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The long wavelength limit of a recent microscopic phase field crystal (PFC) theory of a binary alloy mix-

ture is used to derive an analytical approximation for the segregation coefficient as a function of the interface

velocity, and relate it to the two-point correlation function of the liquid and the thermodynamic properties of

solid and liquid phases. Our results offer the first analytic derivation of solute segregation and solute drag de-

rived from a microscopic model, and analytically support recent molecular dynamics and fully numerical PFC

simulations. Our analytical result also provides an independent framework, motivated from classical density

functional theory, from which to elucidate the fundamental nature of solute drag, which is still highly contested

in the literature.

There are many theories explaining the morphologies and

the underlying physics for near-equilibrium systems that

evolve towards their equilibrium state [1]. By contrast,

theories of physical phenomena associated with far-from-

equilibrium systems remain much less developed. Rapid

solidification from highly undercooled melts serves as a

paradigm of such phenomena. In processes like laser-induced

surface melting, spray forming, and welding among other

technologies, highly super-saturated meta-stable solid solu-

tions can form. In many cases, the non-equilibrium nature of

such process can be exploited to control the degree of super-

saturation of the solid.

At rapid-solidification rates, solute concentration at the

solid-liquid interface (SLI) can deviate substantially from the

values predicted by the equilibrium phase diagram, a phe-

nomenon known as solute trapping [2–8], In addition to so-

lute trapping, the growth of a crystal with a composition dif-

fering from that of its melt requires solute diffusion to move

across the SLI. The free-energy dissipation associated by in-

terface diffusion leads to the phenomenon of solute drag, an

effect which can strongly hinder the transformation rate. So-

lute drag arises due to a competition between interface diffu-

sion rate and a chemical potential difference across the inter-

face. When the velocity of the SLI is low, local equilibrium

is assumed, the chemical potential difference between the SLI

essentially vanishes, and solute drag is negligible. As the in-

terface speed increases, solute diffusion limits the rate of par-

titioning across the interface (solute trapping), leading to an

increasing chemical potential jump with velocity and, hence,

an increasing solute drag. At large SLI speeds, solute parti-

tioning eventually stops, as does diffusion of solute through

the interface, and thus solute drag vanishes.

A phenomenology of solute drag was proposed in the semi-

nal work by Cahn [9] for the case of a grain boundary separat-

ing two solid phases. Although the Cahn model quantitatively

predicts various aspects of the drag effect, it was assumed that

the chemical potential is equal on both sides of the transforma-

tion front, an assumption that does not hold for a rapidly solid-

ifying front. Later, Hillert and Sundman [10] incorporated a

chemical potential jump into their phenomenology, and pro-

posed that the maximum amount of free energy associated

with drag is dissipated. A model for solute drag for solidi-

fication was first proposed by Hillert [11], which considered

the structure of the interface and its effect on drag. Solute drag

experiments are difficult to perform. Some show a significant

change in solute concentration at the SLI interface at rapid so-

lidification rates [12], while some [13] even find no evidence

of solute drag. Subsequent models proposed a partial solute

drag hypothesis [5, 14–16]. More recently, atomistic simula-

tions of Yang et al [15] and Humadi et al [17] proved that the

solid-liquid interface stops partitioning solute at a finite veloc-

ity, consistent with predictions of Sobolev et al [7, 8] and in

contrast to earlier predictions of Aziz et al [3, 14] with some

evidence of partial solute drag.

Traditional phase field models of solidification consider

bulk mass and heat transport coupled to moving interfaces

through effective equilibrium boundary conditions [18–25]

that map onto traditional sharp interface models. While such

an approximation is appropriate at low solidification rates, it is

inappropriate at rapid cooling rates where, as described above,

non-equilibrium solute partitioning and drag become domi-

nant. Based on the pioneering works of Cahn and Hillert [9–

11], modified sharp interface models were developed for rapid

solidification [14, 26]. However, these models are largely phe-

nomenological and are based on physically motivated, but of-

ten ad-hoc, parameters that cannot link the solidification ki-

netics to any microscopic quantity of the liquid and solid.

More recent phase field modelling of rapid solidification has

confirmed much of the phenomenology of these sharp inter-

face models [2–8]. Still, no fundamental link between the

meso-scale solidification process and the microscopic param-

eters of the materials can be made since solute trapping and

drag fundamentally emerge at the atomic scale, where tradi-

tional phase field models, by their very nature, lack any qual-

itative and quantitative detail [25, 27]. At present, no micro-

scopic treatment of the trapping and solute drag coefficients

entering rapid solidification models exists.

Recently, an emerging atomistic continuum modelling for-

malism coined the phase field crystal (PFC) method has been

developed that presents an alternate atomistic framework with

which phenomena such as solute trapping can be studied. In

contrast to the traditional phase-field approach, PFC models

are formulated in terms of order parameters that are periodic

at the atomic scale, but whose dynamics evolve over diffu-

sive time scales relevant to rapid solidification processes. A

phase field crystal model of binary alloy solidification was
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first derived in Ref. [28] as a simplification of a truncated

density functional theory (DFT) expanded around the liquid

state at coexistence. As such, the model inherits crucial micro-

scopic liquid state parameters originating from the two-point

correlation function of the solidifying liquid. The approach

has been shown to self-consistently incorporate the physics of

nucleation, multiple crystal orientations, grain boundary en-

ergy, elasto-plascitiy and topological defects and their dynam-

ics [29–36]. A significant advance in PFC modelling is its use

with multi-scale and renormalization methods to project out

meso-scale phase field models with complex order parameters

[37–39], the coefficients of which maintain their connection

to the microscopic liquid and solid state properties inherent

in the generating PFC theory. In this letter, we use a PFC-

dervied amplitude model of solidification to elucidate, for the

first time, an analytical derivation of the non-equilibrium so-

lute partition coefficient and the solute drag coefficient that

enters models of solute drag.

Multiple scale analysis applied to the PFC alloy model in

[28] yields the following moving front equations for the impu-

rity concentration (ψ) and the amplitude of the reduced atomic

number density (φ) [40],

βV 2 d
2φ

dz2
− V

dφ

dz
=W 2(n̂)

d2φ

dz2
−
∂f

∂φ
(1)

γV 2 d
2ψ

dz2
− V

dψ

dz
=

d

dz

(

M
d

dz

{

(ω + 6Bℓ
2φ

2)ψ + uψ3

})

Their derivation assumes that the atomic number density n ≡
(ρ − ρ̄)/ρ̄ is represented by n = n0 +

∑

j Aje
iGj ·~x, where

no is the reduced average alloy density, and ρ̄ is the refer-

ence liquid density at coexistence. It is assumed that n0 = 0

here for simplicity. The ~Gj is the jth reciprocal lattice vector

of a general multi-mode expansion of the density, and Aj is

the complex density amplitude corresponding to the jth den-

sity wave. We consider here a 2D triangular crystal struc-

ture but the qualitative physics of our results are not expected

to change for other crystal structures. For solidification, it is

suitable to set all the Aj to be real, i.e. Aj = φ. The equa-

tions are written in a co-moving 1D reference frame moving

at velocity V , which is accurate for rapid solidification. The

second order derivatives allow for a two-time scale relaxation

of the density and concentration fields. They can be moti-

vated by considering mass and momentum conservation of

two-species densities ρA and ρB [17, 32, 41]. The coefficients

γ and β are microscopic relaxation parameters for the solute

and density, respectively, while M is the mobility of impurity

atoms. The variable W (n̂) = Bx
0

∑

j n̂ · ~Gj , where n̂ is the

local interface normal vector and Bx
o is the lowest order coef-

ficient of the solid compressibility. The liquid compressibility

is denoted by Bl and expanded as Bl = Bl
0 + Bl

2ψ
2 [28].

The bulk free energy is denoted by f(φ, ψ) and ∂f/∂φ =
6[∆Bo+B

l
2ψ

2]φ−12tφ2+90νφ3, where ∆B0 = Bl
0−B

x
0 .

The variables t, ν, ω, u are the respective coefficients of the

bare φ3, φ4, ψ2 andψ4 terms of a landau expansion of the bulk

free energy. Bulk compressibility of the liquid Bl = 1− ρ̄Ĉ0,

and Bx
0 = ρ̄(̂C)22/(4Ĉ4), where Ĉ2, Ĉ2, Ĉ4 are coefficients

of a fourth order expansion of the two-point correlation func-

tion of the liquid state, given by C(k) = Ĉ0 + Ĉ2k
2 + Ĉ4k

4

[28]. In what follows, we rescale φ̄ = φ/φs and ψ̄ =
ψ − ψs, where φs and ψs are the bulk order parameter and

concentration of the solid phase, respectively. All results

presented here are for {ν, t, u, ω,Bl
2, B

x
o ,W (n), φs,M} =

{1, 0.6, 4, 0.008,−1.8, 1, 2, 0.06, 1}.

For the parameters above, the equilibrium partition coeffi-

cient of the PFC model of Ref.[28] isKe = 0.97. The solidus-

to-liquidus jump for this model is ǫ = (ψs + 1)/Ke − (ψs +
1) ≪ 1, which forms an ideal small parameter to expand ψ.

Notice that in the PFC model, with a quite high value of Ke,

the paramter ǫ is indeed very small. Nevertheless, the jump in

concentration between liquid and solid is small in most alloy

system and thus we anticpate the results derived below to be

applicable in general. Integrating the ψ equation in Eq. 1 from

−∞ to z and substituting ψ ≈ ψs+ ǫψ1+ ǫ
2ψ2+ . . . into the

result gives the following O(ǫ) equation for ψ1,

γV 2 dψ1

dz
−V ψ1=M

d

dz

([

ω+6Bℓ
2φ

2
sφ

2 + 3uψ2
s

]

ψ1

)

(2)

Equation 2 will be used to approximate the concentration pro-

file in the liquid. Higher order terms are needed to approxi-

mate concentration in the solid, but that will not be necessary

here and will be omitted in what follows.

In Eq. 1 the parameterW is a measure of the SLI width and

therefore we approximate the order parameter φ ≈ φo(z) ≡
[1−tanh(z/W )]/2, and define z = 0, where φo(0) = 1/2, as

the interface between solid and liquid ordering analogous to

molecular dynamics studies [15]. φo(z) is is the exact lowest

order solution of the PFC model for a pure material [42]. We

have found that it is also a reasonable approximation for the

density amplitude of the PFC alloy model. Substituting the

above expression for φ into Eq. (2) gives,

−
V

M
ψ1 =

d

dz

[

b+ δ

[

1− tanh

(

z

W

)]2]

ψ1 (3)

where b ≡ ω + 3uψ2
s − γV 2/M and δ ≡ 6Bℓ

2φ
2
s. This

equation can be solved analytically with an integrating fac-

tor that must be solved numerically. In favour of obtaining

a tractable analytic expression to work with, we exploit the

fact that δ/b ∼ 10−2 and | tanh | < 1 and seek an analytical

solution to lowest order in δ/b. This gives,

ψ1 ≈ e−
V

Mb{z+
δW

b
Φo(z)} {1 +O (δ/b)+· · ·} (4)

where Φo(z) ≡ tanh
(

z
W

)

− 2 ln
(

1 + tanh
(

z
W

) )

. In ob-

taining Eq. (4), the integration constant was found by apply-

ing the boundary condition ψ(z = W/2) = ψe
ℓ ≡ ǫ + ψs

at V = 0, where ψe
ℓ is the equilibrium liquid concentration,

and z = W/2 defines the point where the concentration pro-

file reaches a maximum, consistent with molecular dynamics

[15] and previous PFC alloy simulations [17]. We also take

the far field concentration in the liquid to be the same as the

solid concentration ψs. For simplicity, we analyze only the

exponential part of Eq.(4). We found that including the higher
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order terms gives essentially the same results.

The segregation coefficient K(V ) is defined to be the ra-

tio of the interface solid concentration to that of the maxi-

mum liquid concentration, which occurs when φ = 1/2 at

z = W/2. In the PFC model, the concentration is expanded

around c = 0.5, which yields negative concentrations on the

left side of the phase diagram. As a result, the solute partition

coefficient for the PFC alloy model is defined as

K(V ) =
ψs + 1

(ψs + ǫψ1(W/2)) + 1
(5)

Figure (1) plots K(V ) for two cases, the first case (purple

curve online) for γ 6= 0 and the second case (blue curve on-

line) for γ = 0. For the first case K(V ) = 1 at a finite V ,

while in the second case, K(V ) → 1 only asymptotically as

the solid-liquid interface velocity V → ∞.

0.0 0.1 0.2 0.3 0.4 0.5
0.970

0.975

0.980

0.985

0.990

0.995

1.000

Velocity

K
HV
L

FIG. 1: Segregation coefficient as a function of the interface velocity.

The blue line represents the diffusive case where the K(V ) tends to

unity asymptotically as V → ∞. The purple line illustrates the case

where the K(V ) reaches unity at finite velocity, here V ≈ 0.4.

There are two competing theories for explaining K(V ) in

the literature. The first, by Aziz [3] assumes purely diffusive

solute transport and flux balance across the interface to pre-

dict the segregation coefficient. Aziz predicts that K(V ) ap-

proaches complete trapping (K(V ) = 1) asymptotically, and

never reaches unity at finite V . More recently, Sobolev [7, 8]

proposed a phenomenology that considered inertial dynamics

of solute atoms in the liquid. This lead to the emergence of

an effective diffusion coefficient, which makes it possible for

K(V ) to reach unity at a finite velocity.

In our microscopic PFC formalism, the constant b in Eq. 4

emerges as an effective diffusion coefficient. The value of

b decreases to zero as the interface velocity increases. As a

result, the liquid concentration tends to the solidus concentra-

tion. However, this is only true for non-zero inertial solute

relaxation time (γ 6= 0). Otherwise, b always remains non-

zero, and does not change the classical diffusive nature of the

concentration profile. This allows for a concentration jump to

develop across the two sides of the interface, even for arbitrar-

ily large interface velocities(V ).

The above analytical PFC result is consistent with the pre-

vious numerical simulations of the alloy PFC model [17]

as well as with recent molecular dynamics simulations [15].

We note that a higher order perturbation analysis of the

coupled Eqs. (1) would be required to compare the results

quantitatively with the full numerical simulations. How-

ever, the physics does not change. Our result is the first

solute trapping theory to offer a prediction of the complete

solute trapping velocity in terms of microscopic parame-

ters. Namely, Eq. (4) predicts that complete trapping oc-

curs when V ∗ = {M
(

ω + 3uψ2
s

)

/γ}1/2. The approx-

imate form of ψs was derived in Ref. ([28]), given by:

ψs ≈±ψsl

(

1 +G{1−
√

bliq/bsol}
)

, where the variables in

this expression are given by ψsl =
√

(∆Bsl
o −∆B0) /Bl

2,

G = −8t2/{135v
(

4∆B0 − 3∆Bsl
o

)

}, ∆Bsl
o = 8t2/135v,

while bliq = (ω + 3uψsl) /2 and bsol = bliq +
2Bl

2

(

4∆B0 − 3∆Bsl
o

)

/5v. Thus, we have shown that the

complete trapping velocity is inversely proportional to the

square root of the inertial relaxtion tme and proportion to ψs,

which is determined by the properties of the two-point corre-

lation function of the liquid C(|k|), through Bl, B
x
o , and the

bulk solid free energy density, through (t, v, ω, u).

Solute drag in the context of the PFC formalism can also be

elucidated using Equation (4). The theoretical formalism of

solute drag is briefly summarized here. The free energy den-

sity available for solidification of a binary alloy (denoted here

as ∆Gs) is partially dissipated due to solute atoms diffusively

redistributing parallel to the solidifying front before attaching

to the solid phase. This dissipation is referred to as solute

drag, and reduces the total effective free energy available for

solidification (denoted ∆Gc) to

∆Gc = ∆Gs − f∆Gd (6)

where the maximum drag was shown by Ahmad et al to be

∆Gd = (ψℓ − ψs)(µℓ − µs) [5], while ∆Gs = Fs(ψs, T )−
{Fℓ(ψℓ, T )+(ψs−ψℓ)(µℓ)}, derived by Cahn [43], where F
denotes bulk free energy density and µℓ and µs are the inter-

diffusional chemical potentials of the liquid and solid phase

and evaluated at ψl and ψs, which are, respectively, the liquid

and solid concentrations on the liquid and solid side of the

interface. We can equivalently express ∆Gs = ψs∆µB +
(1 − ψs)∆µA, where ∆µA (∆µB) are the solvent A (solute

B) chemical potential differences between the solid and liquid

phases. The important constant f has limits 0 < f < 1,

with f = 0 implying zero drag f = 1 maximum drag. We

determine f in the PFC formalism below.

The above expressions for ∆Gs and ∆Gd were applied

by Ahmad and co-workers [5] to a phenomenological phase-

field model. Since the PFC amplitude equations (1) are also

a phase-field theory, derived by coarse graining a microscopic

PFC theory, we similarly apply the above expressions to the

free energy of the PFC amplitude model. This is derived from

f(φ, ψ), which in the bulk gives

Fs =
45νφ4s

2
− 4tφ3s + 3

(

Bℓ−Bx
o

)

φ2s +
uψ4

s

4
+
ωψ2

s

2

Fℓ =
uψ4

l

4
+
ωψ2

l

2
(7)

for the free energy density in the solid (Fs) and liquid (Fℓ).
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At low thermodynamic driving forces, molecular dynamics

simulations and experiments suggest that V ∝ −∆Gc [44],

a relation that becomes less accurate near complete trapping

velocities. The solute drag coefficient f in Eq. (6) can thus

be determined by tuning f until a linear relationship between

V and ∆Gc emerges. We do so here numerically. To pro-

ceed, the solid concentration ψs and order parameter φs are

assumed constant in the solid during steady-state front prop-

agation, while the liquid concentration ψ = ψs + ǫψ1 is de-

termined by Eq. 4. These quantities are substituted into Fℓ

and Fs to compute ∆Gs, ∆Gc and ∆Gd. Fig 2a shows three

different cases of ∆Gs versus V . The blue line represents the

diffusive case where no complete trapping occurs (γ = 0).

The purple and the yellow lines show ∆Gs for γ = 1.24 and

γ = 1.88, respectively. Fig 2b plots ∆Gd for the same γ val-
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(b)
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ϒ=1.25

ϒ=1.88

f=0.85

f=0.75
f=0.65

FIG. 2: The driving forces for crystallization for γ = 0, 1.25, 1.88,

where the colour (online) corresponding to each γ is shown in panel

(b)). (a) The total driving force available for transformation. (b)

The maximal solute drag. (c) The total available crystallization free

energy vs. interface velocity. Each curve (γ value) shows the best fit

f that makes ∆Gc ∝ V at low velocities.

ues as Fig 2a. It is noteworthy that the maximum amount of

solute drag (minimum of ∆Gd) does not change as the de-

gree of trapping (γ) changes. However, the curvature of ∆Gd

at large V is quite sensitive to γ. This occurs because as γ
increases, complete trapping occurs at lower velocity (V ∗).

This causes the concentration difference across the interface

to decrease rapidly for V > V ∗, thus leading to a decrease

in ∆Gd, which depends on ψℓ − ψs. Fig 2c shows that for

each γ, the partial solute drag fraction f exists for which

∆Gc ∝ V at low SL velocities. This confirms previous solute

drag phenomenologies, and is consistent with recent molec-

ular dynamics results [15]. Our results illustrate that as the

solute relaxation coefficient γ changes V ∗, and the degree of

solute trapping, it also affects the driving force for complete

crystallization through ∆Gd and the solute drag coefficient f .

Other materials parameters of our phase field crystal the-

ory were also examined for their effect on solute drag. An

important one is the equilibrium solute partition coefficient

Ke, which is controlled by ν, the coefficient of the φ3 term

in the bulk PFC free energy functional. Increasing ν leads to

increasing Ke. Materials with larger Ke exhibit lower com-

plete trapping velocities (V ∗) because less driving force is re-

quired to reach complete trapping for a decreasing concentra-

tion jump ψℓ − ψs. Thus, solute drag ∆Gd also decreases as

Ke increases. Interestingly, while Ke changes the maximum

available solute drag (∆Gd), we found that it does not change

the partial solute drag coefficient f . Fig 3 illustrates −∆Gc

Vs. V for three values of ν (or, equivalently, Ke), at a fixed

γ (other parameters are as indicated at the beginning of this

paper). For all curves in Fig 3, the value of f is the same.

This illustrates that in all cases, the driving force for crystal-

lization (∆Gc) increases as solute drag decreases because of

the decreasing of ∆Gd, not because f is changing. This im-

portant prediction implies that solute drag is strictly a kinetic

process (i.e. ∆Gd depends on V , through Ke) and that f is

a thermodynamic quantity that has no effect on the maximum

solute drag.

0.0 0.1 0.2 0.3 0.4 0.5
0.00000

0.00005

0.00010

0.00015

0.00020

Velocity

v = 0.9

v = 1.0

v = 1.1

f = 0.6

−
∆
G

c

FIG. 3: The driving force for crystallization, the three different lines

show the different Ke by changing the value of ν (γ = 1.88 is fixed).

In summary, an amplitude model derived from a micro-

scopic phase field crystal model has been derived to study the

phenomena of solute trapping and solute drag, two important

materials processes that remain poorly understood. We have

derived a first order analytic expression for the concentration

profile in the liquid as a function of interface velocity and

position, and used it to derive the solute trapping coefficient
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K(V ). Our model predicts that when inertial dynamics are in-

cluded in solute transport, complete trapping occurs at a finite

velocity, consistent with the phenomenology of Sobolev [7, 8]

and recent MD simulations. A key result is the derivation of

an expression for the complete trapping velocity as a function

of the bulk compressibility of the solid and liquid and the bulk

free energy of each phase.

In addition, we used our result for K(V ) to elucidate the

role of the solute drag coefficient. Partial solute drag is pre-

dicted for a solidifying front in the context of the PFC model.

As V increases, the maximum solute drag decreases propor-

tionately to the complete trapping velocity and solute relax-

ation time. The larger the solute relaxation parameter (γ), the

lower the complete trapping velocity and therefore the smaller

the amount of solute drag (f ). For fixed γ, the PFC model

predicts a linear relationship between interface velocity and

the total free energy for crystallization, consistent with re-

cent MD simulations. It was found that the total available

free energy for solidification and the maximum solute drag

are velocity dependent, while the partial solute drag coeffi-

cient f was independent of the velocity. Model parameters

such as those that alter the equilibrium segregation coefficient

(Ke) were also examined. It was found that as Ke increases,

complete trapping occurrs at slower velocities due to lower

driving forces required by the system. This also changes the

maximum available solute drag, but, again, does not affect the

solute drag coefficient f .

The results of this work comprise the first independent pre-

dictions of solute trapping and drag concepts emerging from

a continuum theory that is fundamentally derived from a mi-

croscopic density functional theory. As a result, the analytical

and numerical results presented here can be related to both

thermodynamic material properties of the solid and liquid, as

well as to the microscopic correlation properties of the melt

from which crystallization occurs.

The authors would like to acknowledge the National Sci-

ence and Engineering Research Council of Canada (NSERC)

for the finical support of this work.
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