not strongly depend on the choice of T1 and T2.

To evaluate the Hall conductivity σxy, we apply a weak
static source-drain electric field along the y axis of the model
and compute the transverse current along the x axis under the
presence of a circular laser pulse. Both the static electric field
and the laser pulse are included in the model via the vector
potential A(t ). Following the same analysis as in Ref. [36],
we define the Hall current as the difference of the transverse
current induced by right- and left-handed circular laser fields
(pump dichroism, see also Appendix B). To match experimen-
tal values, we set the wavelength of the circular laser pulse to
λ = 6.5 μm, which corresponds to the mean photon energy
of h̄ωMIR ≈ 190 meV. The pulse duration is 1 ps (FWHM).
Note that the present model leads to the identical Hall current
around K and K ′ with τz = ±1.

First, we investigate the light-induced Hall effect in the
weak-driving regime, EMIR = 1 MV/m. Figure 1(a) shows
the computed Hall conductivity σxy as a function of μ,
while Fig. 1(b) shows the experimental Hall conductivity
with the weakest experimental fluence 0.01 mJ [36]. Our
results confirm that the Hall conductivity is proportional to
the laser intensity in this regime. Therefore, the single-photon
absorption process is expected to play a dominant role in
the light-induced Hall effect. Indeed, both the theoretical and
experimental results consistently show a strong suppression
of the Hall effect once μ reaches ±h̄ωMIR/2, which is when
single-photon absorption becomes suppressed. The experi-
mental result shows a sign change of the Hall conductivity
in the higher doping regime while the theoretical result shows
the same sign in the whole chemical potential range. The sign-
change feature might be understood by a negative offset due
to the inverse Faraday effect from a substrate [46]. However,
since a detailed analysis of the substrate effect is beyond the
scope of the present paper, this aspect will be investigated in
the future.

To clarify the microscopic origin of the Hall current in
the weak field regime, we perform a perturbative analysis
which shows that the Hall current originates from popula-
tion imbalance of photocarriers in the Brillouin zone (BZ)
(see Appendix E). An excess of photocarriers is generated
on one side of the Dirac cone compared to the other, and
the nonsymmetric photocarrier-distribution results in a net
Hall current. Furthermore, the perturbative analysis reveals
that the population imbalance is induced by the interference
of two excitation paths: one of them is the single-photon
absorption process in the bare Dirac band [black-dashed line
in Fig. 1(c)], while the other one is the single-photon absorp-
tion in the tilted Dirac band [blue solid line in Fig. 1(c)],
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FIG. 1. Light-induced Hall conductivity in the weak-field
regime, EMIR = 1 MV/m: (a) Theoretical Hall conductivity σxy as
a function of μ. The full simulation result (red) and the popu-
lation contribution (green) are shown. (b) The experimental Hall
conductivity with the peak laser fluence of 0.01mJ/cm2 as shown in
Ref. [36]. (c) Electronic structure of the Dirac Hamiltonian. Black-
dashed lines show the original Dirac bands, while blue-solid lines
show the tilted Dirac bands under a source-drain field with strength
0.2 a.u. (d) Pump dichroism of conduction-band populations under
source-drain bias along the y direction.

where the tilt is induced by the static source drain field. To
confirm this conclusion, we further compute the conduction
band population ρcc,K(t )(t ) = Tr[|us

cK(t )〉〈us
cK(t )|ρK(t )(t )] using

instantaneous eigenstates of the Hamiltonian; ĤK(t )|us
bK(t )〉 =

ǫbK(t )|us
bK(t )〉, where b denotes the band index, v and c for

valence and conduction bands, respectively. Figure 1(d) shows
the cycle-averaged conduction-band population pump dichro-
ism. A population imbalance along the x direction is clearly
observed under the source-drain field along the y direction.
From this, we compute the population contribution to the Hall
current, JPOP

H (t ) by multiplying populations with correspond-
ing band velocities:

JPOP
H (t ) = −

2e

h̄(2π )2

∑

b=v,c

∫

dk
∂ǫbK(t )

h̄∂kx

ρbb,K(t ). (2)

The result shown in Fig. 1(a) accounts for most of the total
Hall conductivity. Overall, our analysis demonstrates that in
the weak-field regime the Hall current mainly originates from
a population imbalance of photocarriers in the bare Dirac
band. Importantly, the population imbalance mechanism does
not rely on the specific properties of the Dirac Hamilto-
nian. Therefore, the mechanism is general and can induce
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FIG. 2. Light-induced Hall conductivity in the strong field
regime, EMIR = 20 MV/m: (a) The theoretical Hall conductivity σxy

as a function of μ. The full simulation result (red), the population
contribution in the original Dirac band (green), and the natural-
orbital population contribution (blue) are shown. (b) The experimen-
tal Hall conductivity with the peak laser fluence of 0.23mJ/cm2 as
shown in Ref. [36]. (c) Floquet bands (red) and the original Dirac
cone (black dashed). Outer (inner) edges of the resonant gap are
indicated by blue (red) arrows. (d) Pump dichroism of natural-orbital
population with source-drain bias along y direction.

anomalous Hall currents even in conventional semiconductors
(see Appendix F).

Having established an asymmetric population imbalance
in the Dirac bands as the source of light-induced anomalous
Hall currents in the weak-field regime, we move on to explore
the strong optical driving regime. We set EMIR to 20 MV/m,
which is the peak field intensity for the largest reported experi-
mental fluence, 0.23 mJ [36]. Figure 2(a) shows the computed
Hall conductivity σxy as a function of μ, while Fig. 2(b)
shows the corresponding experimental result [36]. The the-
oretical and experimental data are in good agreement, with
both exhibiting conductivity maxima around μ = 0 as well
as ±h̄ωMIR/2. Figure 2(c) shows the calculated Floquet band
structure for the same driving parameters. The Floquet bands
show characteristic gap openings at ǫbk = 0, and ±h̄ωMIR/2.
Strikingly, the peaks in σxy near ±h̄ωMIR/2 coincide with the
outer edges of the Floquet bands [blue arrows in Fig. 2(c)],
and the width of the central plateau of σxy is approximately
the width of the gap at the Dirac point. This already indicates
a close relation between the formation of Floquet-Bloch bands
and the anomalous Hall effect for strong laser driving.

To clarify the role of Floquet-Bloch states in the genera-
tion of anomalous Hall currents, we analyze to what extent

they represent the full dynamics of the system under the
driving conditions. Since the complete dynamics is described
by the time-dependent density matrix ρK(t ), we analyze the
time evolution in terms of its instantaneous eigenstates, the
time-dependent natural orbitals |uNO

bk (t )〉 [47], giving ρK(t ) =
∑

b=v,c nNO
bk (t )|uNO

bk (t )〉〈uNO
bk (t )|. This orbital basis for the dy-

namics gives the full dressed states of the system without the
assumptions required by Floquet theory and allows us to make
a detailed assessment of the Floquet picture.

The cycle-averaged population of the natural orbitals is
computed as ñNO

bk =
∫ TMIR

0 dtnNO
bk (t )/TMIR and Fig. 2(d) shows

the pump dichroism of the natural-orbital population ñNO
bk .

Consistent with the population imbalance in the weak-field
regime [Fig. 1(d)], the natural-orbital population also shows
the imbalance along the x direction. From the population
of the natural orbitals, we can compute the dressed-band
population contribution to the Hall current as

JD−POP
H = −

2e

h̄(2π )2

∑

b=v,c

∫

dkṽ
NO
bk ñNO

bk , (3)

where ṽ
NO
bk is an effective dressed-band natural-orbital ve-

locity, ṽ
NO
bk = vF

∫ TMIR

0 dt〈uNO
bk (t )|σy|uNO

bk (t )〉/TMIR. The blue
curve in Fig. 2(a) shows the contribution of the natural-orbital
population computed by Eq. (3). The contribution of the
natural-orbital population reproduces the full signal very well
in the whole investigated chemical-potential range, indicating
that a dressed state picture gives a valid description of the
light-induced Hall current. As a reference, we also evaluated
the contribution from the population imbalance in the bare
Dirac band with Eq. (2) and show the result as the green curve
in Fig. 2(a). From the results, it is clear that the population
imbalance in the bare Dirac band is not sufficient to describe
the full signal. Thus we confirmed that the dressed states
describe a significantly different electronic structure and that
the light dressing enhances the light-induced Hall effect.

Having established the role of dressed bands in the
strong-field regime, we turn to the relation between Floquet
states and natural orbitals under continuous circular laser
fields without the source-drain field. For this purpose, we
introduce the Floquet fidelity, Sk, as a measure of simi-
larity between Floquet states |uF

bk(t )〉 and natural orbitals
|uNO

bk (t )〉. The Floquet fidelity is defined as the absolute
value of the determinant of the fidelity matrix, Sk = |detFk|,
where each element of the matrix Fk is the cycle-averaged
overlap between natural orbitals and Floquet states, Fk,i j =
∫ TMIR

0 dt |〈uNO
ik (t )|uF

jk (t )〉|2/TMIR (see also Appendix H). The
Floquet fidelity Sk can take a maximum value of one only if
the natural orbitals and the Floquet states are identical.

Figure 3(a) shows the Floquet fidelity Sk at the Dirac point
as a function of the driving field strength. The system is far
from the Floquet limit in the weak-field regime (Sk ≈ 0),
while it approaches the Floquet limit in the strong-field regime
(Sk ≈ 1). This behavior is consistent with the above findings:
The population imbalance in the bare Dirac band dominates
the Hall current in the weak-field regime, while the dressed-
state picture is more appropriate in the strong-field regime.

A map of the Floquet fidelity Sk in the BZ in the strong
field regime is shown in the inset of Fig. 3(a), where the
single-photon resonance, h̄vF |k| = h̄ωMIR/2, is indicated as a
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FIG. 3. Relation of the steady state orbitals and the Floquet
states: (a) Floquet fidelity, Sk, at the Dirac point, k = 0, as a function
of the driving field strength. The inset shows the Floquet fidelity in
the BZ in the strong field regime where EMIR = 20 MV/m. (b) Com-
parison between the full conductivity σxy and the Berry curvature
contribution σ T

xy. (c) The Berry curvature of the steady-state natural
orbitals in the strong field regime. (d) The Berry curvature of the
corresponding Floquet states.

red circle. This result shows that Floquet states are established
throughout a large portion of the BZ including the Dirac point,
except for a ring close to the the single-photon resonance
(Sk ≈ 1), where the steady state appears to be strongly dis-
turbed (Sk ≈ 0). In relation to the Floquet-bandstructure in
Fig. 2(c), this indicates that the circular laser field is able
to establish the outer edges of the Floquet states [the blue
arrows in Fig. 2(c)], while the inner edges (red arrows) do
not form. Moreover, the realization of the outer Floquet edges
is supported by the appearance of the peaks in Fig. 2(a) that
are positioned at the resonance energies.

Having demonstrated the relevance of a Floquet
dressed-state picture under strong-field driving, we now
discuss the role of Berry curvature of the dressed states
for the Hall current. We compute the cycle-averaged
Berry curvature of the natural orbitals, 
NO

B (k) =
−i

∫ TMIR

0 dt[∇k × 〈uNO
bk (t )|∇k|uNO

bk (t )〉]
z
/TMIR shown in

Fig. 3(c), while Fig. 3(d) shows the Berry curvature of
the corresponding Floquet state at EMIR = 20 MV/m. Both
the natural orbitals and the Floquet state consistently show a
positive Berry curvature at the Dirac point (k = 0) and at the
first resonance (vF |k| = h̄ωMIR/2). Indeed, the natural-orbital
Berry curvature integrated over the BZ is found to be
∫

dk
NO
B (k) = ±π for each Dirac cone, which is consistent

with the topological Floquet-Chern insulator picture [12].
Finally, we quantify the Hall currents expected solely from

the time-averaged Berry curvature of the bands by computing
the Hall conductivity [12]:

σ T
xy =

2e2

h̄

∫

dk

(2π )2

∑

b

nNO
bk 
NO

bk . (4)

The result shown in Fig. 3(b) clearly demonstrates that light-
induced Berry-curvature has a nonzero contribution to the
Hall conductivity. However, this contribution is much smaller.

Furthermore, by computing the dependence of this effect
on the field strength, we find that it changes signs (see
Appendix G).

Our modeling suggests that the recently observed light-
induced anomalous Hall effect in graphene results mainly
from the asymmetric distribution of photocarriers in the topo-
logically nontrivial Floquet-Bloch states while their Berry
curvature contribution is clearly smaller. Nevertheless, it is
striking that the theoretical Hall conductivity saturates on
the order of ∼2e2/h, which is consistent with the experi-
mental observation [36], despite the strong population im-
balance contribution (see also Appendix G). This may just
be a coincidence, but the possibility of hidden connections
to topological invariants should be investigated further. The
anomalous velocity contribution from the Berry curvature of
the Floquet-Bloch bands could become larger at higher laser
frequencies or for more off-resonant driving, which might be
realized in other material platforms [48,49]. The population
imbalance effect can also be expected to play a role in quan-
tum simulation experiments studying Floquet effects, such as
of ultracold fermions in driven optical lattices [22,23,33], as
well as in other driven quantum materials.

More broadly, these results highlight the importance of
adopting a dressed-state picture in understanding the nonequi-
librium electrical transport properties of optically driven
solids. They also demonstrate the viability of Floquet-
engineering under experimentally realistic conditions, which
opens the door to exploring a host of other exciting nonequi-
librium quantum transport phenomena. For example, Floquet
engineering of effective couplings in solids, such as dynam-
ical Hubbard U, has recently been proposed as a means to
significantly modify electronic states in correlated insula-
tors [50–52] which can also induce nontrivial topology [53].
Future work could, for instance, explore the possibilities
for light-controlled topological edge states [39,54] that are
opened up by the present ultrafast-transport setup and com-
plementary ultrafast real-space imaging techniques [55,56].
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APPENDIX A: THEORETICAL MODELING

Here, we describe the details of our theoretical modeling of
electron dynamics in graphene under laser fields. The electron
dynamics is described by the following quantum Liouville
equation for the one-particle reduced density matrix:

d

dt
ρK(t )(t ) =

[HK(t ), ρK(t )]

ih̄
+ D̂K(t )ρK(t )(t ), (A1)
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with the Dirac Hamiltonian HK(t ) = h̄vF τzσxKx(t ) +
h̄vF σyKy(t ) and an effective relaxation operator D̂K(t ).
Here, vF is the Fermi velocity, σx/y is the Pauli matrix. The
different chirality of the Dirac fermions at K and K ′ points
is given by τz = ±1. In this paper, we employ a simple
relaxation time approximation [44] for the relaxation operator
D̂K(t ). To construct the relaxation operator, we first represent
the density matrix with instantaneous eigenstates of the
Hamiltonian HK(t ) as

ρK(t )(t ) : =
(

ρvv,K(t )(t ) ρvc,K(t )(t )

ρcv,K(t )(t ) ρcc,K(t )(t )

)

=

(
〈

us
vK(t )

∣

∣ρ̂K(t )(t )
∣

∣us
vK(t )

〉 〈

us
vK(t )

∣

∣ρ̂K(t )(t )
∣

∣us
cK(t )

〉

〈

us
cK(t )

∣

∣ρ̂K(t )(t )
∣

∣us
vK(t )

〉 〈

us
cK(t )

∣

∣ρ̂K(t )(t )
∣

∣us
cK(t )

〉

)

,

(A2)

where |us
bK(t )〉 is an instantaneous eigenstate of the Hamil-

toinan, HK(t )|us
bK(t )〉 = ǫbK(t )|us

bK(t )〉. Then, we construct the
relaxation operator with the phenomenological relaxation
times, T1 and T2, in the instantaneous eigenbasis expression
as follows:

D̂K(t )ρK(t ) := −

(

ρvv,K(t )(t )−ρm
vK(t ),μ,Te

T1

ρvc,K(t )(t )
T2

ρcv,K(t )(t )
T2

ρcc,K(t )(t )−ρ
eq
cK(t ),μ,Te

T1

)

, (A3)

where ρ
eq
b,μ,Te

is the Fermi-Dirac distribution,

ρ
eq
b,μ,Te

=
1

e(ǫbK(t )−μ)/kBTe + 1
, (A4)

with the electron temperature Te and the chemical potential
μ. In this paper, we set the electron temperature to 80 K
according to the experimental setup [36].

In this paper, the decoherence time T2 is set to 20 fs
according to the electron-electron scattering time scale, while
and the population relaxation time T1 is set to 100 fs, ac-
cording to the electron thermalization timescale [57–59].
However, as will be shown in the following section,
the qualitative behaviors of the light-induced Hall effect
do not much depend on the choice of the relaxation
time.

APPENDIX B: EVALUATION OF THE LIGHT-INDUCED

HALL CONDUCTIVITY

To investigate the light-induced Hall effect, we com-
pute the electron dynamics under a circular midinfrared
(MIR) laser pulse EMIR(t ) and a static source-drain field
ESD(t ). In this paper, the pulse width of the MIR field
is set to 1 ps, and the wavelength is set to 6.5 μm.
The corresponding mean photon energy is about h̄ωMIR ≈
190 meV. Furthermore, we assume that the MIR laser fields
propagate along the z axis, and the field polarizations are
always on the x-y plane. For the source-drain field, to pre-
vent an artificial excitation, we employ the following smooth
switching:

ESD(t ) = ESDey f (t/Tswitch), (B1)
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FIG. 4. The Hall conductivity σxy as a function of chemical
potential μ in the weak field regime. The results with different
relaxation times, T1 and T2, are shown.

with the following switching function, f (x):

f (x) =

⎧

⎨

⎩

1, 1 < x

3x2 − 2x3, 0 <� 1
0, otherwise.

(B2)

In this paper, we set the source-drain direction to the y

direction, the source-drain field strength ESD to 104 MV/m,
and the switching time Tswitch to 20 fs.

To evaluate the Hall current, we compute the current along
the x direction under the presence of the circular MIR laser
field and the source-drain field. Following the same analysis
of the experiment [36], we compute two kinds of current,
J (�)

x (t ) and J (�)
x (t ): J (�)

x (t ) is induced by the right-handed
circular laser E

(�)
MIR(t ), while J (�)

x (t ) is induced by the left-

handed circular laser E
(�)
MIR(t ). Then, we define the difference

of J (�)
x (t ) and J (�)

x (t ) by �Jx(t ) = [J (�)
x (t ) − J (�)

x (t )]/2. So
far, the current �Jx(t ) contains high-frequency components,
which are not relevant for the transport property since the
time-average of the high-frequency component becomes zero
and there is no net charge transfer. To cleanly extract the
transport property, we remove the irrelevant high-frequency
component by the temporal average and define the theoretical
Hall current as

JH (t ) =
1

√
2πσ 2

∫ ∞

−∞
dt ′e− (t ′−t )2

2σ2 �Jx(t ′), (B3)

where the width of the window σ is set to 100 fs, which is
substantially longer than the optical cycle but shorter than the
pulse width. Furthermore, we define the Hall conductivity σxy

as the ratio of the peak Hall current JH (tpeak) and the source-
drain field strength:

σxy =
JH (tpeak)

ESD
. (B4)

APPENDIX C: RELAXATION TIME DEPENDENCE

Here, we explore the effect of the relaxation times, T1

and T2 in the light-induced Hall effect. Based on the above
procedure, we compute the Hall conductivity σxy as a function
of chemical potential μ. Figure 4 shows the computed Hall
conductivity σxy with the different relaxation times, T1 and
T2, in the weak field regime, where the field strength of the

214302-5



S. A. SATO et al. PHYSICAL REVIEW B 99, 214302 (2019)

 1

 1.5

 0  50  100  150  200

σ
x
y
 (

e
2
/h

)

µ (meV)

T1=100fs,T2=20fs
T1=100fs,T2=50fs
T1=200fs,T2=50fs

FIG. 5. The Hall conductivity σxy as a function of chemical
potential μ in the strong field regime. The results with different
relaxation times, T1 and T2, are shown.

circular laser is set to EMIR = 1 MV/m. The same results
in the strong field regime (EMIR = 20 MV/m) are shown in
Fig. 5. One can clearly confirm that the qualitative behaviors
of the Hall conductivity do not depend on the choice of the
relaxation time in both the weak and the strong field regimes.

APPENDIX D: COMPARISON OF PULSED

AND CONTINUOUS-WAVE LASER FIELDS

Because the relaxation times, T1 and T2, are much shorter
than the pulse width in this paper, the system is expected to
realize a steady state due to the balance between the laser
excitation and the relaxation. To confirm this fact, we compute
the electron dynamics under a continuous-wave circular laser
field instead of a laser pulse, and evaluate the Hall conductiv-
ity after the system reaches the steady state.

Figure 6 shows the light-induced Hall conductivities σxy

evaluated with a laser pulse and a continuous wave in the
weak field regime, where the peak field strength is set to
1 MV/m. The same comparison in the strong field regime
(EMIR = 20 MV/m) is shown in Fig. 7. As seen from both
figures, the Hall conductivity evaluated with a laser pulse
is almost perfectly reproduced by that evaluated with the
continuous-wave laser field. Therefore, we clearly confirmed
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FIG. 6. The Hall conductivity σxy as a function of chemical
potential μ in the weak field regime. The results computed with the
laser pulse (red solid) and the continuous-wave laser (blue dashed)
are shown.
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FIG. 7. The Hall conductivity σxy as a function of chemical
potential μ in the weak field regime. The results computed with the
laser pulse (red solid) and the continuous-wave laser (blue dashed)
are shown.

that the Hall conductivity evaluated by the laser pulse reflects
the property of the steady state that is realized by the balance
of the laser excitation and the relaxation.

APPENDIX E: PERTURBATION ANALYSIS OF THE

LIGHT-INDUCED HALL EFFECT IN THE DIRAC BAND

To provide microscopic insight into the light-induced Hall
effect in graphene, we apply a perturbative analysis. For sim-
plicity, we ignore the relaxation effect, and thus, the system
is described by the following Schrödinger equation instead of
Eq. (A1):

ih̄
d

dt
|ψk(t )〉 = HK(t )|ψk(t )〉. (E1)

We perform the perturbative analysis based on the Houston
state expansion [60,61],

|ψk(t )〉 = cvk(t )eiγvk (t )exp

[

−
i

h̄

∫ t

0
dt ′ǫvK(t ′ )

]

∣

∣us
vK(t )

〉

+ cck(t )eiγck (t )exp

[

−
i

h̄

∫ t

0
dt ′ǫcK(t ′ )

]

∣

∣us
cK(t )

〉

, (E2)

where |u sbK(t )〉 is an eigenstate of the instantaneous Hamil-
tonian, HK(t ), ǫbK(t ) is its eigenvalue, cbk(t ) is an expansion
coefficient, and γbk(t ) is a geometrical phase defined by

γbk(t ) = −i

∫ t

0
dt ′〈us

bK(t )

∣

∣

d

dt ′

∣

∣us
bK(t )

〉

. (E3)

For practical calculation, we assume the following forms
for the the instantaneous eigenstates:

∣

∣us
v,K(t )

〉

=
1

√
2

(

1

− τzKx (t )+iKy (t )√
K2

x (t )+K2
y (t )

)

(E4)

and

∣

∣us
c,K(t )

〉

=
1

√
2

(

1

+ τzKx (t )+iKy (t )√
K2

x (t )+K2
y (t )

)

. (E5)
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Then, one can obtain the Schrödinger equation for the coeffi-
cient vectors,

ih̄
d

dt
ck(t ) =

e

2

τz

K2(t )
[K(t ) × E(t )]z

×

(

0 e− 2h̄vF
ih̄

∫ t

0 dt ′|K(t ′ )|

e
2h̄vF

ih̄

∫ t

0 dt ′|K(t ′ )| 0

)

ck(t ),

(E6)

where the coefficient vector ck(t ) is defined as

ck(t ) =
(

cc,k(t )
cv,k(t )

)

. (E7)

Then, we elucidate the nonlinear carrier-injection by the
circular laser field and the source-drain field. For this purpose,
we assume the following form for the electric field:

E(t ) = exEP
x (t ) + eyEP

x (t ) + exEdc, (E8)

where EP
x/y denotes the pump electric field for x/y direction,

and Edc denotes the static electric field for x direction.
Thanks to the structure of the Hamiltonian in Eq. (E6), the

coefficient vector, ck(t ), can be accurately evaluated up to the
second-order of the electric fields as

ck(t ) =
1

ih̄

∫ t

0
dt ′ e

2

τz

K2(t ′)
[K(t ′) × E(t ′)]z

×

(

0 e− 2h̄v

ih̄

∫ t ′
0 dt ′′|K(t ′′ )|

e
2h̄v

ih̄

∫ t ′
0 dt ′′|K(t ′′ )| 0

)

(

0
1

)

. (E9)

The conduction component can be written as

c+,k(t → ∞) =
1

ih̄

∫ ∞

0
dt ′ e

2

τz

K2(t ′)
[K(t ′) × E(t ′)]z

×e− 2h̄v

ih̄

∫ t ′
0 dt ′′|K(t ′′ )|. (E10)

For simplicity, we assume that (i) the Fourier transform of
the pump electric field |ẼP

x/y(ω)| is localized in the frequency
domain around h̄ω = h̄|k|vF and (ii) k is on y axis; kx = 0.
Ignoring the third and higher order contributions in Eq. (E11),
we obtain

c+,k(t → ∞) = −
τz

ih̄

e

2

ky

k2

∫ ∞

0
dt ′EP

x (t ′)e2ivkt ′

+
τz

ih̄

e

2

e

h̄

1

k2

∫ ∞

0
dt ′ A

dc(t ′)

c
EP

y (t ′)e2ivkt ′

+
τz

ih̄

e

2

e

h̄

1

k2
Edc

x

∫ ∞

0
dt ′ A

P
y (t ′)

c
e2ivkt ′

−
τz

ih̄

e

2

e

h̄

2iv

k
Edc

x e2ivkt ′
∫ t ′

0
dt ′′ A

P(t ′′)

c
,

(E11)

where AP
x/y and Adc are amplitude of the vector potentials

corresponding to the electric fields EP
x/y and Edc, respectively.

On the right-hand side of Eq. (E11), the first term corre-
sponds to the one photon absorption process by the pump light
with the first-order perturbation. The second term corresponds

to the nonlinear excitation due to the coupling of the pump-
induced interband transition and the dc-field-induced intra-
band acceleration. The third and the last terms correspond to
the nonlinear coupling of the pump-induced intraband acceler-
ation and the dc-field-induced interband transition. Therefore,
we may classify the first term as the direct resonant excitation
and the rest of the terms as the indirect resonant excitation
assisted by the source-drain field.

One may further proceed with the evaluation as

c+,k(t → ∞) = −
τz

ih̄

e

2

ky

k2
ẼP

x (2vky)

+
τz

h̄

e

2

e

h̄

1

k2
Edc

x

∂

∂ω
ẼP

y (ω)|ω=2vk

−
τz

h̄

e

2

e

h̄

1

k2

1

vk
Edc

x ẼP
y (2vk). (E12)

Here, as explained above, the first term corresponds to the
resonant excitation by the pump pulse [the first term of
Eq. (E12)], while the other terms correspond to the nonlinear
photocarrier injection assisted by the static electric field.

Assuming perfect circular pump laser, ẼP(ω) ≡ ẼP
x (ω) =

±iẼP
y (ω), the injected population on y axis can be evaluated

up to the first order of Edc as

nc(ky, kx = 0) = |c+,k(t → ∞)|2

≈
(

1

h̄

e

2

)2 1

k2
|ẼP(ω = 2vk)|2

∓
(

1

h̄

e

2

)2
e

h̄

ky

k4
Edc

x

∂

∂ω
|ẼP(ω)|2|ω=2vk

±
(

1

h̄

e

2

)2
e

h̄

ky

k4

2

vk
Edc

x |ẼP(ω = 2vk)|2.

(E13)

Here, the upper sign corresponds to the right-handed circular
pump, while the lower sign corresponds to the left handed.
Therefore, the population difference between the right- and
left-handed circular pump becomes

�nc(ky, kx = 0) = n(�)
c (ky, kx = 0) − n(�)

c (ky, kx = 0)

= −2

(

1

h̄

e

2

)2
e

h̄

ky

k4
Edc

x

∂

∂ω
|ẼP(ω)|2|ω=2vk

+ 4

(

1

h̄

e

2

)2
e

h̄

ky

k4

1

vk
Edc

x |ẼP(ω = 2vk)|2.

(E14)

One sees that the population difference of Eq. (E14) breaks
the symmetry for ky direction. Therefore, the population im-
balance is clearly formed along the y direction under the static
field along the x direction. Note that the population imbalance
is formed by the interference between the direct resonant
excitation [the first term of Eq. (E12)] and the nonlinear
photocarrier injection assisted by the presence of the source-
drain field [the other terms of Eq. (E12)].

Because the population distribution has a direct contribu-
tion to the intraband component of current, the population
imbalance along the y direction in the momentum space under
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the static field along the x direction results in the net Hall
current.

Tilting of Dirac bands under a static field

To understand the role of the static electric field in the for-
mation of the population imbalance in Eq. (E14), we elucidate
the modification of the electronic structure induced purely
by the static electric field. For this purpose, we reconsider
the time-dependent Schrödinger Eq. (E1) with the following
ansatz:

|ψk(t )〉 = dv,k(t )
∣

∣us
vK(t )

〉

+ dc,k(t )
∣

∣us
cK(t )

〉

. (E15)

The coefficient vector dk(t ) satisfies the following
Schrödinger equation under a static electric field E0:

ih̄
d

dt
dk(t ) = h̄v|K(t )|

(

1 0
0 −1

)

dk(t )

+
τz

2

e

K2
[K × E0]z

(

−1 1
1 −1

)

dk(t ).

(E16)

Then, we evaluate the eigenvalues of the above effective
Hamiltonian and obtain

ǫ̃c/v,K (t ) = ±

√

(h̄v|K(t )|)2 +
(

τze

2K2
[K × E0]z

)2

−
τze

2K2
[K × E0]z. (E17)

In the weak field limit, the eigenvalues can be approxi-
mated by

ǫ̃c/v,K(t ) = ±h̄vF |K(t )| −
τze

2K2
[K × E0]z. (E18)

The first term is nothing but the energy of the bare Dirac
band, and the second term is the modification due to the
applied static electric field. One sees that the modification
induces the distorted tilt to the bare Dirac band. Therefore, we
can conclude that the static electric field assists the nonlinear
photocarrier injection with the pump pulse by tilting the Dirac
band.

APPENDIX F: PERTURBATION ANALYSIS OF THE

LIGHT-INDUCED HALL EFFECT IN A PARABOLIC

TWO-BAND SEMICONDUCTOR

In this section, we investigate the light-induced Hall effect
in a simple parabolic two-band model to demonstrate that the
population effect discussed in Appendix E is a rather general
mechanism.

1. Parabolic two-band model

First, we construct a parabolic two-band model. For this
purpose, we start from the following one-body Schrödinger
equation:

ih̄
∂

∂t
ubk(r, t ) =

[

1

2m

{

p + h̄k +
e

c
A(t )

}2
+ v(r)

]

ubk(r, t )

= ĥK(t )ubk(r, t ), (F1)

where ubk(r, t ) is a time-dependent Bloch state, and v(r) is a
one-body potential that has the same periodicity as the crystal.
Here, b denotes a band index, while k denotes the Bloch wave
number. We note that the crystal momentum is shifted by the
vector potential as K(t ) = k + eA(t )/h̄c.

Then, we introduce the Houston state [60,61] as a solution
of the Schrödinger Eq. (F1) in the adiabatic limit,

uH
bk(r, t ) = exp

[

−
i

h̄

∫ t

0
dt ′ǫbK(t ′ )

]

uS
bK(t ), (F2)

where ǫbK(t ) and uS
bK(t )(r) are an eigenvalue and the eigenstate

of the instantaneous Hamiltonian, ĥK(t ), respectively:

ĥK(t )u
S
bK(t )(r) = ǫbK(t )u

S
bK(t )(r). (F3)

Here, we assume the following condition for the diagonal
element of the k-derivative operator for all bands b and
all k:

∫




druS,∗
bk

(r)
∂

∂k
uS

bk(r) = 0. (F4)

This condition guarantees that there is no Berry curvature at
all k.

To construct a two-band model, we assume that the wave
function at each k-point can be expanded by only two Houston
states; one representing a valance, and the other a conduction
state:

uk(r, t ) = cvk(t )uH
vk(r, t ) + cck(t )uH

ck(r, t ). (F5)

Inserting Eq. (F5) into Eq. (F1), one can derive an equation
of motion for the coefficients cvk(t ) and cck(t ),

ih̄
d

dt

(

cvk(t )
cck(t )

)

=
(

0 hvc,k(t )
h∗

vc,k(t ) 0

)(

cvk(t )
cck(t )

)

,

(F6)

where the off-diagonal matrix element is given by

hvc,k(t ) = −
ip

vc,K(t ) · E(t )

ǫv,K(t ) − ǫc,K(t )

eh̄

m
e

1
ih̄

∫ t
dt ′{ǫc,K(t ′ )−ǫ

v,K(t ′ )}

(F7)

and

p
vc,K(t ) =

∫




druS,∗
vK(t )(r)puS

cK(t )(r), (F8)

where 
 is the volume of the unit cell. Note that Eq. (F6) is
nothing but the Houston state expansion of the Schrödinger
equation [60,61] with only two Houston states.

To further simplify the model, we approximate the elec-
tronic structure by the parabolic bands as

ǫv,k = −
h̄2k2

2mv

, (F9)

ǫc,k = ǫg +
h̄2k2

2mc

, (F10)

where ǫg is the band gap, and mv and mc are the effective
masses for valence and conduction bands, respectively. Here,
we also define the reduced mass μ−1 = m−1

v
+ m−1

c .
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2. Perturbation analysis for light-induced Hall current

Here, we investigate the light-induced Hall current in the
parabolic two-band model with the perturbation theory. We
set the initial wave function to the valence state. Thanks
to the structure of the Schrödinger equation (F6), the time-
dependent conduction coefficient, cck(t ), can be accurately
described by the following expression up to the second order
of the electric field E:

cck(t ) =
1

ih̄

∫ t

0
dt ′h∗

vc,k(t ′)

= −
1

ih̄

∫ t

0
dt ′ ipcv,K(t ′ ) · E(t ′)

ǫc,K(t ′ ) − ǫv,K(t ′ )

eh̄

m
e

i
h̄

∫ t ′
dt ′′{ǫc,K(t ′′ )−ǫ

v,K(t ′′ )}

= −
1

ih̄

∫ t

0
dt ′ ipcv,K(t ′ ) · E(t ′)

�ǫK(t ′ )

eh̄

m
e

i
h̄

∫ t ′
dt ′′{�ǫK(t ′′ )},

(F11)

where �ǫK(t ′′ ) denotes the energy gap, ǫc,K(t ′′ ) − ǫv,K(t ′′ ).
For simplicity, we neglect the time dependence of the

dipole matrix element, pcv,K(t )/�ǫK(t ), and we can simplicity
Eq. (F11) as

cck(t ) = −
1

ih̄

∫ t

0
dt ′ ipcv,k · E(t ′)

�ǫk

eh̄

m
e

i
h̄

∫ t ′
dt ′′{�ǫK(t ′′ )}.

(F12)

Furthermore, we expand the contribution from the dynam-
ical phase factor up to the first order of the electric field, and
we obtain

cck(t ) = −
1

ih̄

∫ t

0
dt ′ ipcv,k · E(t ′)

�ǫk

eh̄

m
e

i
h̄
�ǫkt ′

×

[

1 +
i

h̄

∫ t ′

0
dt ′′ h̄k

μ
·

e

c
A(t ′′)

]

. (F13)

To proceed with the analysis, we assume the following
form for the applied electric field:

E(t ) = exEP
x (t ) + eyEP

y (t ) + exEdc
x �(t ), (F14)

where EP
x/y(t ) is the pump electric field for x/y-direction,

while Edc
x is the static electric field for x direction. We further

assume that the photon energy of the pump pulse is localized
around the vertical gap �ǫk at k.

For simplicity, here we only consider the excitation on
ky axis, assuming kx = 0. Then, one can evaluate Eq. (F13)
as

cck(t ) = −
1

ih̄

∫ t

0
dt ′ ipcv,k · EP(t ′)

�ǫk

eh̄

m
e

i
h̄
�ǫkt ′

−
1

ih̄

∫ t

0
dt ′ ipcv,k,xEdc

x

�ǫk

eh̄

m
e

i
h̄
�ǫkt ′

×
i

h̄

∫ t ′

0
dt ′′ h̄ky

μ
·

e

c
AP

y (t ′′). (F15)

Therefore, the conduction coefficient after infinite time can
be evaluated as

cck(t → ∞) = −
1

ih̄

ipcv,k · Ẽ
P

(ω = �ǫk/h̄)

�ǫk

eh̄

m

−
1

ih̄

ipcv,k,xEdc
x

�ǫk

eh̄

m

i

h̄

eh̄ky

μ

ẼP
y (ω = �ǫk/h̄)

�ǫ2
k

.

(F16)

Here, the first term of Eq. (F16) corresponds to the one
photon absorption process with the first-order perturbation
theory, while the second term corresponds to the nonlinear
photocarrier injection under the presence of the static electric
field.

Using the derived coefficients in Eq. (F16), the conduction
population can be expressed as

nck = |cck(t → ∞)|2

=
e2

m2

1

�ǫ2
k

|pcv,k · Ẽ
P

(ω = �ǫk/h̄)|2

+ i
e2

m2

1

�ǫ4
k

eky

μ
pcv,k,xEdc

x

× (pcv,k · Ẽ
P

(ω = �ǫk/h̄))∗ẼP
y (ω = �ǫk/h̄) + c.c.

(F17)

Assuming perfect circularly polarized light for the
pump, ẼP(ω) ≡ ẼP

x (ω) = ±iẼP
y (ω), we evaluate the injected-

population difference by the right-handed and the left-handed
circular light as

�nc,k = n
(�)
ck

− n
(�)
ck

= −4
e2

m2

1

�ǫ4
k

eky

μ
Edc

x |pcv,k,x|2

× |ẼP(ω = �ǫk/h̄)|2. (F18)

If we assume the time-reversal symmetry for the ground-
state Hamiltonian, the transition momentum holds:

|pcv,k,x| = |pcv,−k,x|. (F19)

Therefore, Eq. (F18) indicates that there can be population
imbalance in k-space under circularly polarized light and
static voltage. Thus, we can conclude that the light-induced
Hall current can be induced even in a topologically trivial
(conventional) insulator/semiconductor with the population
imbalance mechanism.

APPENDIX G: FIELD STRENGTH SCALING

Here, we investigate the field strength dependence of the
light-induced Hall effect. Figure 8 shows the computed Hall
conductivity for different field strengths of applied circular
laser pulses. The red line shows the total conductivity, while
the blue line shows the Berry curvature contribution computed
by Eq. (4) in the main text. As seen from the figure, the total
Hall conductivity monotonically increases with the applied
field strength, while the Berry curvature contribution shows
rather complex behaviors with the sign change. The complex
behavior can be understood as the high nonlinear population
transfer among different Floquet states because the different
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FIG. 8. The Hall conductivity σxy as a function of applied field
strength. The total conductivity is shown as the red line, while the
topological contribution is shown as the blue line.

Floquet states have different contribution to the Hall effects,
and those contributions are strongly canceled by each other
due to the significant population transfer. Since the population
transfer is highly nonlinear and nontrivial in the strong field
regime, the resulting Hall conductivity shows the complex
behaviors.

APPENDIX H: FLOQUET FIDELITY

To clarify the relation between the natural orbitals and
the Floquet states under a continuous-wave laser field, we
introduce Floquet fidelity, Sk, as a measure of the similarity
of the two kinds of states.

Under a continuous-wave laser field, the system that obeys
Eq. (A1) reaches a steady state due to the balance of the
laser excitation and the relaxation. Such steady states can be
described by a time-periodic density matrix,

ρK(t )(t ) = ρK(t )(t + T ), (H1)

where T is an optical cycle of the driving laser field. There-
fore, the natural orbitals |uNO

k (t )〉, which are eigenvectors of
the density matrix, also have the same time periodicity T .

Floquet states |uF
bk(t )〉 also have the same time periodicity

as |uF
bk(t + T )〉 = |uF

bk(t )〉 and they satisfy the time-dependent

Schrödinger Eq. (E1) under the periodic driving field as

ih̄
d

dt

∣

∣ψF
bk(t )

〉

= HK(t )

∣

∣ψF
bk(t )

〉

, (H2)

with |ψF
bk(t )〉 = e−iǫF

bkt/h̄|uF
bk(t )〉, where ǫF

bk is the so-called
Floquet quasienergy.

To define the similarity of the natural orbitals and the
Floquet states, we first consider the cycle-average quantum
fidelity Fi jk, which is equivalent to the squared overlap:

Fi jk =
1

T

∫ T

0
dt

∣

∣

〈

uNO
ik (t )

∣

∣uF
jk(t )

〉∣

∣

2
. (H3)

Then, we define the Floquet fidelity Sk as the absolute value
of the determinant of the fidelity matrix Fk that consists of Fi jk

as an element:

Sk = |detFk|. (H4)

The Floquet fidelity Sk satisfies

0 � Sk � 1, (H5)

and Sk = 1 only if all the natural orbitals are identical to the
Floquet states of the system. In contrast, if the natural orbitals
are fully delocalized on the Floquet basis, the Floquet fidelity
Sk becomes zero. For example, if the two natural orbitals are
identical to the two Floquet states,

uNO
vk (t ) = uF

vk(t ), (H6)

uNO
ck (t ) = uF

ck(t ), (H7)

the Floquet fidelity becomes one as

Sk =
∣

∣

∣

∣

det

(

1 0
0 1

)∣

∣

∣

∣

= 1. (H8)

On the other hand, if the two natural orbitals are fully delocal-
ized on the Floquet basis such as

uNO
vk (t ) =

1
√

2

[

uF
vk(t ) + uF

ck(t )
]

, (H9)

uNO
ck (t ) =

1
√

2

[

uF
vk(t ) − uF

ck(t )
]

, (H10)

the Floquet fidelity becomes zero as

Sk =
∣

∣

∣

∣

det

(

1/2 1/2
1/2 1/2

)∣

∣

∣

∣

= 0. (H11)

[1] D. N. Basov, R. D. Averitt, and D. Hsieh, Nat. Mater. 16, 1077
(2017).

[2] F. Krausz and M. I. Stockman, Nat. Photon. 8, 205 (2014).
[3] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.

Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Science 331, 189 (2011).

[4] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi,
S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D.
Jaksch, and A. Cavalleri, Nature 530, 461 (2016).

[5] M. Fiebig, K. Miyano, Y. Tomioka, and Y. Tokura, Science 280,
1925 (1998).

[6] A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P.
Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).

[7] M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C.
Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes,
Opt. Lett. 30, 558 (2005).

[8] M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R.
Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu,

214302-10

https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/nphoton.2014.28
https://doi.org/10.1038/nphoton.2014.28
https://doi.org/10.1038/nphoton.2014.28
https://doi.org/10.1038/nphoton.2014.28
https://doi.org/10.1126/science.1197294
https://doi.org/10.1126/science.1197294
https://doi.org/10.1126/science.1197294
https://doi.org/10.1126/science.1197294
https://doi.org/10.1038/nature16522
https://doi.org/10.1038/nature16522
https://doi.org/10.1038/nature16522
https://doi.org/10.1038/nature16522
https://doi.org/10.1126/science.280.5371.1925
https://doi.org/10.1126/science.280.5371.1925
https://doi.org/10.1126/science.280.5371.1925
https://doi.org/10.1126/science.280.5371.1925
https://doi.org/10.1103/PhysRevLett.87.237401
https://doi.org/10.1103/PhysRevLett.87.237401
https://doi.org/10.1103/PhysRevLett.87.237401
https://doi.org/10.1103/PhysRevLett.87.237401
https://doi.org/10.1364/OL.30.000558
https://doi.org/10.1364/OL.30.000558
https://doi.org/10.1364/OL.30.000558
https://doi.org/10.1364/OL.30.000558


MICROSCOPIC THEORY FOR THE LIGHT-INDUCED … PHYSICAL REVIEW B 99, 214302 (2019)

S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D.
Averitt, Nature 487, 345 (2012).

[9] E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A.
Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho,
R. Chapman, E. Springate, A. Cavalleri, and I. Gierz, Phys. Rev.
B 95, 024304 (2017).

[10] D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis,
Nat. Phys. 13, 479 (2017).

[11] M. A. Sentef, Phys. Rev. B 95, 205111 (2017).
[12] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[13] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.

Rev. B 84, 235108 (2011).
[14] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
[15] M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka,

J. K. Freericks, and T. P. Devereaux, Nat. Commun. 6, 7047
(2015).

[16] H. Hübener, M. A. Sentef, U. De Giovannini, A. F. Kemper, and
A. Rubio, Nat. Commun. 8, 13940 (2017).

[17] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,
Science 342, 453 (2013).

[18] F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee,
P. A. Lee, and N. Gedik, Nat. Phys. 12, 306 (2016).

[19] J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A.
Eckardt, M. Lewenstein, P. Windpassinger, and K. Sengstock,
Science 333, 996 (2011).

[20] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A.
Chen, and I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).

[21] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and
W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[22] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature 515, 237 (2014).

[23] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S.
Lühmann, K. Sengstock, and C. Weitenberg, Science 352, 1091
(2016).

[24] J. Näger, K. Wintersperger, M. Bukov, S. Lellouch, E. Demler,
U. Schneider, I. Bloch, N. Goldman, and M. Aidelsburger,
arXiv:1808.07462.

[25] K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, and M. G.
Raizen, Phys. Rev. Lett. 81, 5093 (1998).

[26] S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta,
E. Cianci, and V. Foglietti, Phys. Rev. Lett. 96, 243901 (2006).

[27] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O.
Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007).

[28] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature 496, 196 (2013).

[29] M. Aidelsburger, S. Nascimbene, and N. Goldman, C. R. Phys.
19, 394 (2018).

[30] G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, and T.
Esslinger, Phys. Rev. Lett. 115, 073002 (2015).

[31] C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013).
[32] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,

Nat. Phys. 11, 859 (2015).
[33] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.

Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Nat. Phys. 11, 162 (2014).

[34] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L.
Lu, M. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[35] L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem,
N. Fläschner, K. Sengstock, N. Goldman, and C. Weitenberg,
Nature Physics 15, 449 (2019).

[36] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, arXiv:1811.03522.

[37] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64,
139 (2015).

[38] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and
G. Usaj, Phys. Rev. Lett. 113, 266801 (2014).

[39] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A.
Balseiro, Phys. Rev. B 90, 115423 (2014).

[40] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and H.
Aoki, Phys. Rev. B 93, 144307 (2016).

[41] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 90, 195429
(2014).

[42] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 91, 155422
(2015).

[43] A. Kundu, H. A. Fertig, and B. Seradjeh, Phys. Rev. Lett. 113,
236803 (2014).

[44] T. Meier, G. von Plessen, P. Thomas, and S. W. Koch,
Phys. Rev. Lett. 73, 902 (1994).

[45] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S. Rudner,
and G. Refael, Phys. Rev. X 5, 041050 (2015).

[46] R. Hertel, J. Magn. Magn. Mater. 303, L1 (2006).
[47] P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).
[48] M. Claassen, C. Jia, B. Moritz, and T. P. Devereaux,

Nat. Commun. 7, 13074 (2016).
[49] D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio, and

N. Park, Nat. Commun. 9, 638 (2018).
[50] N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, Phys. Rev.

Lett. 121, 097402 (2018).
[51] J. Gong, L. Morales-Molina, and P. Hänggi, Phys. Rev. Lett.

103, 133002 (2009).
[52] R. Singla, G. Cotugno, S. Kaiser, M. Först, M. Mitrano, H. Y.

Liu, A. Cartella, C. Manzoni, H. Okamoto, T. Hasegawa, S. R.
Clark, D. Jaksch, and A. Cavalleri, Phys. Rev. Lett. 115, 187401
(2015).

[53] G. E. Topp, N. Tancogne-Dejean, A. F. Kemper, A. Rubio, and
M. A. Sentef, Nat. Commun. 9, 4452 (2018).

[54] M. Claassen, D. M. Kennes, M. Zingl, M. A. Sentef, and A.
Rubio, Nat. Phys. (2019), doi: 10.1038/s41567-019-0532-6.

[55] T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, Nature
539, 263 (2016).

[56] M. Liu, A. J. Sternbach, M. Wagner, T. V. Slusar, T. Kong, S. L.
Bud’ko, S. Kittiwatanakul, M. M. Qazilbash, A. McLeod, Z.
Fei, E. Abreu, J. Zhang, M. Goldflam, S. Dai, G.-X. Ni, J. Lu,
H. A. Bechtel, M. C. Martin, M. B. Raschke, R. D. Averitt, S. A.
Wolf, H.-T. Kim, P. C. Canfield, and D. N. Basov, Phys. Rev. B
91, 245155 (2015).

[57] M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N.
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