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The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the
endoreversible Carnot engine, has a significant impact on finite-time thermodynamics. However,
the CA engine model is based on many assumptions. In the past few decades, although a lot of
efforts have been made, a microscopic theory of the CA engine is still lacking. By adopting the
method of the stochastic differential equation of energy, we formulate a microscopic theory of the
CA engine realized with an underdamped Brownian particle in a class of non-harmonic potentials.
This theory gives microscopic interpretation of all assumptions made by Curzon and Ahlborn, and
thus puts the results about CA engine on a solid foundation. Also, based on this theory, we obtain
analytical expressions of the power and the efficiency statistics for the Brownian CA engine. Our
research brings new perspectives to experimental studies of finite-time microscopic heat engines
featured with fluctuations.

Introduction.—For practical heat engines, not only the
efficiency but also the power characterizes the perfor-
mance. Optimizing the power and the efficiency of heat-
engine cycles is one of the goals in the study of finite-
time thermodynamics [1, 2]. Compared to the Carnot
efficiency achieved in infinite time [3], the efficiency at
the maximum power (EMP) attracts a lot of attention in
the studies of finite-time heat engines. The early stud-
ies [4–11] of the endoreversible Carnot engine concluded
that the EMP is the well-known Curzon-Ahlborn (CA)
efficiency

ηCA = 1−
√
TC
TH

, (1)

where TC and TH denote the temperatures of the cold
and the hot heat baths. The CA efficiency is in a simi-
lar form to the Carnot efficiency, and is only relevant to
the temperatures of the two heat baths and is indepen-
dent of any other characteristic of the heat engine. The
CA efficiency aroused a lot of attention and led to many
following-up researches (see for example Refs. [8, 12–14]).
It has become a paradigmatic result in studies dealing
with thermodynamic optimization in the framework of
finite-time and stochastic thermodynamics. In addition,
the CA efficiency is relevant to many practical thermal
machines [15].

The CA efficiency as the EMP has also been derived
in some different setups [16]. For example, in Ref. [17]
it is shown that CA efficiency is a result which can be
obtained in the well-founded linear irreversible thermo-
dynamics. In Ref. [15], the CA efficiency, as the EMP, is
derived in the symmetric low-dissipation regime, where
the irreversible entropy production is assumed inversely
proportional to the period of a cycle. Such a 1/τ -scaling
has been recently verified in the experiment of finite-

time isothermal compression of dry air [18, 19]. These
studies confirm the validity of the CA efficiency as the
EMP in many heat engine models. Meanwhile, in some
other models, the EMP deviates from the CA efficiency
[13, 15, 17, 20–42], probably due to different circum-
stances of these models.

The original derivation of the CA efficiency [4–7] is
based on a lot of assumptions, such as the endoreversible
assumption and the assumption of constant temperature
difference. But how reliable are those assumptions made
by Curzon and Ahlborn remains unclarified due to the
lack of a microscopic theory of the CA engine. Also, due
to this lack, the control scheme of the work parameter
which is essential to construct the optimal cycle can not
be determined (except for the harmonic potential [14]),
neither can the work and heat statistics as well as the
fluctuation theorems of the CA engine. In the past few
decades, a lot of efforts have been made to seek a micro-
scopic interpretation of the CA engine, but were unsuc-
cessful.

In this Letter, we fill this long-standing gap by realizing
the CA engine with an underdamped Brownian particle
[14, 43–51] in a time-dependent potential as the work-
ing substance. By adopting the method of stochastic
differential equation of energy [52, 53], we give micro-
scopic interpretation of all assumptions made by Cur-
zon and Ahlborn, including the endoreversibility, New-
ton’s cooling law and the constant temperature differ-
ence. Thus we lay a solid foundation for the CA engine
model. Furthermore, this microscopic theory allows us
to determine the control scheme of the work parameter
of the Brownian CA engine and study the fluctuations
of the power and the efficiency of the Brownian CA en-
gine. Our study demonstrates that when downsizing the
working substance to a single Brownian particle, results
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about the average power and efficiency of the CA engine
remain valid, but the fluctuations become prominent.
The model.—The working substance of the en-

gine is modeled as a Brownian particle [45, 47, 54–
65] constrained in a controllable potential U(x, t) =
k(t)x2n/(2n) with the control parameter k(t) and a posi-
tive integer n. In the isothermal expansion (compression)
process, the control parameter k(t) is varied when the en-
gine is in contact with the heat bath at temperature Tb.
The motion of the particle with mass m is governed by
the complete Langevin equation

ẍ+ γẋ+ k(t)x2n−1 =
1

m
ξ(t), (2)

where the random force ξ(t) represents a Gaussian white
noise satisfying 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2mγTbδ(t −
t′) with the friction coefficient γ. Throughout the text
the Boltzmann constant is set to be kB = 1.

We consider the highly underdamped regime τp � γ−1

and slow external driving τp � k/k̇, where τp is the
period of the unperturbed motion of the particle, e.g.,
τp = 2π

√
m/k for a harmonic oscillator (n = 1). Un-

der these two conditions, the variation of the stochastic
energy of the particle within a period is relatively small,
which allows us to study the dynamics of the stochastic
energy E = mẋ2/2 + U(x, t). Based on Ito’s lemma and
Virial theorem, the equation of motion is expressed as the
stochastic differential equation of the energy E [52, 53]

dE =
λ̇

λ
Edt− Γ

(
E − fnTb

2

)
dt+

√
2ΓTbEdBt. (3)

where the work parameter is rewritten into λ(t) =
k(t)1/(n+1) with the increment dBt of the Wiener pro-
cess, the effective friction coefficient Γ = 2nγ/(n + 1),
and the effective degrees of freedom fn = 1 + 1/n. The
increment of trajectory work for this system is

dW =
λ̇

λ
Edt. (4)

The trajectory heat is obtained from the first law of ther-
modynamics as

dQ = −Γ

(
E − fnTb

2

)
dt+

√
2ΓTbEdBt. (5)

The Fokker-Planck equation associated with Eq. (3)
can be solved explicitly [53]. During the dynamical evolu-
tion process, the system remains in a Maxwell-Boltzmann
distribution in the energy space and thus can be de-
scribed by an effective temperature θ(t) as

P (E, t) =
e−E/θ(t)

Γ(fn/2)

Efn/2−1

θ(t)fn/2
, (6)

where Γ(x) =
∫∞
0
e−yyx−1dy is gamma function. No-

tice that Eq. (6) leads to the endoreversibility, which is
usually assumed in previous studies relevant to the CA
engine, but is derived as a consequence of the equation of
motion in our setup. The ensemble average of the energy
is 〈E(t)〉 = fnθ(t)/2 with the effective temperature θ(t)
governed by

θ̇(t) =
λ̇

λ
θ(t)− Γ[θ(t)− Tb]. (7)

We emphasize that the l.h.s. of Eq. (7) corresponds
to the time derivative of the average energy up to a fac-
tor fn/2. The two terms on the r.h.s. correspond to the
average work flux and heat flux, respectively. The aver-
age heat flux satisfies Newton’s cooling law, which is also
derived as a consequence of the equation of motion. The
effective friction coefficient Γ, as a cooling rate, is inde-
pendent of the work parameter λ. We would like to point
out that a similar equation of motion for the effective
temperature θ(t) has been obtained previously for the
ideal gas as the working substance [12]. However, their
derivation relies on several assumptions, for example, the
equation of state of ideal gas, the phenomenological New-
ton’s cooling law and the endoreversible assumption. On
the contrary, the results presented here are all derived
from the microscopic dynamics, and are capable of de-
scribing microscopic systems featured with fluctuations.
Realization of Curzon-Ahlborn engine based on a Brow-

nian particle.—With the model introduced above, we
study the EMP of such a microscopic Brownian engine
and formulate a microscopic theory of the CA engine. To
construct a finite-time Carnot cycle, two heat baths at
different temperatures Ti, i = H,C are required in the
hot and the cold isothermal processes. The (effective)
friction coefficients γi (Γi) may be different in the two
processes. Based on Curzon and Ahlborn’s derivation
[7], we summarize the preconditions of the CA engine as
follows

(i) Endoreversibility [66]. The state of the work-
ing substance of the engine can be described by an
effective temperature.

(ii) Newton’s cooling law (or linear heat transfer
law). The heat flux between the working substance
and the heat bath is proportional to the tempera-
ture difference.

(iii) Constant temperature difference. During the
isothermal expansion (compression) process, the ef-
fective temperature of the working substance re-
mains at a constant value θH (θC) different from
that of the heat bath TH (TC).

(iv) Internal reversible Carnot cycle. All irre-
versibilities are associated with the heat exchange
between the working substance and the heat baths
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while the adiabatic processes remain reversible [16].
The heat engine operates like a reversible Carnot
engine between two virtual heat baths at tempera-
tures θC and θH , respectively.

(v) Constant heat capacity [67] and cooling rate
[68]. Both the heat capacity of the working sub-
stance and the cooling rate are independent of the
temperature and the work parameters.

According to Eqs. (6) and (7), our setup fulfills require-
ments (i) and (ii). In supplementary material, we prove
that the optimal cycle corresponding to the maximum
power is exactly the CA cycle satisfying preconditions
(iii) and (iv). Precondition (v) is guaranteed by the
generalized equipartition theorem and the highly under-
damped condition.

Based on the equation of motion of the effective tem-
perature (Eq. (7)) and the definition of trajectory work
and heat, we can optimize the average power of the finite-
time Brownian engine. In Fig. 1(a), we plot the cycle di-
agram of the Brownian CA engine. In order to construct
a closed CA cycle, the values of work parameter at the
end of each process in Fig. 1(a) satisfy

λ2
λ1

=
λ3
λ4

= r. (8)

The four processes of the CA cycle are illustrated as fol-
lows (see supplementary material),

(I) Isothermal compression. The working substance is
in contact with the cold heat bath. Initiated from
λ1 at t = 0, the work parameter is varied exponen-
tially with time λ(t) = λ1(λ2/λ1)t/τC , where τC is
the duration of the process. From the protocol, it
can be found that the effective temperature of the
working substance remains at a constant during the
process

θC =
τCΓC

τCΓC − ln r
TC . (9)

The heat released to the cold heat bath during the
isothermal compression process is

− 〈QC〉 =
fn
2

ΓC(θC − TC)τC . (10)

(II) Adiabatic compression. The work parameter λ(t)
is quenched instantaneously from λ2 to λ3 with the
effective temperature θ(t) changing from θC to θH
accordingly. When the timescale of varying the
work parameter is much shorter than that of the
heat dissipation, Eq. (7) becomes θ̇(t) = λ̇θ(t)/λ,
which leads to θH/θC = λ3/λ2.
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Figure 1. CA cycle based on a Brownian particle. (a) The
cycle diagram in the space of the work parameter λ and the
effective temperature θ. In the isothermal expansion (com-
pression) process, the working substance remains at a con-
stant effective temperature θH(θC), which is different from
the temperature TH(TC) of the hot (cold) heat bath. In the
two adiabatic processes, the effective temperature θ of the
working substance is proportional to the work parameter λ.
(b) The control scheme of the work parameter λ(t) and the
evolution of the effective temperature θ(t) in a finite-time cy-
cle. The work parameter λ is varied exponentially with time
in an isothermal process, and is quenched abruptly in an adi-
abatic process.

(III) Isothermal expansion. The working substance is
in contact with the hot heat bath. The work pa-
rameter is varied exponentially with time λ(t) =
λ3(λ4/λ3)(t−τC)/τH , and the working substance re-
mains at a constant effective temperature

θH =
τHΓH

τHΓH + ln r
TH , (11)

where τH is the duration of the process. The heat
absorbed from the hot heat bath during the isother-
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mal expansion process is

〈QH〉 =
fn
2

ΓH(TH − θH)τH . (12)

(IV) Adiabatic expansion. Finally, the work parameter
is quenched from λ4 to the initial value λ1 instan-
taneously with the effective temperature changing
from θH to θC accordingly, satisfying θH/θC =
λ4/λ1.

The control scheme of the work parameter λ and the
evolution of the effective temperature θ in a finite-time
cycle are illustrated in Fig. 1(b).

Combing Eqs. (9)-(12), it is straightforward to ver-
ify the precondition (iv) that the entropy change of the
working substance after a cycle is zero ∆S = 〈QH〉 /θH+
〈QC〉 /θC = 0. Therefore, the microscopic dynamics of
the model, together with the explicit control scheme λ(t),
constitutes a microscopic theory of the CA engine.

The net work of a full cycle is −〈W 〉 = 〈QH〉+ 〈QC〉,
and the average power and the average efficiency follow
as P := −〈W 〉 /(τH + τC) and η := −〈W 〉 / 〈QH〉, which
are explicitly

P =
fn ln r

2(τH + τC)

(
τHΓHTH

τHΓH + ln r
− τCΓCTC
τCΓC − ln r

)
, (13)

and

η = 1− 1 + (τHΓH)−1 ln r

1− (τCΓC)−1 ln r

TC
TH

. (14)

In order to achieve the maximum power, we first fix r
and optimize the power over τH and τC . The maximum
power is obtained as (see supplementary material)

Pmax =
fnΓCΓH

(√
TH −

√
TC
)2

2
(√

ΓH +
√

ΓC
)2 , (15)

with the corresponding optimal duration of the two
isothermal processes

τmax
H =

ln r
(√

ΓHTH +
√

ΓCTC
)

ΓH
√

ΓC
(√
TH −

√
TC
) ,

τmax
C =

ln r
(√

ΓHTH +
√

ΓCTC
)

ΓC
√

ΓH
(√
TH −

√
TC
) . (16)

Please note that Pmax is independent of r. Hence Pmax

is also the global maximum power. It is straightforward
to see that the EMP of the Brownian engine in the highly
underdamped regime is the CA efficiency

ηEMP = 1−
√
TC
TH

= ηCA, (17)

as we expect. Based on Eqs. (14) and (15), we derive the
trade-off relation between power and efficiency in supple-
mentary material. Compared to previous studies [25, 69–
73], our trade-off relation is tight and is shown to be
reachable with the explicit control scheme of the work
parameter λ(t). It is worth mentioning that Ref. [74]
obtains the same tight trade-off relation, and Ref. [14]
obtains the tight trade-off relation as well as the control
scheme for the harmonic potential. As a generalization,
our results are valid for a Brownian particle in a class of
non-harmonic potentials.
Generating function of work and heat in a finite-time

isothermal process.—For a microscopic Brownian engine,
average values are insufficient to characterize the perfor-
mance. Fluctuations are non-negligible [75]. To evaluate
the performance of a finite-time heat engine, we need to
quantify the extracted work and heat absorbed from the
hot bath in one heat-engine cycle. For the dynamics de-
scribed by the above model, we can derive the analytical
results of the joint generating function of work and heat
I(u, s) :=

〈
euQ+sW

〉
by generalizing the techniques used

in Ref. [76]. The result is

I(u, s) =

[
1 + uψ̃(τ)

1 + uψ̃0

] fn
2

e
fn(s−u)

2

∫ τ
0
λ̇(t)
λ(t)

ψ(t)dt, (18)

where τ is the time duration of the process, and the
temperature-like variable ψ(t) satisfies

dψ

dt
=
λ̇

λ
ψ − Γ(ψ − Tb) + (s− u)

λ̇

λ
ψ2. (19)

with the initial condition ψ(0) = ψ̃0/(1 + uψ̃0). The
initial value ψ̃0 is either set as the initial temperature
θ0 or obtained from the previous process. A shifted
temperature-like variable is defined as ψ̃(t) := ψ(t)/[1 −
uψ(t)], whose value ψ̃(τ) at the end of this process is
used as the initial value ψ̃0 of the subsequent process.
Detailed derivations to Eqs. (18) and (19) and the ana-
lytical expression of the joint generating function I(u, s)
are left in supplementary material.
Statistics of power and efficiency of the Brownian CA

engine.—Based on the microscopic theory, especially the
joint generating function of work and heat I(u, s) and
the control scheme λ(t) of the full cycle, we can further
study the fluctuations of the power and the efficiency
[75–80] together with the fluctuation theorems [81, 82] of
the finite-time Brownian Carnot engine. Specifically, we
calculate the distribution p(P ) of the fluctuating power
P := −W/(τC +τH) and the distribution p(ζ) of the fluc-
tuating efficiency ζ := −(W +ηQH)/ 〈QH〉 from the gen-
erating function Icycle(uH , uC , s) =

〈
euHQH+uCQC+sW

〉

(see supplementary material) of a whole cycle. Please
note that, instead of −W/QH , we define ζ as the fluc-
tuating efficiency which characterizes the deviation from
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the average efficiency η defined above. It is straightfor-
ward to see that 〈ζ〉 = 0.

As a special case, we plot the distributions of the power
and the efficiency of the Brownian CA engine in Fig. 2,
where η = ηCA, τC = τmax

C , τH = τmax
H . Due to the fluc-

tuation, the power can be negative or much larger than
the average power. Similarly, the efficiency can be neg-
ative or larger than Carnot efficiency (even larger than
unity). From the analytical results of the joint generat-
ing function Icycle(uH , uC , s), we can show the tendency
of the distributions when we increase the duration of the
cycle τt := τmax

C + τmax
H by increasing ln r

Var(P ) ≈ 4P
2

max

fnη2CA

[
(1− ηCA)2 + 1/δ

]
(1 + δ)√

ΓCΓH

1

τt
, (20)

Var(ζ) ≈ 4(1− ηCA)2

fn
√

ΓCΓH

(1 + δ)2

δ

1

τt
, (21)

where δ =
√

ΓHTH/(ΓCTC). For both the power and
the efficiency, their variances decrease inversely with τt.
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Figure 2. Distribution of the power (a) and the efficiency
(b) of a Brownian CA engine for three different periods
τt = 5, 20, 50. (a) The vertical dotted line indicates the av-
erage power. (b) The vertical solid, dashed and dotted lines
correspond to efficiency η = 0, η = ηC (Carnot efficiency) and
η = 1 respectively. Here we have chosen TC = 300, TH = 600,
ΓC = 1, ΓH = 1.2.

Summary and discussion.—In this Letter, we realize
the Curzon-Ahlborn heat engine with a Brownian parti-

cle in the highly underdamped regime. By adopting the
method of stochastic differential equation of energy, we
formulate a microscopic theory of the CA engine based on
this model. This theory gives microscopic interpretation
of all assumptions of the CA engine model including the
endoreversibility, Newton’s cooling law and the constant
temperature difference. Hence, we lay a solid foundation
for the CA engine.

From this microscopic theory, the explicit control
scheme λ(t) of the CA engine can be uniquely deter-
mined, which leads to the maximum power of the Brow-
nian engine. The control scheme associated with the
maximum power for any given efficiency can be obtained
based on the microscopic theory. In addition, we calcu-
late the generating function of work and heat, and obtain
the analytical results of statistics of the power and the
efficiency together with the fluctuation theorems of the
Brownian CA engine. These quantitative results about
the CA engine bring important insights to the studies of
finite-time thermodynamics beyond the low-dissipation
regime [15, 25, 70, 71, 73, 83, 84]. For example, results
about the average power and efficiency of the CA engine
remain valid when downsizing the working substance to a
single Brownian particle, but fluctuations become promi-
nent. Our study will shed new light on the experimental
explorations about finite-time Brownian engine, and may
inspire future studies about the design of nanomachines
with higher power and efficiency.
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The supplementary materials are organized as follows. In Sec. I, we construct and optimize the finite-time Carnot
engine with an underdamped Brownian particle as the working substance, and obtain the power and the efficiency
of the finite-time Brownian engine. In Sec. II, we derive the trade-off relation between the power and the efficiency
for the finite-time Brownian Carnot engine. In Sec. III, we calculate the joint generating function of work and heat,
and verify the fluctuation theorem for heat engines. We also derive the generating function for the power and the
efficiency and discuss their variances for the Brownian CA engine.

I. CONSTRUCTION AND OPTIMIZATION OF A FINITE-TIME BROWNIAN ENGINE

We attempt to construct and optimize a finite-time Brownian Carnot engine with the microscopic model proposed
in the main text. A Carnot cycle consists of two isothermal processes and two adiabatic processes. From Ref.
[1, 2], we know that for a given duration of time and the initial and the final values of the work parameter of an
isothermal expansion (compression) process, the protocol λ(t) that maximizes the work output (minimizes the work
input) is an exponential function of time with additional instantaneous jumps at the beginning and the end. The
effective temperature of the working substance is kept at a constant except for the sudden jump processes. The
jump-exponential-jump form of the optimal work protocol λ(t) and the constant effective temperature are general
properties of the optimal control, and are independent of specific settings of the control time and the initial and final
values of the work parameter, as long as we maximize the work output.

We model the adiabatic process to be an instantaneous jump of the work parameter λ, i.e., the process is so fast
that no heat is exchanged. Then, the equation of motion of the effective temperature by Eq. (7) is reduced to

θ̇(t) =
λ̇(t)

λ(t)
θ(t). (S1)

After doing integral on both sides of Eq. (S1), we obtain the relation between the initial (final) value of the effective
temperature θi (θf ) and the work parameter λi (λf )

θi
θf

=
λi
λf
. (S2)

The work input in an adiabatic process is equal to the energy change

W = Ef − Ei, 〈W 〉 =
fn
2

(θf − θi), (S3)

since there is no heat exchange.
To form a closed cycle, we need to connect the two isothermal processes with the two adiabatic processes. The

additional jumps and the adiabatic processes (also instantaneous jumps) merge together. The control scheme λ(t)
consists of two exponential protocols and two instantaneous jump protocols (Fig. 1). It is natural to describe the cycle
with the work parameter at four “corners” in the λ− θ diagram (Fig. 1), and the duration τH (τC) of two exponential
protocols. Hereafter, we also use “isothermal process” to denote the exponential protocol, and “adiabatic processes”
to denote the sudden jump protocol.

We formally write down the four processes as follows.
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(I) Isothermal compression. Starting from λ1 at t = 0, the control scheme of the work parameter is λ(t) =
λ1(λ2/λ1)t/τC , where τC is the duration of the process. For such an exponential protocol, the effective temper-
ature of the working substance remains at a constant

θC =
τCΓC

τCΓC − ln r
TC . (S4)

with the quantity r = λ2/λ1 defined in Eq. (8) of the main text. The heat released to the cold heat bath and
the work input in this process is

− 〈QC〉 = 〈W1〉 =
fn
2

ΓC(θC − TC)τC . (S5)

(II) Adiabatic compression. The work parameter is quenched suddenly from λ2 to λ3 with the effective temperature
jumping from θC to θH accordingly, satisfying θH/θC = λ3/λ2. Work output in this adiabatic compression
process is

− 〈W2〉 = −fn
2

(θH − θC). (S6)

(III) Isothermal expansion. Similar to process (I), the work parameter is varied as λ(t) = λ3(λ4/λ3)(t−τC)/τH with
the duration τH of this process. The effective temperature of the working substance, as a constant, is explicitly

θH =
τHΓH

τHΓH + ln r
TH . (S7)

The heat absorbed from the hot bath and the work output in this process is

〈QH〉 = −〈W3〉 =
fn
2

ΓH(TH − θH)τH . (S8)

(IV) Adiabatic expansion. Finally, the work parameter is quenched from λ4 to the initial value λ1 abruptly. The
values of the work parameter satisfy θH/θC = λ4/λ1, which ensures a closed cycle. The work output in this
adiabatic process is

− 〈W4〉 = −fn
2

(θC − θH). (S9)

The work output of a cycle is equal to

−〈W 〉 := −
4∑

j=1

〈Wj〉

=
fn
2

(
τHΓH ln r

τHΓH + ln r
TH −

τCΓC ln r

τCΓC − ln r
TC

)
. (S10)

The average power and efficiency of this finite-time Brownian Carnot engine are

P :=
−〈W 〉
τH + τC

=
fn

2(τH + τC)

(
τHΓH ln r

τHΓH + ln r
TH −

τCΓC ln r

τCΓC − ln r
TC

)
, (S11)

and

η := − 〈W 〉〈QH〉
= 1− 1 + (τHΓH)−1 ln r

1− (τCΓC)−1 ln r

TC
TH

. (S12)

To maximize the power, we choose a fixed r and optimize P with respect to τH and τC . By solving equations
∂P/∂τH = 0 and ∂P/∂τC = 0, we obtain the optimal duration of the two isothermal processes
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τmax
H =

ln r
(√

ΓHTH +
√

ΓCTC
)

ΓH
√

ΓC
(√
TH −

√
TC
) ,

τmax
C =

ln r
(√

ΓHTH +
√

ΓCTC
)

ΓC
√

ΓH
(√
TH −

√
TC
) . (S13)

Substituting Eq. (S13) into Eq. (S11), we find the maximum power with the fixed r is

Pmax =
fnΓCΓH

(√
TH −

√
TC
)2

2
(√

ΓH +
√

ΓC
)2 . (S14)

This result, however, is independent of r, and is the global maximum of power. Similarly substituting Eq.(S13) into
Eq. (S12), the efficiency at the maximum power is obtained

ηEMP = 1−
√
TC
TH

, (S15)

which is exactly the CA efficiency.

II. THE TRADE-OFF RELATION BETWEEN POWER AND EFFICIENCY

The trade-off relation between power and efficiency, namely the maximum power under a given efficiency, has re-
cently attracted much attention in finite-time thermodynamics. Various trade-off relations have been found under
different circumstances [3–8]. Nevertheless, these relations either are obtained based on the low-dissipation approxi-
mation, or are very loose constraints.

It is worth pointing out that in 1989, a tight trade-off relation between power and efficiency has been obtained for
the endoreversible Carnot cycle with the assumption of Newton’s cooling law [9],

P
∗ ∝ η (ηC − η)

1− η . (S16)

However, due to the lack of microscopic theory in their study, they are unable to determine the control scheme
associated with the maximum power for a given efficiency.

Here we derive the control scheme λ(t) associated with the above tight trade-off relation between power and efficiency
for the finite-time Brownian Carnot engine. With the expressions of the power and the efficiency, we introduce the
function

L =
fn

2(τH + τC)

(
τHΓH ln r

τHΓH + ln r
TH −

τCΓC ln r

τCΓC − ln r
TC

)
+ µ

(
1− 1 + (τHΓH)−1 ln r

1− (τCΓC)−1 ln r

TC
TH
− η
)
, (S17)

where µ is the Lagrange multiplier to include the given efficiency as the constraint. The maximum power for the
given efficiency η is obtained from

∂L

∂τH
= 0, (S18)

∂L

∂τC
= 0, (S19)

∂L

∂µ
= 0. (S20)

The solution to the above equations are

τ∗H =
ln r√

ΓH (ηC − η)

(
1− η√

ΓC
+

1− ηC√
ΓH

)
, (S21)

τ∗C =
ln r√

ΓC (ηC − η)

(
1− η√

ΓC
+

1− ηC√
ΓH

)
, (S22)

µ∗ =
fnΓCΓHTH [(2− η)η − ηC ]

2(1− η)2(
√

ΓH +
√

ΓC)2
. (S23)
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Since we have adopted the exponential protocol, the control scheme λ(t) of the whole cycle for the CA engine is

λ(t) =

{
λ1(λ2/λ1)t/τ

∗
C 0 < t < τ∗C

λ3(λ4/λ3)(t−τ∗
C)/τ∗

H τ∗C < t < τ∗H
. (S24)

Substituting τ∗H and τ∗C into the expression of the power, we obtain the maximum power for a given efficiency η as

P
∗

=
fnTHΓCΓH

2
(√

ΓC +
√

ΓH
)2
η(ηC − η)

(1− η)
, (S25)

which agrees with the trade-off relation obtained in Ref. [9]. Notice that Eq. (S25) is independent of the compression
ratio r, and is also irrelevant to the symmetry (ΓH = ΓC) of dissipation.

We emphasize that the dependence of the maximum power on the efficiency is always in the factorized form, which
is universal and independent of the cooling rate ΓH (ΓC) in the two isothermal processes. In comparison with Ref.
[3], the trade-off relation (S25) is tighter and this upper bound of the power can be achieved with the explicit control
scheme.

III. CALCULATION OF THE GENERATING FUNCTION

Based on the method proposed in Ref. [10], we derive the joint generating function of work and heat for both the
finite-time driving process (finite-time isothermal process). The system is coupled to only one heat bath with the
exchanged heat Q[X], and the work parameter of the system is tuned with the performed work W [X]. In stochastic
thermodynamics, both heat and work is defined on the trajectory X = {E(t)|0 ≤ t ≤ τ} [10, 11]. The joint generating
function of work and heat is defined as the path integral in the trajectory space

I(u, s) :=
〈
euQ+sW

〉
(S26)

=

∫
D[X]p[X]euQ[X]+sW [X], (S27)

where p[X] denotes the probability of a given trajectory X.
The method [10] to be applied requires that

(I) The system always obeys a Maxwell-Boltzmann distribution in the energy space described by an effective
temperature θ, whose evolution is governed by

θ̇ = Φt(θ), (S28)

Here, Φt(θ) contains the contribution of the work. When performed work performed on the system, the tem-
perature of the system increases. If no modulation is performed, Φt(θ) = −Γ(θ− Tb) is Newton’s law of cooling
with a constant cooling rate Γ. Tb is the temperature of the bath.

(II) The increment in work is proportional to the stochastic energy of the system,

dW = α(t)E(t)dt, (S29)

where αt is determined by the control protocol, and is chosen as αt = λ̇/λ relating to the work parameter
λ = λ(t); E = E(t) is the stochastic energy of the system affected by both the heat exchange and the work
performed. As a result, Φt(θ) is explicitly

Φt(θ) = −Γ(θ − Tb) + αtθ. (S30)

(III) The structure (shape) of the partition function does not depend on λ. Generally, the partition function Zλ(β)
should depend on the work parameter λ. The inverse temperature is β = 1/θ, where we set kB = 1 for
convenience. For example, for a quantum harmonic oscillator, the frequency determines energy-level spacing
which affects the Zλ(β). But here, we require Zλ(β) to be in the same form of λ which means

Zλ(β) = g(λ)× Z(β), (S31)

where g(λ) is a function of the work parameter, and Z(β) characterize the form of the energy density.
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All conditions are satisfied in the current microscopic model. The probability distribution of the energy is

p(E|θ) =
E
fn
2 −1e−βE

Z(β)
. (S32)

The partition function is Z(β) =
∫∞

0
Efn/2−1e−βEdE = β−fn/2Γ(fn/2)[12], which is also the normalization factor in

the energy space. The average energy is determined by

〈E〉 = −∂ ln [Z(β)]

∂β
=
fn
2
θ. (S33)

Namely, the heat capacity of the working substance is fn/2, which remains a constant.
Along a given trajectory X = {E(t)|0 ≤ t ≤ τ}, the increment of work at time t is

dW = αtEdt, (S34)

and the increment of heat is obtained inversely from the first law

dQ = dE − αtEdt. (S35)

A. Discretization to calculate the joint generating function of work and heat

We discretize the dynamics with tj = jε, j = 0, 1, ..., N,N + 1 and ε = τ/(N + 1), the thermal distribution of the
system is p(Ej |θj) with the inverse temperature βj = 1/θj at tj . The work parameter λ(t) remains a constant during
each time slice tj < t < tj+1, and is quenched at the moment tj . As a result, the workWj = ln[λ(t+j )/λ(t−j )]Ej ≈ αjEjε
is performed at each moment tj with the neglected exchanged heat, while the heat Qj = Ej+1−Ej−αjEjε is generated
during each time slice. The evolution between every adjacent moment tj and tj+1 can be described by the transition
probability Rjj+1 = R(Ej+1, tj+1;Ej , tj) (also named as the propagator). To ensure the condition (I), the propagator
Rjj+1 should maps a local equilibrium state to another local equilibrium state

∫
dEjp(Ej |θj)Rjj+1 = p(Ej+1|θj+1). (S36)

The temperature of the next step is

θj+1 = θj + Φj(θj)ε, (S37)

where we denote Φj(·) = Φtj (·) for simplicity
We calculate the joint generating function I(u, s) as follows. We rewrite the joint generating function with the

N + 1 discrete steps

I(u, s) =

∫ N+1∏

j=0

dEj

N∏

j=0

(
Rjj+1

)
p(E0|ψ̃0)

N∏

j=0

euQj+sWj , (S38)

where the initial value ψ̃0 is a temperature-like quantity. We use a different notation ψ to distinguish with the
temperature θ. The meaning of “tilde” will be clarified later [by Eq. (S63)]. If there is no previous process, ψ̃0 = θ0

is the local temperature of the system. Otherwise, the initial value ψ̃0 is obtained from the previous process.
From the first law, we can rewrite

uQj + sWj = (s− u)αjEjε+ u(Ej+1 − Ej). (S39)

We then consider the first step
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R0
1p(E0|ψ̃0)e(s−u)W0+u(E1−E0) (S40)

=R0
1

e−E0/ψ̃0

Z(1/ψ̃0)
e(s−u)εα0E0+u(E1−E0) (S41)

=R0
1

e−E0/ψ0

Z(1/ψ̃0)
euE1 , (S42)

where ψ0 is

ψ0 = 1/[1/ψ̃0 − (s− u)εα0 + u]. (S43)

After doing the integral over E0, we obtain

euE1

∫
dE0R0

1

e−E0/ψ0

Z(1/ψ̃0)
(S44)

=euE1
Z(1/ψ0)

Z(1/ψ̃0)

∫
dE0R0

1

e−E0/ψ0

Z(1/ψ0)
(S45)

=euE1
Z(1/ψ0)

Z(1/ψ̃0)

e−E1/ϕ1

Z(1/ϕ1)
, (S46)

where the intermediate variable ϕ1, according to Eq. (S37), is obtained as

ϕ1 = ψ0 + Φ0(ψ0)ε (S47)
= ψ0 − Γ(ψ0 − Tb)ε+ α0ψ0ε. (S48)

We next calculate the second step with the integral over E1

Z(1/ψ0)

Z(1/ψ̃0)

∫
dE1R1

2

e−E1/ϕ1euE1

Z(1/ϕ1)
e(s−u)W1+u(E2−E1) (S49)

=
Z(1/ψ0)

Z(1/ψ̃0)
euE2

∫
dE1R1

2

e−

:=1/ψ1︷ ︸︸ ︷
[1/ϕ1 − (s− u)α1ε]E1

Z(1/ϕ1)
(S50)

=
Z(1/ψ0)

Z(1/ψ̃0)

Z(1/ψ1)

Z(1/ϕ1)

euE2e−E2/ϕ2

Z(1/ϕ2)
. (S51)

In Eq. (S50), we have set

1

ψ1
=

1

ϕ1
− (s− u)α1ε. (S52)

It is similarly to do the integral over E2, E3, ...EN and the result is

∫ N∏

j=0

dEj

N∏

j=0

(
Rjj+1

)
p(E0|ψ̃0)

N∏

j=0

euQj+sWj (S53)

=
Z(1/ψ0)

Z(1/ψ̃0)

Z(1/ψ1)

Z(1/ϕ1)
...
Z(1/ψN )

Z(1/ϕN )

e−(1/ϕN+1−u)EN+1

Z(1/ϕN+1)
. (S54)

We integrate over EN+1 and obtain
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I(u, s) =
Z(1/ψ0)

Z(1/ψ̃0)

Z(1/ψ1)

Z(1/ϕ1)
...
Z(1/ψN )

Z(1/ϕN )

Z(1/ψ̃N+1)

Z(1/ϕN+1)
, (S55)

where

ψ̃N+1 =
1

1/ϕN+1 − u
. (S56)

The reduction formulas are

ϕn = ψn−1 + Φn−1(ψn−1)ε (S57)

ψn =
1

1/ϕn − (s− u)αnε
, (S58)

which lead to

ψn − ψn−1

ε
= Φn−1(ψn−1) + (s− u)αnψ

2
n−1. (S59)

The continuum limit is

dψ

dt
= Φt(ψ) + (s− u)αtψ

2. (S60)

The initial condition is obtained from Eq. (S43) as

ψ(0) =
ψ̃0

1 + uψ̃0

. (S61)

At the end t = τ , Eq. (S56) leads to the final condition

ψ̃(τ) =
ψ(τ)

1− uψ(τ)
. (S62)

We can define a shifted temperature-like variable ψ̃(t) as

ψ̃(t) :=
ψ(t)

1− uψ(t)
. (S63)

The corresponding differential equation is

dψ̃

dt
= (1 + uψ̃)2Φt

(
ψ̃

1 + uψ̃

)
+ (s− u)αtψ̃

2, (S64)

and the initial value is ψ̃(0) = ψ̃0.
The joint generating function Eq. (S55) becomes

ln I(u, s) = ln
Z(1/ψ0)

Z(1/ψ̃0)
+

N∑

n=1

ln
Z(1/ψn)

Z(1/ϕn)
+ ln

Z(1/ψ̃N+1)

Z(1/ϕN+1)
. (S65)

The first and the third terms are explicitly
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ln
Z(1/ψ0)

Z(1/ψ̃0)
≈ ln

Z(1/ψ̃0 + u)

Z(1/ψ̃0)
(S66)

= −fn
2

ln
(

1 + uψ̃0

)
, (S67)

and

ln
Z(1/ψ̃N+1)

Z(1/ϕN+1)
≈ ln

Z(1/ψN+1 − u)

Z(1/ψN+1)
(S68)

= −fn
2

ln (1− uψ(τ)) (S69)

=
fn
2

ln
(

1 + uψ̃(τ)
)
. (S70)

The second term is explicitly

N∑

n=1

ln
Z(1/ψn)

Z(1/ϕn)
=

N∑

n=1

ln
Z(1/ψn)

Z(1/ψn + (s− u)αnε)
(S71)

≈ −
N∑

n=1

(s− u)αn
Z ′(1/ψn)

Z(1/ψn)
ε (S72)

= −
∫ τ

0

(s− u)αt
Z ′(1/ψ(t))

Z(1/ψ(t))
dt (S73)

= (s− u)

∫ τ

0

αt 〈E〉 (ψ(t))dt, (S74)

where the average internal energy is

〈E〉 (θ) = −∂ lnZ

∂β

∣∣
β=1/θ

=
fn
2
θ. (S75)

The final result of the joint generating function is

ln I(u, s) =
fn
2

[
ln

(
1 + uψ̃(τ)

1 + uψ̃0

)
+ (s− u)

∫ τ

0

αtψ(t)dt

]
. (S76)

Notice that the temperature-like variable ψ(t) is solved from the differential equation (S60) with the initial condition
(S61) and the final condition (S62).

As follows, we discuss the joint generating function for the sudden jump process and the exponential protocol
process. These two processes are used to form the finite-time Carnot cycle.

B. Sudden jump process

In a sudden jump process, work is performed with the neglected heat exchange. The work parameter is quenched
from λ− to λ+ with temperature-like quantity changed from ψ̃− to ψ̃+. No exchanged heat is produced in such a
sudden process, and we can set u = 0. Therefore, ψ̃ becomes the same as ψ in this process. The differential equation
(S64) [or Eq. (S60)] becomes

dψ̃

dt
= αtψ̃ + sαtψ̃

2, (S77)
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The change of the energy comes from the work

dψ̃ = ψ̃
(

1 + sψ̃
) dλ
λ
, (S78)

and ψ̃ becomes a function of λ in this process, explicitly as

ψ̃

1 + ψ̃s
=

λ

λ−
ψ̃−

1 + ψ̃−s
. (S79)

Thus, the final value ψ̃+ is associated with ψ̃− as

ψ̃+

1 + ψ̃+s
=
λ+

λ−
ψ̃−

1 + ψ̃−s
. (S80)

Notice that ψ̃+ serves as the initial value ψ̃0 of the next process. If there is a previous process, ψ̃− is substituted with
ψ̃(τ) of the previous process. The joint generating function of the sudden jump process is

Ijump(u, s) =

[
1 +

(
1− λ+

λ−

)
ψ̃−s

]− fn2
. (S81)

C. Exponential protocol process

Equation (S60) becomes a Ricatti equation (time-independent) for a exponential process αt = α = const, and is
explicitly

ψ̇ = −Γ(ψ − Tb) + αψ + (s− u)αψ2. (S82)

We solve the above differential equation with the initial condition ψ(0) = ψ̃0/(1 + uψ̃0). The solution to Eq. (S82) is

ψ(t) =
Γ− α+

√
D(s− u) tan

(
c1+t

2

√
D(s− u)

)

2α(s− u)
, (S83)

where

D(x) = 4αΓTbx− (Γ− α)2. (S84)

The joint generating function of the process is

ln Iexp(u, s) =
fn
2

[
ln

(
1 + uψ̃(τ)

1 + uψ̃0

)
+ (s− u)α

∫ τ

0

ψ(t)dt

]
. (S85)

The initial condition gives

ψ(0) =
Γ− α+

√
D(s− u) tan

(
c1
2

√
D(s− u)

)

2α(s− u)
, (S86)

which determine the constant c1 as

tan
(c1

2

√
D(s− u)

)
=

2α(s− u)ψ(0)− (Γ− α)√
D(s− u)

. (S87)
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The integral in Eq. (S85) is rewritten as

(s− u)α

∫ τ

0

ψ(t)dt =
Γ− α

2
τ + ln




cos
(
c1
2

√
D(s− u)

)

cos
(
c1+t

2

√
D(s− u)

)


 (S88)

=
Γ− α

2
τ − ln

[
cos

(
t

2

√
D(s− u)

)
− 2α(s− u)ψ(0)− (Γ− α)√

D(s− u)
sin

(
t

2

√
D(s− u)

)]
. (S89)

We obtain the joint generating function as

Iexp(u, s) =





exp [(Γ− α)τ/2] [1 + uψ̃(τ)]/[1 + uψ̃0]

cos
(
t
2

√
D(s− u)

)
− 2α(s−u)ψ(0)−(Γ−α)√

D(s−u)
sin
(
t
2

√
D(s− u)

)





fn
2

. (S90)

If there is a previous process, we need to substitute ψ̃0 as the final value ψ̃(τ) of the previous process.

D. Joint generating function of the finite-time Carnot cycle

Now we calculate the joint generating function of the finite-time Carnot cycle. The heat is absorbed from the hot
bath and released to the cold, namely, QH > 0 and QC < 0. The joint generating function I(uH , uC , s) of work and
heat for a whole finite-time cycle is

I(uH , uC , s) =

∫
D[X]p[X]euQH [X]+uCQC [X]+sW [X]. (S91)

Notice that the system is in contact with only one heat bath at a time. We start from A point (Fig. 1 in main text)
and calculate the joint generating function of a whole cycle.

1. Process I Isothermal compression

We define the compression ratio as r = λ2/λ1. In this process, the work parameter is varied exponentially with the
time

λ(t) = λ1r
t
τC . (S92)

The quantity α of this process is explicitly αC = ln r/τC . The initial temperature of the working substance is (which
is also the initial condition)

ψ̃0 = θC =
ΓC

ΓC − αC
TC . (S93)

If we consider the heat engine runs for many cycles, ψ̃0 takes the final value of ψ̃(τt) of the previous cycle. According
to Eq. (S90), the joint generating function of this process is

II(uH , uC , s) =

{
exp [(ΓC − αC)τC/2] [1 + uC ψ̃(τ−C )]/[1 + uC ψ̃0]

cos (ΩCτC)− αC(s−uC)ψ(0)−(ΓC−αC)/2
ΩC

sin (ΩCτC)

} fn
2

, (S94)

where the initial value is ψ(0) = ψ̃0/(1 + uC ψ̃0), τ−C represents the moment of the end of process I, and the frequency
ΩC is

ΩC =

√
DC(s− uC)

2
=
√
αCΓCTC(s− uC)− (ΓC − αC)2/4. (S95)

Notice that the expression II does not contain uH . But if there exist a previous cycle, ψ̃0 also relies on uH . Therefore,
we always write I(uH , uC , s) for all the processes in a finite-time heat engine cycle.
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2. Process II Adiabatic compression.

At the end of process I, the temperature-like quantity is ψ̃(τC), which is plugged as the initial value for the process
II as a sudden quench of the work parameter λ from λ2 to λ3 at the moment t = τC . Notice that the ratio of the
work parameter in this process satisfy λ3/λ2 = θH/θC . According to Eq. (S80), the temperature-like quantity after
the quench ψ̃+

τC is associated with ψ̃−τC = ψ̃(τ−C ) as

ψ̃+
τC =

λ3ψ̃(τ−C )

λ2 + s(λ2 − λ3)ψ̃(τ−C )
(S96)

=
ψ̃(τ−C )

1− η − sηψ̃(τ−C )
, (S97)

where the efficiency of the finite-time Carnot cycle is η = 1 − θC/θH . According to Eq. (S81), the joint generating
function of process II is

III(uH , uC , s) =

[
1− sη

1− η ψ̃(τ−C )

]− fn2
. (S98)

Notice that the value of the temperature-like quantity ψ̃(τ−C ) depends on uC and s.

3. Process III Isothermal expansion

The work parameter is varied exponentially with the time

λ(t) = λ3r
− t−τCτH . (S99)

The quantity α of this process is explicitly αH = − ln r/τH . The initial condition of this process is

ψ̃(τ+
C ) = ψ̃+

τC , (S100)

or

ψ(τ+
C ) =

ψ̃+
τC

1 + uH ψ̃
+
τC

. (S101)

The adiabatic process is completed suddenly at the moment t = τC , and we use τ+
C to indicate the beginning of

process III. Equation (S90) gives the joint generating function of this process

IIII(uH , uC , s) =





exp [(ΓH − αH)τH/2]
1+uH ψ̃(τC+τ−

H )

1+uH ψ̃
+
τC

cos (ΩHτH)− αH(s−uH)ψ(τ+
C )−(ΓH−αH)/2

ΩH
sin (ΩHτH)





fn
2

, (S102)

where τC + τ−H represents the moment of the end of process III, and the frequency ΩH is

ΩH =
1

2

√
DH(s− uH) =

√
αHΓHTH(s− uH)− (ΓH − αH)2/4. (S103)
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4. Process IV Adiabatic expansion

The last adiabatic is a sudden quench with the work parameter λ changing from λ4 to λ1 at the moment t = τC+τH .
The ratio of the work parameter satisfies λ1/λ4 = θC/θH . According to Eq. (S80), the temperature-like quantity
after the quench ψ̃+

τC+τH is associated with ψ̃−τC+τH = ψ̃(τC + τ−H ) as

ψ̃+
τC+τH =

λ1ψ̃(τC + τ−H )

λ4 + s(λ4 − λ1)ψ̃(τC + τ−H )
(S104)

=
(1− η)ψ̃(τC + τ−H )

1 + sηψ̃(τC + τ−H )
, (S105)

According to Eq. (S81), the joint generating function of process IV is

IIV(uH , uC , s) =
[
1 + sηψ̃(τC + τ−H )

]− fn2
. (S106)

5. Joint generating function of a whole cycle

The joint generating function Icycle(uH , uC , s) of a whole cycle is

Icycle = II × III × IIII × IIV (S107)

=





e(ΓCτC+ΓHτH)/2
[
1− sη

1−η ψ̃(τ−C )
]−1 [

1 + sηψ̃(τC + τ−H )
]−1

1+uC ψ̃(τ−
C )

1+uC ψ̃0

1+uH ψ̃(τC+τ−
H )

1+uH ψ̃
+
τC[

cos (ΩCτC)− αC(s−uC)ψ(0)−(ΓC−αC)/2
ΩC

sin (ΩCτC)
] [

cos (ΩHτH)− αH(s−uH)ψ(τ+
C )−(ΓH−αH)/2

ΩH
sin (ΩHτH)

]





fn
2

,

(S108)

The evolution of ψ(t) is governed by

ψ̇ =

{
−ΓC(ψ − TC) + αCψ + (s− uC)αCψ

2, 0 < t < τC ,

−ΓH(ψ − TH) + αHψ + (s− uH)αHψ
2, τC < t < τH .

(S109)

The initial ψ(0) and the connecting conditions ψ(τ+
C ) are

ψ(0) =
ψ̃0

1 + uC ψ̃0

(S110)

ψ(τ+
C ) =

ψ̃+
τC

1 + uH ψ̃
+
τC

. (S111)

where ψ̃+
τC is associated with ψ̃(τ−C ) through process II. As follows, we give the generating functions for work and

efficiency respectively.

6. Generating function for work

By setting uC = 0 and uH = 0, the generating function for work is IWcycle(s) = Icycle(0, 0, s), explicitly as

IWcycle(s) =





e(ΓCτC+ΓHτH)/2
[
1− sη

1−ηψ(τ−C )
]−1 [

1 + sηψ(τC + τ−H )
]−1

[
cos (ΩCτC)− αCsψ(0)−(ΓC−αC)/2

ΩC
sin (ΩCτC)

] [
cos (ΩHτH)− αHsψ(τ+

C )−(ΓH−αH)/2

ΩH
sin (ΩHτH)

]





fn
2

(S112)
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with ΩC =
√
αCΓCTCs− (ΓC − αC)2/4 and ΩH =

√
αHΓHTHs− (ΓH − αH)2/4. Notice that Eq. (S63) indicates

ψ̃(t) = ψ(t) in this situation.

7. Generating function for efficiency

By setting uH = sη and uC = 0, the generating function for efficiency is Iζcycle(s) = Icycle(sη, 0, s), explicitly as

Iζcycle(s) =





e(ΓCτC+ΓHτH)/2
[
1− sη

1−η ψ̃
−
τC

]−1 [
1 + sηψ̃+

τC

]−1

[
cos (ΩCτC)− αCsψ(0)−(ΓC−αC)/2

ΩC
sin (ΩCτC)

] [
cos (ΩHτH)− αH(s−sη)ψ(τ+

C )−(ΓH−αH)/2

ΩH
sin (ΩHτH)

]





fn
2

,

(S113)
with ΩC =

√
αCΓCTCs− (ΓC − αC)2/4 and ΩH =

√
αHΓHTH(s− uH)− (ΓH − αH)2/4.. Since uC = 0, ψ̃(t) = ψ(t)

during process I (0 < t < τC). Plugging Eq. (S97) into Eq. (S113), we obtain

Iζcycle(s) =





e(ΓCτC+ΓHτH)/2

[
cos (ΩCτC)− αCsψ(0)−(ΓC−αC)/2

ΩC
sin (ΩCτC)

] [
cos (ΩHτH)− αH(s−sη)ψ(τ+

C )−(ΓH−αH)/2

ΩH
sin (ΩHτH)

]





fn
2

.

(S114)

E. Self-consistency check of the joint generating function: fluctuation theorem

The fluctuation theorem for heat engines [13] provides a microscopic understanding of Carnot’s theorem. For the
model presented here which never reaches thermal equilibrium with the heat bath, the fluctuation theorem takes a
different form. In the following, we derive the fluctuation theorem for our finite-time Brownian Carnot engine.

Suppose the engine operates between a hot bath at temperature TH and a cold bath at temperature TC . Moreover,
the the working substance of the engine obeys the same Maxwell-Boltzmann distribution at an effective temperature
θC at both the beginning and the end of the cycle (point A in Fig. 1(a)). The ratio of the probability of a trajectory
X to that of its time reversal trajectory X̃ under the time reversed protocol is related to the entropy change of the
system and the heat functional of the forward trajectory [14],

p[X]

p̃[X̃]
= exp(∆sbath + ∆ssys) = exp

(
−QH
TH
− QC
TC

)
ρi(xi)

ρf (xf )
= exp

(
−QH
TH
− QC
TC

+
Ef − Ei
θC

)
, (S115)

where QH,C denote the trajectory heat transferred from the bath at temperature TH,C to the system, ρi,f refer to the
initial and the final probability distribution of the system, and Ei,f denote the initial and the final stochastic energy
of the system in a cycle. According to the first law of thermodynamics along a single trajectory, the stochastic energy
change comprises the trajectory work and heat,

Ef − Ei = W +QH +QC . (S116)

Accordingly, we can rewrite Eq. (S115) into

p[X] exp

[
QH

(
1

TH
− 1

θC

)
+QC

(
1

TC
− 1

θC

)
− W

θC

]
= p̃[X̃]. (S117)

By taking ensemble average, we obtain the following fluctuation theorem
〈

exp

[
QH

(
1

TH
− 1

θC

)
+QC

(
1

TC
− 1

θC

)
− W

θC

]〉
= 1. (S118)

By choosing the beginning and the ending of a closed cycle at point C [see Fig. 1(a)], we find another fluctuation
theorem

〈
exp

[
QH

(
1

TH
− 1

θH

)
+QC

(
1

TC
− 1

θH

)
− W

θH

]〉′
= 1, (S119)
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where the prime indicates the average is over a different ensemble of trajectories from the former one. With Jensen’s
inequality exp 〈x〉 ≤ 〈exp(x)〉, Carnot’s theorem can be derived as a corollary of both fluctuation theorems

η = − 〈W 〉〈QH〉
≤ 1− TC

TH
= ηC , (S120)

where we have used the conservation of the energy for a periodic steady closed cycle 〈W 〉+〈QH〉+〈QC〉 = 〈Ef 〉−〈Ei〉 =
0.

Since the fluctuation theorem (S118) can also be written as Icycle(1/TH − 1/θC , 1/TC − 1/θC ,−1/θC) = 1, we can
use it to check the validity of the analytical expression of the joint generating function Icycle(uH , uC , s). In this case,
the initial condition is ψ̃0 = θC , and a full cycle can be decomposed into four processes as in Fig. 1. The analytical
expressions of the generating function associated with these processes have been obtained previously. For a specific
set of parameters uH = 1/TH − 1/θC , uC = 1/TC − 1/θC , s = −1/θC , the auxiliary quantity ψ(t) in the cycle can be
obtained by solving Eq. (S109)

ψ(t) =

{
TC 0 < t < τC

TH τC < t < τC + τH ,
(S121)

and the shifted temperature-like variable is ψ̃(t) ≡ θC throughout the whole cycle. ΩC and ΩH are explicitly
ΩC = i(ΓC + αC)/2 and ΩH = i(ΓH + αH)/2. Therefore, the joint generating function of each process becomes

II = e−
fn
2 αCτC (S122)

III = (1− η)
fn
2 (S123)

IIII = e−
fn
2 αHτH (S124)

IIV = (1− η)
− fn2 . (S125)

Thus, we confirm the fluctuation theorem Icycle(1/TH − 1/θC , 1/TC − 1/θC ,−1/θC) = 1 for heat engines.

F. Variances of the power and the efficiency

The derivatives of the generating function give the moments of work distribution. The average work is

〈W 〉 =
∂

∂s

〈
esW

〉
|s=0 =

fn
2

(θH − θC) ln r, (S126)

which can also be obtained from Eqs.(4,7) in the main text. The fluctuation of the work output in a cycle can also
be calculated from the generating function

〈
∆W 2

〉
=
〈
W 2
〉
− 〈W 〉2 =

[
∂2

∂s2

〈
esW

〉
−
(
∂

∂s

〈
esW

〉)2
]
|s=0. (S127)

The fluctuation of the power is defined as

Var(P ) :=

〈
∆W 2

〉

(τC + τH)2
, (S128)

and the relative fluctuation of the power is given by

Var(P )

P
2 =

〈
∆W 2

〉

〈W 〉2

=
4

fn

[
1

κCτC
(
1− η
η

)2 +
1

κHτH

1

η2

]
+

4

fn

[
1− e−κHτH

κ2
Hτ

2
H

(
κ2
Hτ

2
H

(ln r)2
− 1

η2

)
− 1− e−κCτC

κ2
Cτ

2
C

(
1− η
η

)2

]

+
4

fn

(1− e−κCτC )(1− e−κHτH )

κCτCκHτH

(
κHτH
ln r

− 1

η

)
1− η
η

, (S129)
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where κC = ΓC − ln r/τC and κH = ΓH − ln r/τH . The fluctuation of efficiency is given by

Var(ζ):=

〈
(W + ηQH)2

〉

〈QH〉2

=
4(1− η)2

fn

[
1

κCτC
+

1

κHτH

]
− 4(1− η)2

fn

[
1− e−κCτC

κ2
Cτ

2
C

+
1− e−κHτH
κ2
Hτ

2
H

+− (1− e−κCτC)(1− e−κHτH)

κCτCκHτH

]
.

(S130)

In order to achieve the maximum power, we should choose τC = τmax
C and τH = τmax

H according to Eq. (S13) to
realize the CA engine. As a result, the efficiency η should be replaced by ηCA.

Finally, we would like to analyze the scaling of the variance of the power and the efficiency for the CA engine.
When κCτ

max
C , κHτ

max
H � 1, both variances Var(P ) and Var(ζ) decrease inversely with the period of the cycle

τt := τmax
C + τmax

H (note that for the CA engine, ln r is related to τt by Eq. (S13)), that is

Var(P ) =

{
4

fnη2
CA

[
(1− ηCA)2 + 1/δ

]
(1 + δ)√

ΓCΓH

1

τt
+O(τ−2

t )

}
P

2

max, (S131)

and

Var(ζ) =
4(1− ηCA)2

fn
√

ΓCΓH

(1 + δ)2

δ

1

τt
+O(τ−2

t ), (S132)

where δ =
√

ΓHTH/(ΓCTC).
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