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Microscopic universality and the chiral phase transition in two flavor QCD
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We reanalyze data from available finite-temperature QCD simulations near the chiral transition, with the
help of chiral random matrix theory~chiral RMT!. The statistical properties of the lowest-lying eigenvalues of
the staggered Dirac operator for SU~3! lattice gauge theory with dynamical fermions are examined. We
consider temperatures below, near, and above the critical temperatureTc for the chiral phase transition. Below
and aboveTc the statistics are in agreement with the exact analytical predictions in the microscopic scaling
regime. AboveTc we observe a gap in the spectral density and a distribution compatible with the Airy
distribution. NearTc the eigenvalue correlations appear inconsistent with chiral RMT.

PACS number~s!: 12.38.Gc, 11.10.Wx, 11.15.Ha, 11.30.Rd
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I. INTRODUCTION

It is inherent to the lattice approach to quantum fie
theory that one has to extrapolate from finite lattices, fin
statistics and noncritical coupling parameters to infinite
tices, infinite statistics and critical points. Since the res
supposedly is a nontrivial, nonperturbatively defined qu
tum field theory, this process is plagued by uncertainties
typical example of such a situation, where all these asp
combine, is the study of the thermal transition in QCD f
small quark masses. One is interested in the continuum l
~gauge couplingg→0), small or vanishing fermion masse
(m→0), close to critical temperature (T→Tc) in the ther-
modynamic limit (Lx→`) — a formidable problem.

The extrapolations are always based on assumption
the asymptotic behavior. Well-known examples are sca
functions based on renormalization group and chiral per
bation theory — an expansion around a ground state w
Goldstone bosons. Here we will examine another such
proach, which should allow the extrapolation to infinite vo
ume and vanishing fermion mass: chiral random ma
theory ~chiral RMT!.

A. Chiral random matrix theory

RMT attempts to identify universal features of ensemb
of ~random! matrices with common symmetry properties.
chiral version, if successful, allows one to separate two
pects of a theory such as QCD: the general universal p
erties shared with other theories from the model-spec
‘‘dynamical’’ content of the theory. Microscopic eigenvalu
0556-2821/2000/62~1!/014503~9!/$15.00 62 0145
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distribution shapes are an example of the first aspect, ex
tation values of the fermion condensate of the second.

The limitations for validity of the chiral RMT consider
ations~for a givenT in the phase of broken chiral symmetry!
are set by@1,2#

1

LQCD
!Lx!

1

mp
, ~1.1!

whereLx is the linear size of the system andmp is the mass
of the lightest~pseudo-!Goldstone boson. The second restr
tion imposes that the pion does not fit into the space-ti
volume and it therefore appears to be unphysical. Howe
various correlators in the Dirac operator spectrum can
computed precisely in this limit.

Chiral RMT has been proven to give exact analytical p
dictions for the spectrum of the Dirac operator in the mic
scopic limit @3#. The microscopic scaling region is simply
blowup of the origin in the spectrum. To be specific, o
considers eigenvaluesl on the scalep/VS whereS is the
chiral condensate, related to the spectral density per unit
ume r(l) via the Banks-Casher @4# relation S
5 lim

l→0
lim

V→`
pr(l). This regime is, by definition, only

well defined in the spontaneously broken phase wherer(0)
Þ0. In the phase with restored symmetry the scale of inte
is set by the density of states in the vicinity of the onset
r(l).

Here we present a study of the microscopic correlators
the spectrum of the staggered Dirac operator in SU~3! gauge
theory with dynamical fermions at finite temperature. Sp
©2000 The American Physical Society03-1
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F. FARCHIONI et al. PHYSICAL REVIEW D 62 014503
cifically we examine the low lying eigenvalue statistics
temperatures below, near, and above the critical tempera
of the chiral phase transition.

Our analysis is based on the evaluation of the MILC C
laboration’s gauge configurations@5,6#. We therefore con-
centrate on the new aspects connected to RMT ideas fo
spectral correlators of the Dirac operator. In particular
T.Tc we study the singularity at the inner end point of t
spectral density.

B. Temperature transition

Strictly speaking, in the continuum limita→0, nonzero
temperature is realized for latticesnx

33nt with T
51/@nta(bg)# and nt /nx→0. In that limit, for vanishing
quark massm, one expects a phase transition atTc . In Ref.
@5# the critical temperature was estimated to lie between
and 154 MeV. ForT,Tc chiral symmetry is broken sponta
neously, with massless pseudoscalars and^c̄c&Þ0; above
Tc we expect restoration of this symmetry. Whereas for p
Yang-Mills theory the deconfinement transition is associa
with a breaking of the center symmetry with the Polyak
loop as order parameter, this symmetry is explicitly brok
by the fermion action. Nevertheless, remnants of the orig
breaking feature of the Polyakov loop persist even for sm
fermion masses.

The nature of the chiral phase transition depends on
number of flavorsNf . An argument based on a 3Ds-model
analysis@7# predicts a first order phase transition forNf>3.
For Nf52 one expects a second order phase transition w
SU(2)3SU(2).O(4) scaling behavior. However, even fir
order behavior may be arguable@8–10#. For staggered fer-
mions at nonvanishing lattice spacing the correct counting
flavors is unclear since flavor symmetry is restored only
the continuum limit. Staggered fermions~as simulated by
MILC with the hybrid R algorithm @11#! correspond to the
caseNf52 in the continuum limit. On coarse lattices the
defined fermions should show at least U(1).O(2) scaling
behavior. For a discussion of the various scenarios see R
@12–14#.

It is unclear whether the phase transition atTc extends
towards m.0 or whether, when moving from lower t
higher temperature, one just observes crossoverlike beha
Some evidence points towards this second scenario@15,12#.
In the following, we denote the crossover~phase transition!
position byTc(m) or simply Tc .

II. EXPECTATIONS FROM CHIRAL RMT

According to the nature of the elements in the rand
matrix, chiral RMT appears in three universality classes.
this paper we consider the SU~3! gauge theory with quarks in
the fundamental representation, which belongs to the uni
sality class of the chiral unitary ensemble~chiral UE!. The
partition function under study is@2,16,17#

Z (Nf )~$m%!5E dMe2N Tr U(M2))
f 51

Nf

det~M1T1 imf !,

~2.1!
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whereM is a 2N32N block Hermitian matrix~the elements
of W being random complex numbers!, andT is a determin-
istic, i.e., not random, off-diagonal block matrix

M5S 0 W

W† 0 D , T5S 0 t

t 0D . ~2.2!

Here dM denotes the Haar measure,U(x) is an analytic
function.

The predictions from chiral RMT concern the correlatio
between the eigenvaluesl of D[M1T on the scale of in-
dividual eigenvalues in the thermodynamic limitN→`. The
matrix D is the analogue of the massless Dirac operato
QCD. The chiral phase transition within chiral RMT is ide
tified through the value of the spectral density of the eig
values ofD near zero, i.e., using the Banks-Casher relati

Modeling the chiral phase transition in chiral RM
amounts to driving a depletion of eigenvalues ofD near the
origin by means of some temperature parameter. Two se
rate approaches have been examined in the literature. F
the unitary invariant chiral RMT@2,3#, corresponding to Eq
~2.1! with T50, in which the chiral phase transition is drive
by tuning U(M2). Second, the nonunitary invariant chir
RMT @16–18#, corresponding to Eq.~2.1! with U(M2)
5M2, where the deterministic block matrixT mimics the
effect of the temperature. In this paper we do not need
distinguish between the two approaches as they are co
tent for the quantities measured here.

Below Tc , i.e., whenr(0)Þ0, chiral RMT predicts@19#
the probability distribution for the smallest eigenvalue~for
the trivial topological sector!

P~z,$m%!5
z

2
e2z2/4

det1< i , j <Nf
Ci j ~$Am21z2%!

det1< i , j <Nf
Ai j ~$m%!

,

~2.3!

with

Ai j ~$m%![m i
j 21I j 21~m i !,

Ci j ~$m%![m i
j 21I j 11~m i !,

z52plr~0!N, and m f52pmfr~0!N, ~2.4!

wherer(0) is the spectral density at the origin for themass-
lesssituation@i.e., whenmf50 in Eq. ~2.1!#. I j denotes the
j th modified Bessel function. This result is universal in t
chiral RMT context, that is, the analytic form ofP(z,$m%)
does not change under deformations ofU(M2) provided that
r(0)Þ0. After the identificationV[2N (V is the physical
volume in lattice units!, Eq. ~2.3! allows us to extractS
5pr(0) ~the fermion condensate in the chiral limit! from
finite-volume Dirac spectra. Of course, in this the mild co
dition ~1.1! must be satisfied.

Above Tc , when there is a finite gap in the spectral de
sity, the repulsion between the eigenvalue pair6lmin be-
comes negligible; chiral RMT hence predicts asoft inner
edge, known as the Airy solution@20,21#. At Tc—signaled in
chiral RMT by a powerlike behavior of the spectral dens
3-2
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MICROSCOPIC UNIVERSALITY AND THE CHIRAL . . . PHYSICAL REVIEW D 62 014503
at smalll— r(l)}l1/d, the prediction from chiral RMT is
not unique. It turns out that the spectral correlators dep
on the value ofd @22#.

The distribution of the smallest eigenvalue is a spec
one-point correlation function and is quite sensitive to sta
tical fluctuations~see below!. As an additional measure w
also study a two-point correlator: the level spacing distrib
tion P(s). Note that the level spacingss5si 112si are de-
termined in the unfolded spectrum$si% i 51

2N . Unfolding sepa-
rates the fluctuation properties of the spectrum from
supposedly smooth background behavior. The unfolded v
able is defined in terms of the eigenvalue spectrum and
local average spectral density by

si5E
0

l i

^r~l!&dl. ~2.5!

The RMT prediction for the level spacing distribution is we
approximated by the unitary Wigner surmise

P~s!5
32

p2
s2e24s2/p. ~2.6!

The level spacing distribution is not expected to be affec
by temperature and masses in chiral RMT, see, e.g.,
@23#.

Chiral RMT makes predictions for average spectral co
elators in sectors with definite topological chargen, i.e., de-
rived assuming exact zero modes~these are not included in
the predicted distributions; see Ref.@24# for the result of the
weighted summation of all topological sectors!. For
Ginsparg-Wilson fermions@25#, which realize chiral symme
try on the lattice, one may identify exact zero modes as
sulting from topological excitations according to the Atiya
Singer index theorem~for Wilson fermions one can
hypothesize that zero modes are replaced by real mod!.
This is not the case for staggered fermions, where exact
modes are absent away from the continuum limit@26# and
even gauge configurations with nonvanishing topologi
charge do not give zero eigenvalues. Exact zero modes
here replaced by ‘‘almost’’ zero modes which accumulate
the origin in the continuum limit. In the strong coupling r
gion the microscopic staggered Dirac spectra summed
all topological sectors show@27,28# good agreement with the
analytical prediction for the topologically neutraln50 sector
from chiral RMT. However, approaching weaker coupli
observations contradicting this scenario have been found
two-dimensional context@29#.

Before turning to the numerical studies, let us comm
on the validity of the chiral RMT predictions. The conditio
for application of chiral RMT in lattice analyses is well e
tablished whenT;0: The range in the unfolded spectru
over which the chiral RMT correlations dominate isulu
< f p

2 /(^c̄c&Lx
2) @30,31#, wheref p is the pion decay constan

An equivalent statement forT>Tc is not known and no
stringent tests of the low-lying eigenvalue statistics ha
been carried out so far. Let us emphasize that even tho
the larger part of the studies of chiral RMT have been
01450
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cused on the situation wherer(0)Þ0, there is nothing
wrong from first principles in using chiral RMT whenr(0)
50.

III. GAUGE FIELD CONFIGURATIONS AND ANALYSIS

By courtesy of the MILC Collaboration@5# there are sets
of gauge configurations@6# available to the lattice commu
nity. These were generated with two species of dynam
staggered fermions, at various lattice sizes, temperatu
values of the gauge coupling and small values of the b
fermion mass. In Table I the samples used in the pres
study are listed. For further details on the method of de
mination of the gauge configurations and the physical par
eters we refer to Ref.@5#.

The massless staggered Dirac operator is anti-Hermi
and therefore has purely imaginary eigenvalues, lying sy
metric to the origin. We determine the lowest lying eigenv
ues with help of the implicitly restarted Arnoldi method@32#,
using Chebyshev polynomials to improve the convergenc

The convergence speed depends on the separation
tween the eigenvalues. The configurations belowTc there-
fore exhibit much slower convergence and forV5243312
the determination is then quite time consuming. Configu
tions that are supposedly aboveTc develop a gap for the
smallest eigenvalue and the convergence of the diagona
tion is faster. All eigenvalues have been obtained with
precision of at least five significant digits. We have det
mined~on the positive imaginary axis! the lowest ten eigen-
values for the 12334 ensembles and the lowest eight eige
values for the 243312 ensembles.

The chiral RMT prediction for the smallest eigenvalu
distribution has been tested against quenched QCD@33,34#
and dynamical SU~2! @28# lattice simulations atT50; there
are also recent quenched QCD results for nonzero temp

TABLE I. Summary of the MILC configurations used in ou
analysis~for FT01 we only considered a subset of the total of 1
configurations available!. The suggestions in the right-most colum
are based on MILC’s results. The transition is nearb55.26 fornt

54 andb55.725 fornt512.

MILC set No. conf’s nx nt bg ma(bg) phase

124A 61 12 4 5.25 0.0125 ,Tc

124B 91 12 4 5.26 0.0125 ,Tc

124C 126 12 4 5.27 0.0125 nearTc

124D 57 12 4 5.28 0.0125 .Tc

1241 42 12 4 5.25 0.008 ,Tc

1242 50 12 4 5.255 0.008 ,Tc

1243 45 12 4 5.26 0.008 nearTc

1244 47 12 4 5.265 0.008 nearTc

1245 42 12 4 5.27 0.008 .Tc

1246 40 12 4 5.28 0.008 .Tc

FT01 30 24 12 5.65 0.008 ,Tc

FT03 131 24 12 5.725 0.008 nearTc

FT04 188 24 12 5.8 0.008 .Tc

FT05 146 24 12 5.85 0.008 .Tc
3-3
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F. FARCHIONI et al. PHYSICAL REVIEW D 62 014503
ture @35#. RMT distributions for the bulk nearest-neighb
spacing in both, the confinement and the deconfinem
phase of full QCD have been observed in Ref.@23# on 63

34 lattices@Wigner surmise, see Eq.~2.6!#.

IV. REPORTING THE RESULTS

We now turn our attention to the measurement of
statistical properties of the Dirac operator. Starting with
distribution of all eigenvalues and then separating out
lowest and the second lowest eigenvalue we observe the
indication of a discrepancy with chiral RMT. In order t
investigate this discrepancy further we study the level sp
ing distribution. Finally we focus on the inner edge of t
spectrum forT.Tc and measure the exponent for the sing
larity of the spectral density.

A. Eigenvalue density

Figure 1 gives the eigenvalue distribution as obtain
from the lowest ten~or eight for the large lattices! eigenval-
ues for each configuration. It coincides with the distributi
from all eigenvalues only up to the lowest of all ten
~eighth! eigenvalues. In order to emphasize this feature
also plot the distribution histogram of this tenth~eighth! ei-
genvalue in full black.

A remarkable change in the features of the distributio
occurs aroundTc , as given in Table I. In particular fornx
524, nt512 a gap inr(l) appears forT.Tc .

Since we do not know about the topological charge
most of the configurations studied here, we cannot sepa
the trivial from the nontrivial topological sectors, as wou
be required for a faithful comparison with chiral RMT di
tributions. For sufficiently rough lattices~i.e., in the strong
coupling region!, one can argue@28# that the topological
chargen is effectively zero from the fermionic point of view
however this is no more the case for fine enough lattices@29#
and the problem of the knowledge of the topological cha
becomes critical. ForT.Tc the situation is completely dif-
ferent, since topological fluctuations are suppressed in
continuum theory.

The ‘‘microscopic’’ distributions should be in the chira
UE universality class and prediction~2.3! should apply in
particular for the smallest eigenvalue forT,Tc . A fit of the
corresponding prediction for the topologically trivial ca
(n50) to the normalized data provides us with the~infinite
volume! parameterS. We assume the continuum symmetr
i.e., Nf52 in Eq. ~2.3!. This one-parameter fit appears re
sonable only for data concerning temperatures well belowTc
as indicated in Fig. 2~a!. This is made explicit in Table II
where the fitted values ofS together with the correspondin
x2/NDF are reported; the latter increases withT, and for T
.Tc ~in agreement with Table II! prediction~2.3! becomes
incompatible with data.

The formal chiral RMT expression~2.3! gives the eigen-
value distribution as a function of volume and fermion ma
the parameterS ~the spectral density at the origin! is thus
defined implicitly as the extrapolation to infinite volume a
vanishing fermion mass. From our fits—if the data follow
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chiral RMT formulas—S should therefore be independent
the spatial lattice sizeLx and the fermion massm.

For, e.g., 12334, b55.25 we find agreement ofS for
m50.0125 and 0.008 within the errors. Atb55.26 the val-
ues disagree. This value ofb is, however, close toTc and the
position of the phase transition~or crossover! is quite sensi-
tive to m. Such a change of the transition point is not a
counted for in chiral RMT, which is not at all sensitive to th
underlying dynamics of QCD.

FIG. 1. Histograms for the ten~or eight! smallest eigenvalues
The contribution from the tenth~eighth! eigenvalue is indicated in
black. ~a! 12334, m50.0125, ~b! 12334, m50.008, ~c! 243

312, m50.008.
3-4
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MICROSCOPIC UNIVERSALITY AND THE CHIRAL . . . PHYSICAL REVIEW D 62 014503
For comparison we have to extrapolate the MILC valu
@5# for the chiral condensate both, to infinite volume and
vanishing quark mass. Since~except for chiral RMT! we
have no firm prediction concerning the volume dependen
we just extrapolate the MILC results for the large lattices
b55.65 and 5.725 linearly to vanishing quark mass. W
know, however, that finite-volume effects on the condens

FIG. 2. Histograms for the first eigenvalue.~a! 12334, m
50.0125,~b! 12334, m50.008, ~c! 243312, m50.008. For the
data where we fitted to chiral RMT distribution~see Table I! we
also plot the fits. The error bars in~a! are shown to indicate the
typical size of errors in all histograms.
01450
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increase as the quark mass decreases. Therefore, it is
surprising that our linear extrapolation of MILC results ten
to come out slightly but systematically smaller than the v
ues we find in Table II.

The issue of the topological sector is likely to be partic
larly relevant for the finest lattice at our disposal (243312),
where almost zero modes could be present and spoil the
lidity of the trivial sector predictions from chiral RMT
These could be the cause of the bump observed for smal
at b55.8, both in the spectral density and in the small
eigenvalue distribution. It is therefore with some hesitatio
that we compare the histograms for the smallest eigenva
in Fig. 2 with these predictions.

In order to further investigate this feature, we studied~for
the set withb55.725) the influence of the configuration
where the eigenvectorsu0 of the lowest eigenvalues exhibit
large contribution to the total chirality, i.e.u^ū0g5u0&u
>0.08. According to the index theorem, these configuratio
with large chirality, which make up roughly one half of th
ensemble, tend to carry nonvanishing topological charge
therefore zero modes. Indeed we find that a substantial
~75%! of the first peak may be explained from these con
butions.

These findings suggest that indeed topological modes
responsible for a low-lying peak in the distributions. Belo
Tc all topological sectors are present and the low-lying
genvalues have comparable magnitudes~their average posi-
tion being roughly proportional ton). When the temperature
approachesTc the theoretical expectation is that the top
logical fluctuations begin to be suppressed, although
present in the ensemble, quasi-superimposed on the b
ground distribution, which starts to broaden significan
with increasing temperature. Sufficiently far aboveTc only
the topologically trivial sector survives and there may be
small eigenvalues at all. This is indeed what we actua
observe for the lattice 243312.

In a recent study of quenched configurations@35# there
have been indications for a dilute gas of instanton–a
instanton pairs producing a Poissonian distribution of sm
eigenvalues aboveTc . These may be suppressed or abs
when considering dynamical fermions. In our context th

TABLE II. Values of the scaleS as obtained from compariso
of lattice data forP(lmin) with chiral UE.

nx nt b m S x2/NDF

12 4 5.25 0.0125 0.647~29! 0.495
12 4 5.26 0.0125 0.571~26! 0.562
12 4 5.27 0.0125 0.449~29! 1.651
12 4 5.28 0.0125 0.138~13! 2.129
12 4 5.25 0.008 0.686~37! 0.368
12 4 5.255 0.008 0.551~52! 1.218
12 4 5.26 0.008 0.459~43! 1.379
12 4 5.265 0.008 0.331~39! 2.517
12 4 5.27 0.008 0.168~21! 2.806
24 12 5.65 0.008 0.0198~18! 1.048
24 12 5.725 0.008 0.0063~60! 5.063
3-5
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seems to be the case for the finest lattices (243312 with b
55.85) at our disposal.

Figure 3 gives the histograms for the second smalles
genvalues. Again we notice a dramatic change of the dis
bution shape aroundTc(m).

We interpret the sudden flatness of the distribution of
smallest eigenvalues as being~i! due to the vanishing spec
tral density and~ii ! due to increasing statistical fluctuation
near the chiral phase transition. The latter effect is not rep
duced in chiral RMT since this is a zero-dimensional a
nondynamical theory. Furthermore, the mutual overlap
P(l1) and P(l2) increases forb→bc . This is also incon-
sistent with chiral RMT. In order to study this effect furth
we now turn to the level spacing distributions.

B. Level spacing distribution

Another observable with definite predictions from RM
~see Sec. II! is the distribution of level spacings. The adva
tage here is, that the level spacing should not be influen
by possible distortions of the smallest eigenvalues due to
unknown topological charge of the configurations~if the
smallest eigenvalues are removed from the data!.

The studies of the level spacing statistics in lattice data
far have shown a uniform picture consistent with the RM
prediction~2.6!. The agreement extends on both sides of
confinement-deconfinement phase transition@23,36#. How-
ever, to the authors’ knowledge there is no analytical pred
tion from chiral RMT for the level spacing distribution whe
focusing on the soft edge or atTc . So one might worry that
the standard prediction, Eq.~2.6!, is not appropriate when
r(0)50. Within theT model of Ref.@16# for T5Tc andT
53Tc , we have performed a numerical high statistics sim
lation to eliminate such doubt, and we there confirmed
distribution~2.6!. @The T model is defined by Eq.~2.1! with
U(M2)5M2 and t in Eq. ~2.2! chosen proportional to the
unit matrix.#

Usually it is possible to get high statistics on the lev
spacing distributions since each configuration provide
large number of eigenvalue spacings. However, already

FIG. 3. Histograms for the second smallest eigenvalue for3

34, m50.008. In comparison with Fig. 2~b! we observe that the
mutual overlap betweenP(lmin) and P(l2) increases asb→bc .
This is not consistent with chiral RMT.
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lowest ten~or eight! eigenvalues allow for a crude estima
of the distribution shape.

Recall that the level spacing distribution is measured
the unfolded spectrum, see Eq.~2.5!. Here we use the aver
age spacingŝl i 112l i& between contiguous eigenvalues
define the unfolded level spacings

si 112si5
~l i 112l i !

^l i 112l i&
. ~4.1!

In Fig. 4 we compare the data with the parameter-f
theoretical expectation. Whereas below and aboveTc we find
reasonable agreement with the theoretical expectation, t
are clear discrepancies nearTc . We observe unexpected hig
histogram entries. Since the average value by definition
this then leads to a shift of the central peak to the left.

In order to further check our unfolding procedure, we a
considered other approaches, e.g., using a average dens
in Eq. ~2.5! by smoothing our distribution in various ways
We furthermore tried to discard the higher lying eigenvalu
e.g., using only the lowest five level spacings or introduc
a cutoff near the peak of the distributions in Fig. 2. In
those checks we found essentially the same behavior
discrepancies nearTc .

FIG. 4. Histograms for the distribution of~a! the first nine ei-
genvalue spacings on the 12334 lattice and~b! the first seven ei-
genvalue spacings on the 243312 lattice withm50.008~according
to Refs.@5,6# bc.5.7 in this case!. The standard prediction~2.6!
for the level spacing distribution is plotted for comparison.
3-6
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In conclusion of this section, we observe atT.Tc a
breakdown of the otherwise universal microscopic spec
correlations. The dynamics of QCD plays an essential rol
the phase transition. A RMT model where such dynamic
not there fails to account for the increased fluctuations in
eigenvalue level spacings.

C. Soft inner edge

We now turn to the results forT.Tc . In our results for
243312 atb55.85@Fig. 1~c!# a gap in the spectral distribu
tions is obvious. However, even atb55.8 we may speculate
that a clear signal of a gap is only prevented by the~topo-
logical! quasizero modes responsible for the small bump
small eigenvalues.

Recall, that chiral RMT@16# predicts the presence of
gap in the spectral densityr(l) of the Dirac operator cen
tered aroundl50. Furthermore, the inner edge of this gap
predicted to show a singularity, at a pointA, in the macro-
scopic spectral density@37#

r~l,u!5KS l2

A2
21D u11/2

, u50,2,4, . . . , ~4.2!

whereK is a known constant. The constantu takes the value
u50 in the generic chiral RMT, i.e., without fine-tuning th
matrix potential in Eq.~2.1! ~which would be necessary i
order to obtain higher values ofu). This corresponds to a
square-root-like eigenvalue density nearA.

One concern here is to measureu. With the limited
amount of data available it is not possible to do this based
the spectral density only. Instead we propose to study
average distance between the smallest and the sequel e
values^qi 21/2&[^l i 112l1&; the extraction ofu is carried
out by noting the following scaling relation in the indexi,
ordering by size the eigenvalues which follow the smalle

^qi 21/2&}S i 2
1

2D 1/~u13/2!

. ~4.3!

This proportionality follows by integration in Eq.~4.2!.
In Fig. 5 we display the seven average distances,^qi&,

FIG. 5. The behavior of the average distance from the sma
eigenvalue to thei th eigenvalue for the 243312 ensemble atb
55.85.
01450
al
in
is
e

t

n
e
en-

from the ensemble of 146 configurations on a 243312 lattice
for bg55.85. We also exhibit the best fit to Eq.~4.3! with
respect tou, giving u50.117(71). Also shown are the co
responding curves foru50 and u52. The valueu50 is
clearly favored.

Since the two-point correlations behave as expected f
RMT, we now turn to the one-point distribution. The micr
scopic behavior of the spectral density in the vicinity of th
singularity is universal in the chiral RMT sense, but depen
on the value ofu @37#. For u50 the exact analytical predic
tion for the microscopic spectral density in the vicinity of th
inner edge is@20#

rAi~z,0!5@Ai 8~z!#22z@Ai ~z!#2. ~4.4!

Here the origin has been moved to the inner spectral
point A by means of the rescaled eigenvaluez, which is
defined through

l5AF11
z

2 S 2

pAKD 1/(u13/2)G . ~4.5!

The consistency with the prediction~4.3! for u50 and the
approximate validity of chiral RMT correlations in the lev
spacing statistics aboveTc suggest that the Airy density~4.4!
corresponding to the valueu50 should fit the spectral den
sity. If it does, then we can extract the inner end pointA of
the spectrum in the thermodynamic limit, by fittingrAi(z,0)
with respect toA to the lowest part of the spectral densit
see Fig. 6. This fit does not convincingly confirm Airy de
sity. However, the statistical fluctuations at thisb value af-
fect the one-point distributionsubstantially and prevent
decisive comparison.

V. SUMMARY AND CONCLUSIONS

We have examined the manifestations of the chiral ph
transition in the microscopic spectral correlators for t
Dirac operator. For the level spacing distribution, we fi
agreement with RMT below and aboveTc . Below Tc the
chiral RMT distributions allow us to determine condensa
values with implicit consideration of lattice volume an
quark mass dependence. This could in principle serve to
prove the scaling analysis of the condensate near the c
transition.

st FIG. 6. Theu50 Airy density with end pointl5A50.0205.
Approximately the domain of the first three eigenvalues is show
3-7
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NearTc , however, the microscopic spectral statistics d
fers from the chiral RMT prediction. By measuring th
Monte Carlo time evolution of the chiral condensate, Ao
et al. @15# have shown that there are mixed phase sign
which, however, vanish towards larger volumes. The ex
tence of a mixed phase would offer an explanation for
observed deviations from chiral RMT nearTc . In that case
the level spacing distribution nearTc would be a mixture of
those from the two phases. Such a mixture would lead
large spacings: the spacings are unfolded according to
average spacings of the total ensemble and not accordin
that of the separate phases.

The observed disagreement with the RMT level spac
statistics may also be interpreted as an inclination towa
Poissonian statistics; distribution shapes interpolating
tween Wigner and Poissonian statistics have been sugge
by Brody @38#.

As may be seen from the 243312 ensembles atb55.8
and 5.85, a gap develops in the spectral density forT.Tc .
This is consistent with the observed suppression of topol
cal fluctuations in the latter ensemble@39#. For theb55.85
ensemble we have measured the critical exponent chara
izing the steepness of the density at the inner edge. The v
is found to be compatible with 1/2. This is exactly as p
dicted by chiral RMT where the chiral phase transition
manifested by the crossover from the Bessel hard edge to
Airy soft edge. The indications of the Bessel to Airy scena
hi

y

s-

. D

01450
-

i
s,
-
e

to
he
to

g
s

e-
ted

i-

er-
lue
-

he

are suggestive but simulations with extended statistics
needed in order to quantify the observation. However, e
with low statistics theb dependence of the distance betwee
e.g., eighth and first eigenvalue provides an excellent me
to identify the change of the phase.

At low b, on coarse lattices, staggered fermions appea
be blind with regard to the topological charge of the gau
configurations, and the smallest eigenvalue distribut
agrees with the chiral RMT distribution for then50 sector.
As the lattice becomes finer, topology becomes more
evant. Although this is maybe ‘‘good’’ for the continuum
limit of staggered fermions, it affects unfavorably the agre
ment with chiral RMT since the want-to-be-zero modes a
the nonzero modes have similar eigenvalues, and begi
separate only when the nonzero modes are pushed to la
values when increasing the temperature.
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