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The subject of this paper is a new two-step method of optical imagery. In a firsy step the
object is illuminated with a coherent monochromatic wave, and the diffractio n pattern
resulting from the interference of the coherent secondary wave issuing from the object with the
strong, coherent background is recorded on a photographie plate. If the photographic plate,
suitably processed, is replaced in the original position and illuminated with the coherent
background alone, an image of the object will appear behind it, in the original position. It is
shown that this process reconstructs the coherent secondary wave, together with an equally
strong ‘twin wave' which has the same amplitude, but opposite phase shifts relative to the
background.

The illuminating wave itself can be used for producing the coherent background. The simplest
case is illumination by a point source. In this case the two twin waves are shown to correspond
to two ‘twin objects’, one of which is the original, while the other is its mirror image with
respect to the illuminating centre. A physical aperture can be used as a point source, or the
image of an aperture produced by a condenser system. If this system has aberrations, such as
astigmatism or spherical aberration, the twin image will be no longer sharp but will appear
blurred, as if viewed through a system with twice the aberrations of the condenser. In either
case the correct image of the object can be effectively isolated from its twin, and separately
observed. Three-dimensional objects can be reconstructed. as well as two-dimensional.

The wave used in the reconstruction need not be the original, it can be, for example, a light-
optical imitation of the electron wave with which the diffraction diagram was taken. Thus it
becomes possible to extend the idea of Sir Lawrence Bragg’s ‘ X-ray microscope’ to arbitrary
objects, and use the new method for improvements in electron microscopy. The apparatus will
consist of two parts, an electronic device in which a diffraction pattern is taken with electrons
diverging from a fine focus, and an optical synthetizer, which imitates the essential data of the
electronic device on a much enlarged scale.

The theory of the analysis-synthesis cycle is developed, with a discussion of the impurities
arising in the reconstruction, and their avoidance. The limitations of the new method are due
chiefly to the small intensities which are available in coherent beams, but it appears perfectly
feasible to achieve a resolution limit of 1 A, ultimately perhaps even better,
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INTRODUCTION

The period of steady progress in the resolving power of electron microscopes which
was started in 1931 by Knoll & Ruska came virtually to an end in 1946, when
Hillier & Ramberg (1947) eliminated the astigmatism of their objective, and achieved
a resolving power only insignificantly different from the theoretical limit. The
barrier which stopped progress is of a technical nature, but formidable enough to
prevent any really essential improvements along the direct line.

The theoretical limit of conventional electron microscopes is about 5A. It is
determined by a compromise between diffraction and spherical aberration in electron
objectives, and at the best compromise it is proportional to the fourth root of the
aberration constant. Though several suggestions for correction have been put
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forward, they involve such technical difficulties that an improvement by a factor of
2 is the best that can be expected, even optimistically. One can never hope to achieve
a resolving power ten times better than the present, which would require a correction
of the spherical aberration to about 1 part in 10,000. Such precision can be realized
with the technique of the optical workshop, but hardly ever with the means at the
disposal of electron optics.

The new method is an attempt to get around the obstacle, instead of across it, by
a two-step process, in which the analysis is carried out with electrons, the synthesis
by light. The general idea of such a process was first suggested to the author by Sir
Lawrence Bragg’'s ‘X-ray microscope’ (Bragg 1942; cf. also Boersch1938). But
Bragg’s method, in which a lattice is reconstructed by diffraction from an X-ray
diffraction pattern, can be applied only to a rather exceptional class of periodic
structures. Itiscustomary to explain this by saying that diffraction diagrams contain
information on the intensities only, but not on the phases. The formulation is some-
what unlucky, as it suggests at once that since phases are unobservables, this state
of affairs must be accepted. In fact, not only that part of the phase which is
unobservable drops out of conventional diffraction patterns, but also the part which
corresponds to geometrical and optical properties of the object, and which in principle
could be determined by comparison with a standard reference wave. It was this
consideration which led me finally to the new method.

In order to make the two-step method generally applicable, it had to be combined
with a principle apparently not hitherto recognized. If a diffraction diagram of an
object is taken with coherent illumination, and a coherent background is added to
the diffracted wave, the photograph will contain the full information on the modifica-
tions which the illuminating wave has suffered in traversing the object, apart from
an ambiguity of sign, which will be discussed later. Moreover, the object can be
reconstructed from this diagram without calculation. One has only to remove the
object, and to illuminate the photograph by the coherent background alone. The
wave emerging from the photograph will contain as a component a reconstruction of
the original wave, which appears to issue from the object. Conditions can be found in
which the remainder can be sufficiently separated from the useful component to
allow a true, or very nearly true, reconstruction of the original object.

This principle has been confirmed by numerous experiments. Some of the results
are shown in figures 10 to 12 and explained in the last section of this paper.

In light opties a coherent background can be produced in many ways, but electron
optics does not possess effective beam-splitting devices; thus the only expedient way
is using the illuminating beam itself as the coherent background. This leads us to
illumination by a coherent, divergent electron wave, illustrated in figure 1. It will
be useful to explain this arrangement first, anticipating the principle of reconstruction
which will be proved later.

The apparatus consists of two parts, the electronic analyzer and the optical
synthetizer. The analyzer is similar to an electron shadow microscope (Boersch 1939),
but with the important difference that it operates with coherent illumination, and
under conditions in which the shadow microscope is useless, as the interference
diagram has little likeness to the original. An electron gun, combined with a suitable
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aperture and electron lens system, produces a coherent illuminating beam, as nearly
homocentric as possible. Exactly homocentric illumination is of course impossible,
because of the unavoidable spherical aberration of electron lenses, but for simplicity
we can talk of the narrow waist of the beam as of a ‘point focus’. A small object is
arranged some small distance before or behind the point focus, and a photographic
plate at a comparatively large distance L. The divergence angle of the beam, v,,,
must be sufficient for the required resolution limit d ,, which is by Abbe’s relation

d 4= FAsiny,,

The factor § will be used in this paper to simplify the discussions, except in numerical
calculations, where it will be replaced by the more accurate value 0-6.

s
Electron OHiL IOEuS Photographic plate
qun | |, |Object ) -
k) 1T 1" y¢ Diffraction pattern
- ————— s —— ,
IjL J||..,|._ U (Hologrom))
o
Pinhole Electron lens -l
system L >
ELecTRONIC ANALYSIS
Lens, to enlarge hologram in ratio A;/A4,
Optical reproduction of Virtual object, shown in
) electronic focal tigure same optical space as focal Hologram Pliotaaraphic
slgx?rh:z enlarged in ratio A,/4, tigure, enlarged 7/, x Jrap

plate
4 e - N
l -

-

L ] R s i . . . 2
Condenser \X\:/, s
lens

222, 4/4,

Pinhole
Reconstructing lens

OpticaL SYNTHESIS

Frcure 1. Principle of electron microscopy by reconstructed wave-fronts.

As the photograph of a diffraction pattern taken in divergent, coherent illumina-
tion will be often used in this paper, it will be useful to introduce a special name for
it, to distinguish it from the diffraction pattern itself, which will be considered as
a complex function. The name ‘hologram’ is not unjustified, as the photograph
contains the total information required for reconstructing the object, which can be
two-dimensional or three-dimensional.

The hologram must be either printed, or developed by reversal, and the positive
is transferred to the optical synthetizer, which is a light-optical imitation of the
electronic device. All essential dimensions, which determine the shape of the wave,
are scaled up in the ratio of light wave-length A, to electron wave-length A,. As
electrons of about 50 keV energy, with a de Broglie wave-length of about 0-05 A, are
the most useful in electron microscopy, this ratio will be of the order 100,000. It may
be noted that the focal length of the electron lenses is not an essential dimension, and
need not be scaled up.
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To avoid scaling up the photographic plate a further lens is provided, which
enlargesitin the ratio A;/A, in the optical space of the enlarged focal figure. This means
that the image of the hologram is moved practically to infinity, i.e. it must be in the
focal plane of the collimator lens. In theillustration it has been assumed for simplicity
that the angles are the same in the analyzer and in the synthetizer, but it will be
shown later that the condition f = L is not essential. Nor is it necessary to use
a separate condenser lens system. The condenser and the collimator, which have been
shown separate in figure 1 to simplify the explanations, form one optical unit, whose
function it is to produce an imitation of the original wave-front in the plane of the
hologram. The spherical aberration, and the practically unavoidable ellipticity of
the electron lenses must be reproduced with great accuracy, with a tolerance of about
one fringe for the marginal rays.

Thus in the new method it is no longer necessary to correct the spherical aberration
of electron lenses. The aperture can be opened up far beyond the limit of tolerance in
ordinary electron microscopy. It is only necessary to imaitate the aberrations to the
same accuracy as they would have to be corrected to achieve a certain resolution.
Thus the difficulty is shifted from electron opties to light optics, where refracting
surfaces can be figured to any shape, without the limitations imposed in electron
optics by the laws of the electromagnetic field. On the electron-optical side we
require only a certain moderate constancy, sufficient to avoid readjustment of the
optical system at foo frequent intervals.

The technical difficulties of the scheme will not be dealt with in this paper. It may
be only mentioned that they involve mechanical and electrical stability, operation
with objects much smaller than those hitherto dealt with in electron microscopy, and
the problem of obtaining the high current densities required under the additional
condition of coherence. For the rest the paper will deal mainly with the general wave-
theoretical foundations of the new method.

THE PRINCIPLE OF WAVE-FRONT RECONSTRUCTION

Consider a coherent monochromatic wave with a complex amplitude U striking
a photographic plate. We write U = de®, where 4 and i are real. U may be
decomposed into a ‘background wave’ U, = A,e", and a remainder [/, = 4,e'1
which is due to the disturbance created by the object and may be called the secondary
wave. Thus the complex amplitude at the photographic plate is

U= Uo +U; = AoeiWo AT Ale"% = eito (do+ Alei'(%—'/’o)) (1)
and its absolute value A4 = [43+A47+24,4, cos (¥, — )]t

The density of photographic plates, plotted against the logarithm of exposure, is
an S-shaped curve, with an approximately straight branch between the two knees.
In this region the transmission of intensity is a power — I' of the exposure. The word
‘transmission’ and the symbol ¢ will be reserved in this paper for the amplitude
transmission, which is in general complex; hence the intensity transmission is #*,
where the asterisk denotes the complex conjugate. For pure absorption, without
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phase change, ¢ is a real number, the square root of the intensity transmission. Thus
we write for the negative process

ty = (Ko4)™"™,

where K, is proportional to the time of exposure. In the printing of the negative the
exposure is proportional to ¢,, hence the transmission of the positive print becomes

by = [Kp(KnA)—F"']——FP = KAT, (2)

where I' = I, I, is the ‘overall gamma’ of the negative-positive process. The same
type of law applies if reversal development is used.

If now in the reconstruction process we illuminate the positive hologram with the
background U, alone, a ‘substituted wave’ U, will be transmitted, which is, apart

from a constant factor
U, =Uyt, =AyeVo A%+ A+ 24,4, cos (Y, — o) 1. (3)

The simplest, and as will be seen also the most advantageous choice, is I" = 2,
which gives

U, =U A% = A eVo[A3+ A3+ 24,4, cos (Y, — )]
2

= A} e"'/’ol:Ao e g—; + 4, ei1—¥o) 4 Al e—i(Wl"Wo)] S )
Comparing this with (1) one sees that if A; = const., i.e. if the background is uniforn,
the substituted wave contains a component proportional to the original wave U (the
first and third terms). This is not in itself a proof of the principle of reconstruction, as
any wave can be split into a given wave and a rest. It remains to be shown that the
remainder, i.e. the spurious part of U,, does not constitute a serious disturbance.

This remainder consists of two terms. One of these has the same phase as the
background, with an amplitude (A4,/4,)* times the amplitude of the background.
This term can be made very small if the background is relatively strong, which does
not mean that the contrast in the hologram must be poor. Assume for instance
(4,/4y)% = 0-01,i.e. asecondary intensity which is only 19, of the primary. This gives
A,/A, = 0-1, and the intensity ratio between the maxima and minima of the inter-
ference fringes is (1:1/0-9)® = 1-5. With I' = 2 the intensity transmissions will be in
theratio 1-5%= 2-25, a very strong contrast. The contrast will fall below the observable
limit of about 4 9, only for (4,/4,)*<0:0001, i.e. if the flux scattered by the object
into the area of the diagram is less than 0-01 9, of the illuminating flux. This
remarkable effect of the coherent background has been systematically utilized by
Zernike (1948) for the amplified display of weak interference fringes.

The second term of the remainder has the same amplitude 4, 4%} as the recon-
struction of the original secondary wave, but it has a phase shift of opposite sign
relative to the background. It may be called for brevity the ‘conjugate-complex’
wave. The two twin waves carry the same energy.

The conjugate wave produces a serious disturbance only in rather exceptional
arrangements; in most cases the twin waves can be effectively separated. To make
this plausible one may think of Fresnel-zone plates. These can be, in fact, considered
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as holograms of a point object, produced by a point source at infinity. Zone plates
act simultaneously as positive and negative lenses, producing two focal points, one
at each side of the plate, at equal distance, which can be separately observed. As will
be shown later, homocentric illumination produces always such twin images, only,
with the source at finite distance, these will be in mirror-symmetrical position with
respect to the point source, not to the hologram. In beams which are only approxi-
mately homocentric the second image is no longer sharp, but effective separation can
be always achieved if the object is sufficiently small, and if certain positions are
avoided.

While the twin wave cannot be avoided, the spurious term which is proportional
to (4,/4,)* and the distortion due to an uneven background can both be eliminated,
or at least effectively suppressed by a modification of the photographic process. In
the case of small objects, at least over a large part of the hologram, the photographic
density difference between two neighbouring interference maxima is insignificant.
This makes it possible to wash out the interference fringes by taking a slightly
defocused print of the positive hologram, and processing this print with I' = 1. If
this print, which has a transmission inversely proportional to 43+ 43, is placed in
register with the positive, and illuminated by the background wave U, the substituted
wave becomes

Ul = dgeAf+ A+ 240 Ay cos (s — ) (A3 + 4 = o] A, + 2 iz 0]
1+(4,/4,)*

3
= ei¢°l:Ao+ 24, cos (Y, — o) — 2;—4(;cos (Y — Vo) + :l (5)
0

in which the spurious term is of the order (4,/4,)? as compared with the background,
and the distortion due to a non-uniform background is eliminated. If one only wants
to eliminate the background by itself, one can also use a negative photograph taken
in the illuminating beam without the object, processed with I' = 2.

To discuss briefly also the case I' + 2, we put for simplicity 4, = 1 and 4,/4, = a,
and obtain from (3) by binomial expansion

U, = eo[1 +3Ta® + Tacos (Y, — ) + 40(I' — 2) a® cos?® (Yr; — y) +...1.  (6)

In the reconstructed wave the contrast is enhanced in the ratio 4I". But, in addition,
one obtains twin waves with phase shifts 2(y, — ¢,), ete., but with smaller amplitudes.
This makes it evident that I' = 2 is the best choice, except if the original contrast is
so weak that it must be enhanced, even at the cost of faithfulness in the reproduction.

JLLUMINATION BY A HOMOCENTRIC WAVE

In order to study the reconstruction cycle in more detail, it will be advantageous
to start with the simple case of homocentric illumination, which can be approxi-
mately realized by a sufficiently small pinhole as light source. It will be convenient
to restrict the discussion for a start to two-dimensional objects, occupying a part of
some closed surface £ which encloses the point source O. The object at a point P of
¥ may be characterized by an amplitude transmission coefficient {( ), which is the
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ratio of the complex amplitudes at the two sides of X, in proximity of the point P.
tisin general a complex datum, real only for purely absorbing objects. Itis, of course,
understood that the concept of a transmission coefficient, real or complex, is not
applicable to an object which is two-dimensional in the mathematical sense. Of
a physical object to which this concept is applicable we must assume that it is at least
several wave-lengths in thickness. Moreover, we must assume that laterally, in the
surface X, the function #(P) does not vary appreciably within a wave-length. These
are the conditions for the applicability of the Fresnel-Kirchhoff theory of diffraction.
In electron optics, operating with fast electrons of about 0-05A wave-length, this
condition is always satisfied, as there exists no material object (except nuclei) whose
(‘\l physical properties change significantly in less than about ten times this wave-length.
N With these qualifications we can apply the Fresnel-Kirchhoff diffraction formula
: (cf., for example, Baker & Copson 1939, p. 73). The notations are explained in
3 figure 2. If the monochromatic source at O is of unit strength, the amplitude in the
 illuminating wave is 1
U, = — efkro,
"o
where r, is the distance measured from O, and k = 27/A. The presence of an object in
the surface X modifies the a.mplitlide at a point @ outside to

UQ) == t(P)e"“'ﬂ“"lH"‘(cosﬂ —-00501)—5. (7)
ToT1

Fi1curEe 2. Fresnel-Kirchhoff diffraction formula.

We will now apply this formula to calculate the ‘ physical shadow’ of a plane object
at infinity. The ‘physical shadow’ includes the diffraction effects, and is to be
distinguished from the ‘geometrical shadow’ into which it merges at vanishing

wave-length.

As the beams to be used in practice will have semi-cone angles of 0-05 or less, we
can put cos f, = —cosf = 1, and consider the factor 1/r,r, as constant. We also drop
the constant factor (1/2A) e~#"¢, and use equation (7) in the simplified form
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U(Q) = f U(P)eikvir) S, (71)
xz
Using the notations explained in figure 3, the distance r, of a point P in the object
plane z = z, is
ro = (2 +y* + 2t = 2o+ $(2® + %) /20— $(@* + ¥*)?[23 +
In this section we will use only the first two terms of the expansion.
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The observation point @ may be at a distance L in the Z-direction, very large
compared with z,, practically at infinity, so that we can write

r, = Lsecy— (xcosa+ycosf).

The first terms in the expression for r, and r; give constant phase factors, independent
of z,y, which may be dropped. The remaining essential part may be termed ‘the
amplitude in the direction £,7’, and is

Ula, f) =fft(a:, y) exp {tk[(2? + y?)/2z, — (2 cos o+ y cos )]} dx dy. (8)

Fiaure 3. Explanation of symbols.

Unless the limits are indicated, integrations in this paper will be always understood
to be carried out between infinite limits. As the phase under the integral is valid only
for small angles, equation (8) is physically valid only if #(z, ) vanishes rapidly outside
a small central area.

It will now be convenient to introduce ‘Fourier variables’ £, 7 instead of the
direction cosines by

1 1
£E= yeosa, 9= Xcos,b’. (9)
Their connexion with the co-ordinates X, Y in a plane at the large distance z = L
is given by

cosa ALE oy Cong . ALy

cosy [1-22E+9)F’ ~  Tcosy [1-AXE+9Y)F

If the illuminating cone is narrow enough, £ and 7 can be taken to represent the
co-ordinates in the physical shadow. The geometrical shadow of a point x, y has the
Fourier co-ordinates £ = x/Az,, 9 = y/Az,. The quantity

B = Az (10)

is the only parameter of the diffraction problem. Its square root can be considered
as the characteristic length. Details coarser than * will be shown to have shadows
more or less similar to themselves, finer details lose all likeness by diffraction.
Using the notations (9) and (10) equation (8) can be written, with the abbreviation
x? o y2 = .'-2’ -
U = [ [, y) vy e-trtessvndzay, (11)
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Thus the amplitude in the £, 7 direction is the Fourier transform of the function
tw, y) eim it

in the standard notation of Campbell & Foster (1931). We can at once write down
the reciprocal formula
e, y) = et [U (€ m eraricsomagan, (12)
It will be useful to study these reciprocal transformations mathematically, while
provisionally disregarding the conditions which must be imposed on the function
N #(z,y) to give them physical validity. First we put them into a more symmetrical
oform by imagining the amplitude U(£,7) as produced by the passage of the
% illuminating wave U, through a ‘shadow object’ in the plane £, » with a transmission
t%O'r(gny). (It may be noted that 7 is in general complex; thus the shadow object
<Ccannot be replaced by a photographic plate.) That is to say, we put

U(&n) = Uy(&, ) 7(E, 7)- (13)
The background U, can be obtained directly from (11) by putting { = 1
C7 g, 7] — ?:/l/ e—miupt

ith the abbreviation £2+7® = p®. We now obtain the symmetrical transformation
ormulas

o =

(&) = z-l;e’”.“/"fft(x, y) e-rin g-2riaitun dy dy, (14)

iz, ) = ipemi f fv(g,n)e—“‘ﬂﬂ' et niet ) dE dy. (15)

/[royalsocietypublishing.org/ on 05

X These may be called the ‘shadow transformations’, and #(z,y), 7(£,7) a pair of
§‘ shadow transforms’. They are, of course, intimately rela.ted to Fourier transforms,
<= though simpler in some respects.
g The transformations (14) and (15) can be derived from one another by the rule:
= Interchange ¢ and 7, 2 and £, y and 7, i.e. interchange Latin and Greek symbols, and
Breplage i by —i, # by 1/u. Two transformations in succession restore the original.
;8 Physically this means that if instead of a photograph we could produce a ‘shadow
£ object’ with the absorbing and refractive properties of 7(&,7), and illuminated this
Bwith the background, we should exactly restore the object #(z,y) in its original
position. As a photograph cannot imitate the imaginary part of 7, a certain residual
wave arises, to which we will return in the next section. But it will be useful to
consider first a few examples of shadow transforms.

As in the case of Fourier integrals, the transforms of exponentials of quadratic
forms are particularly simple and instructive. It is convenient to write these in
e x,y) = exp[—m(4,2°+ 2B 2+ 4,y* + 2B, y)].

This is the product of an 2- and a y-factor, and as the transform is again the product
of a £- and an 9-factor, it is sufficient to give the transform of

t(.z') - e—n(A:r'+2B.r), (16.1)
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mu(pAE* + 2 BE — i B?)
1+ipuA ] :

which is 7(£) = (L+ipd)t exp[—— (16-2)

Thus the shadow transform of an exponential of a quadratic form is a function of
the same type, as in the case of Fourier transforms, but the relation between the
parameters is of a different build. For example, if 4 = B = 0, which makes ¢ a
constant, 7 will be the same constant, while the Fourier transform of a constant
is a delta function, which vanishes everywhere except at the argument zero.
Moreover, the shadow transform of a harmonic function (4 = 0)

t(x) = enizlp (16:3)
is again a harmonic function  7(£) = e~ imup’e2risklp, (16-4)

The period in the shadow is p/u, which is the geometrical shadow of the period p. The
only difference is in the phase factor e~#7*, If the period p is long compared with
the characteristic length p*, the phase factor tends to unity, which means that if the
obhject contains no details finer than ! the physical shadow tends towards the
geometrical shadow &)=k, ).

Equations (16-3) and (16-4) contain a simple rule for constructing the shadow
transform of an object, by expanding #(z,y) into a Fourier integral with periods
Pz Py- In the transform the Fourier coefficients will differ from the original only in

a phase factor UL |
exp -ims+ 35|
x v

As a practical method this may be used with the cautioning remark that infinite
trains of periodic functions are not very suitable for the description of small objects,
and that the applicability of equations (14) and (15) to the physical process is strictly
speaking limited to objects which transmit appreciably only in a region z/z,, y/z,< 1.

RECONSTRUCTION WITH HOMOCENTRIC ILLUMINATION

Stigmatic illamination is a particularly simple and instructive illustration of the
principle of reconstruction which was broadly explained in the first section. It may
be recalled that if the hologram is replaced in the original position and illuminated
by the background alone, one obtains in addition to the illuminating or primary wave
two other waves, one of which is proportional to the original secondary wave emitted
by the object, and the other differs from this only by having phase shifts of opposite
sign relative to the background. The other small spurious terms may be disregarded
for the moment.

It will now be convenient to subtract the background, i.e. the primary wave, both
in the object plane, and in the plane of the photographic plate, and to consider instead
of t and 7 the functions i L, | (17)
As t = 1 corresponds to 7 = 1, the functions #,(z, ) and 7,(£,%) are connected by the
relations (14) and (15), the same which connect ¢ and 7. We will talk of ¢, as “the
object proper” and of 7, as its shadow.
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By equation (6), substituting a photographic plate for the physical shadow means
replacing 7, by 100, +7).

Substituting this into the inverse shadow transformation (15), we obtain two terms
t,. The first of these differs from the original object proper only in the factor I'. But
in the second term, derived from 3I'7*, the sign of ¢ has been reversed, and this
results in a spurious figure in the object plane, superimposed on the correct recon-
struction of the object.

We can give a simple interpretation to the wave corresponding tor* if we observe
that in the equation (14) applied to the object proper ¢,

N
N

S n(6) = genee [ (e g eire-trtasimazay, (141)
5

2’reversing the sign of i is equivalent to reversing the sign of z,y and of g = Az, and
g replacing ¢,(z, y) by a function

g H(z,y) =t (-, —y). (18)

gnThe transformation has now a parameter — x instead of x, i.e. it corresponds to an
oonobject in the plane —z, instead of in +2,. By equation (18) this object arises from
.S the original by mirroring it on the Z-axis, and changing phase delays into phase
é advances. Summing up, the ‘twin’ wave 7* corresponds to an apparent ‘twin object’,
Sin central symmetrical position with respect to the point focus 0, and with opposite
>phase-shifting properties.

pu

Ficure 4. The twin images arising in the reconstruction.

Figure 4 is an illustration of the twin objects, from which one can verify this
3 conclusion. The Fresnel-Kirchhoff formula can be interpreted as the sum of elementary
Q spherical waves, originating from the object points P, with amplitudes proportional
tot(P). Atinfinity,ina direction a, § these are plane waves, and their phase difference
relative to the background is given by the difference between the ray OP, and its
projection on the direct ray, OD, apart from the phase shift which arises in the object.
Figure 4 makes it clear that the same phase difference, but with opposite sign, would
be produced by an object point P’, in central symmetrical position to P, if the sign
of the phase shift at P’ is also reversed.

The interpretation of the residual wave in the reconstruction as a wave emitted
by a twin object makes it at once clear that conditions can be found which allow
a fairly effective isolation of the reconstructed object, by making use of the limited
focal depth of the viewing system. Separation becomes possible if the distance

nloaded from https://royalsocie
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between the twin objects, 2z, exceeds the focal depth D;, which can be defined as the
resolution limit d, divided by the total cone angle utilized in the image formation,
2y,.- Using Abbe’s value d , for d, the criterion of separation is

LA
Wm  Ym
If the point focus is not produced by a physical aperture, but by the image of an
aperture, formed by an optical system, this is equivalent to the condition that the
object must be outside the diffraction region, in which the wave cannot be considered
q as homocentric.
& Outside the focal diffraction region separation is possible, but not complete
% separation. The twin images will always interfere with one another to some extent,
o0 and the interference cannot be regulated at will. This follows from the structure of
<C the transformation equations, which contain only one characteristic length (Azy)t,
8 and there is no second length with which to form a dimensionless separation factor.
§ Thus the spurious part of the reconstructed image depends only on the object itself,
on and on the parameter x. This disturbance will now be investigated in some detail.

224> (19)

THE SPURIOUS PART OF THE RECONSTRUCTION IN HOMOCENTRIC ILLUMINATION

The simplicity of the transforms (16-1) and (16-2) suggests building up arbitrary
plane objects from ‘probability spots’. In the limit these tend to two-dimensional
delta functions,which can represent any function ¢,(, y), but it is not necessary, nor
is it physically justifiable, to pass to this limit. Optical imagery does not operate with
points, but with elementary regions of the size of the resolution limit. Inside such
a small area the values of #.(z,y), which describe the reconstituted object, are not
independent of one another.

First we carry out the reconstruction cycle for a single probability spot. Assume
the transmission in the object plane in the form

e,9) = 1-dexp{ - Zl@—2)+ W=y = 1- dervio”,  (0)

where the abbreviation »' has been used for the distance measured from the centre
Z,, Y, of the spot. (1 —4) is the amplitude transmitted at the centre of the spot, at
unit background. If the object is a pure absorber, 4 is real, positive, and less than
unity. If the object has pure-phase contrast [1—A4| =1, and | 4 | is in the limits
0 to 2.

Equations (16-1) and (16-2) give for the physical shadow of (20)
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where £, 7, is the geometrical shadow of z,,y,. The diffraction figure (21) centres
around this point. Its character is determined by the dimensionless parameter e. If
¢ is large 7 approaches the geometrical shadow #(#&, #n). The more important case
is €< 1, which allows simplifying (21) to

7(£,7) = 1+1ed e~@p +miup?, (21-1)
The smaller the original spot, the larger its physical shadow.

The photograph substitutes for the complex physical shadow (21:1) the real
transmission function

7€, ) = | 7|F =1+ 4Tied e~ gminp™ — JTieA* e—mire?, (22)

This approximation is valid if €* < 1.

The inverse transformation (15), applied to the first two terms of (22), restores the
original object (20), but the contrast is $I" times the original. The same transforma-
tion applied to the last term of (22) gives the spurious or error term

{@, ) = — TicA* o-rter/a? eric ), (23)

on 05 August 2022

% This is the amplitude (at unit background) which the twin image produces in the
S original object plane. The spurious image centres on x,, ¥,, but it has a character quite
'%I)diﬁ”erent from the original. The amplitude ¢, falls off only slowly with the distance
é r’ from the centre, the slower the smaller the original spot radius @, while the phase
% changes rapidly, according to the last factor in (23), in a manner independent of the
S-spot size. Thus the spurious image will manifest itself in a system of fine and weak
S interference fringes, superimposed on the true reconstruction.

The exact value of the reconstructed transmission function {, in the case I' = 2
may be also given for reference:

i r'\¥]_ sed* m(e+ 2i) ,2]
t(z,y)=1-4 exp[—rr(a) ]—2+i€exp[—#(4+€2)r

e24A* e 2me(1 +€* + 2i¢) ,,
1+e*—Zie M +ed2+4de? |

The first two terms stand for the exact reconstruction, the last two for the spurious
amplitude. They differ from (23) only in terms of the order ¢* or higher.

The reconstruction cycle in the case I' = 2isillustrated in figure 5 for a probability
~ spot with a black centre. One must be careful not to go beyond I' = 2 if there are
sharp contrasts in the object. As shown in figure 6, a lighter centre will appear inside
a black ring, and black lines will appear doubled.

Up to this point we have assumed unlimited apertures; consequently there was
no lower limit to the spot size @ which could be correctly reproduced. The effects of
limited resolution can be very simply discussed by assuming a mask used in the
taking of the hologram, with an amplitude transmission

+ (22:1)
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Such graded masks are preferable to sharp apertures, not only from the point of view
of mathematical simplicity, but also because they reduce the ‘false detail’ resulting
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from the cut-off to a minimum. Their use is well known in structure analysis (Bunn
1945, p. 350).
Asthemaskisused twice, in the taking of the photograph and in the reconstruction,

its total effect is e__,,(p+1)(cp)i.

Ltk

T

|
Backgrounds1 l

— T

AMPLITUDE TRANSMISSION IN THE ORIGINAL

_-R E'CI/JZD
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AMPLITUDE COMPONENTS IN THE PHYSICAL SHADOW

i Ei‘ir — !

THE SPURIOUS COMPONENTS |N THE REPRODUCTION

Ficure 5. Reproduction cycle of a ‘probability spot’.
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Intensity
Reconstruction

Amplitude Reconstruction

-

Original

Freure 6. Distortion by exaggerated contrast.

We now assume I' = 2, 8o as to obtain correct contrast reconstruction, and we put
3c® = b2 We have now to reconstruct the object, the probability spot (20), from the
physical shadow

T, = e—n(bp)’{l + 164 e—ma*—imp™® _je 4 * e—-(a'+i#)p"}, (24)

which differs from (22) only in the masking factor. Introducing the small dimensionless
parameter o = b = b3Az,

31-2
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one obtains by the transformation (15), neglecting powers of € and o higher than
the first,

y :
bey) = (i) exp| "2 (i)t |- s exp |~ gl +eoted+ o))

— Yied* exp { — (3mir'2|p) — (m/4p) [ (x — 2o)* + (y — Yo)?] + o[ (2 +20)* + (¥ +Yo)*11}-
(25)

The first is the background term. Apart from a very small diffraction effect, of the
order o2, it is the geometrical shadow of the mask, projected on the object plane. The
second is the ‘correct’ reproduction term. The chief difference is that the spread of
the reproduced spot is now (a2+ b%)! instead of @. Thus b has the meaning of the
2 resolution limit, apart from a numerical factor which will be determined later. The
2 factor [1+ (bja)?]! before the amplitude expresses the fact that the amplitude
decreases in the same ratio as the area of the spot has increased. This loss of contrast
for very small objects appears stronger than in the case of ordinary microscopy, where
O the amplitude falls off with the square root of the area, but the result is the same, as
%‘) with a strong coherent background the intensity contrast is a linear function of the
op amplitude.

The error term, in the second row, has a structure different from (23); it no longer
centres exactly on the original spot, as it contains a factor which centres on the
mirror image of the spot, —z,, —y,. With the abbreviation r§ = x§ + y§ we can write
the error term in a different and very useful form

t 2022

n 05 A

t,=—3ieA*exp[— %4 (e—o)r'?]exp[ — (3mir"?[p) — (3mo/p) (r2+r3)]. (25-1)

/[royalsocietypublishin

i This is particularly useful in the casee = o, i.e. @ =b, as in this case the fringe system

t, has an amplitude independent of »’. The amplitude, though not the phase, centres
on x,y = 0.

This result can serve as a basis for the theory of the spurious part in the reproduction
of arbitrary objects, with the aim of obtaining a criterion for objects suitable for
two-step microscopy.

A microscope, like any other optical system, can transmit a finite number of data
only. Describing an object by a continuous transmission function is an objectionable
idealization, as such a function contains an infinity of non-reproducible detail. We
come nearer to an adequate description if we divide up the object by a network of
lines into cells of the size of the resolution limit, associate a complex datum with each
cell, and investigate the transmission of these data through the optical system.

Equation (25-1) suggests that particularly simple results will be obtained if we
represent the object by a two-dimensional lattice of probability spots with a spread
a = b. As illustrated in figure 7, we arrange these spots in a hexagonal lattice, with
a distance d between adjacent centres. d is the resolution limit, which we define in
a way slightly different from the usual, by postulating that three (instead of two)
equal probability spots with spreads @ = b can just be resolved if their centres are
at distances d from one another, i.e. the minimum in the centre just vanishes. By
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equation (25) the amplitude in the correct reproduction term follows a law e—#7/)*
if @ = b. In the middle between three centres »* = d/,/3; thus the condition for d is

°"P[ (436) ] 3

which gives = 1-45b.
This is in good agreement with the usual definition of the resolution limit,
d = 0-6A/[sinvy,,,

if we define y,, as the angle at which the background amplitude has dropped to
1/J/3, i.e. the background intensity to 1/3 of its maximum value. Denoting the
corresponding radius in the object plane by B = zsiny,,, we have

i e I

which gives = 0-42A/siny,,, d = 061A/siny,,.

Ficure 7. Dividing the object into independent elements.

Call N the number of independent elements inside the illuminated field, i.e. number
of cells contained in the disk of radius R. Each cell occupies an area

}J3d% = 0-433d2 = 0-91b2;
thus the number N is
7 R?

/\Z 2

N =i p = 345(042) (bz) = 0-61 ;. (26)
N can be easily made a very large number, of the order 10° to 108. This suggests
a statistical evaluation of the spurious part of the reproduction, by assuming random
distribution of the amplitude over the independent elements of the object. It is, of
course, understood that this might lead to gross errors in special cases, but it is
certainly an acceptable assumption if a great number and variety of objects are
considered.

Number the elements from 1 to N. The spurious amplitude in the reconstruction
at a point @,y results from the superposition of the error terms of the form (25-1),
one for each cell with centres z,,y,,. The distance of z, y measured from z,, y,, may
be called r,. With the simplification resulting from o =e¢ the resulting error
amplitude is N
t(z,y) = Yioe—"r S, A% e—knovi/u g—imiriin, (27)

where we have written r, for the distance of z,,, %, from 0, 0.
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The relative distance r, between z, y and ,,, ¢, occurs here only in the phase factor
e—#7iri/k_ The two probability decay factors fall off slowly. The first of these, before
the sum, is the square root of the background attenuation, i.e. it falls off at half the
rate of the background amplitude. The second factor centres on 0, 0 and falls off at
the same rate as the first factor. Thus it is admissible to put both equal to unity as
an approximation, and simplify equation (27) to

N
t(x,y) = dio X A} e-driritio, (27-1)

that is to say, in order to obtain the error amplitude at x, y we have to superimpose
S at this point a large number N of undamped waves, with wave-lengths 2u/r’, emanating
S Sfrom all image points ,,, y,,. This wa.ve-length is always longer than the resolution
ullm.lt d. Its smallest value is at »' = 2R and is u/R, while the resolution limit is
b00 61u/R.
Z Introduce now the hypothesis that there is no correlation between the phases of
0 these waves. With this assumption the mean square of the component of ¢, in phase
g with the background, which may be called 2, , is one-half of the sum of the absolute
Spequares of the terms at the right:

By = JOVS A A% = JAN T, AT = Jo0N Al (28)

.Z Here we have mtroduced the notation 42y for the mean square secondary amplitudes,
S A4, A%, averaged over the whole field. It is understood that the average level of
%transmission of the object has to be considered as part of the background, and 4 .4
-5is & measure of the departure from uniformity. Combining (28) with equation (26),
7 . T

& No* = 0-61, we obtain fg =028y, (29)

Equation (29) enables us to formulate a criterion for suitable objects. A background
% can be considered as practically even if the intensity contrast does not exceed about
£59, i.e. if the amplitude contrast is less than 2-5 %,. This means that for suitable
gobjects we must have Ay <01 (30)

= averaged over the whole field. As an example consider a black-and-white object in
2 which the black part, where A = 1, covers a fraction « of the illuminated field, while
% for the rest A = 0. In this case 4.4 = J/k, and we obtain the simple rule that not
Z more than about 1 9%, of the illuminated field should be covered with black dots or
A lines. If, for instance, the object is a disk, half black and half white, its diameter
should not exceed one-seventh of the field diameter.

As a second example consider an object with pure phase contrast, but with random
distribution of phase delays. We must qualify this by the condition which precedes
every application of the Fresnel-Kirchhoff theory; the phase must not vary appre-
ciably between points spaced at less than a wave-length. In other words, the object
must appear even and transparent if it is sharply focused. In ordinary microscopy
a crinkled sheet of celluloid, or even reticulated gelatine, will satisfy this condition,
but not an opal glass with colloidal dispersion. With this qualification in mind we can
apply equation (29) and it can be shown that the value of 4.4 is again unity. In the
case of pure phase contrast the complex transmission vector £ = 1 — 4 moves on the -
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unit, circle, all orientations of ¢ are equally probable. Hence # = 0, which makes
A=1,and

Ay = |A-AP=TA=1p=|t]=1

This means that an object of this type, if it covers the whole field, produces
teg. = 0-28, a very serious disturbance. This result is of interest, because it shows that
an irregular transparent support for the object, even if it would be invisible in
ordinary microscopy, will make all but the most contrasty or regular features of the
object invisible. As it is rather doubtful whether an ‘optically flat’ or at least
acceptably regular supporting membrane can be found in electron microscopy, it
appears preferable to use supporting membranes only in a small fraction of the field,
or to dispense with them altogether.

IMPROVING THE SEPARATION BY MASKING AND OTHER MEANS

These results lead to the conclusion that high-grade purity in the reproduction
cannot easily be achieved even with very small objects, as the spurious intensity is
proportional to the square root of the object area. But in the case of small objects
special techniques become available, which allow a very effective elimination of the
spurious amplitudes. The first of these is the masking of the geometrical shadow
in the hologram. The second technique is the masking of the background in the
reconstruction process.

The spurious amplitude is objectionable only in the area occupied by the true
image. Thus we need eliminate only those rays issuing from the twin object which
pass through the object area. As may be seen from figure 4, if the object is small these
rays will have substantially the same direction as the primary rays which illuminate
the object. This means that we can substantially reduce the spurious amplitude if
we mask out the geometrical shadow in the hologram.

This masking process, however, will introduce two new disturbances. First, the
mask itself will produce a system of interference fringes. This effect can be reduced
to a very low level if a ‘ probability mask’ is used. Secondly, the mask will eliminate
some of the data required for a complete reconstruction. Evidently the coarser detail
will suffer most, as this is contained in or near to the geometrical shadow area in the
hologram, while the finer detail is spread over a larger area outside. But if the object
is of the order of the characteristic length x* or smaller, the suppressed detail becomes
insignificant. Thus masking of the shadow is a very effective method for improving
the reproduction of very small objects.

In the second method the background, i.e. the primary wave, is suppressed after
it has traversed the hologram. This can be done by producing a real image of the
point source by means of the reconstructing lens in figure 1, and arranging a small
black mask at this point, preferably a probability mask. This arrangement is similar
to the well-known ‘schlieren’ method. The result is, that instead of an amplitude in

the object plane |y

c e

where ¢ stands for ‘correct’ and e for ‘error’, we now obtain

i,
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neglecting the diffraction effects at the mask. Hence an absorbing object will now
appear bright on a dark background, as in ‘dark-field illumination’. While in the
ordinary or ‘bright field’ method the intensity is approximately

B B
the ‘dark field’ intensity is 2+ 28, b, + 22

One can consider # as the spurious background, while 2¢,1, is the interference product
of the two images. The spurious background is now the square of its previous value,
proportional to the coverage fraction instead of to its square root, and becomes
negligible for objects which cover only a few percent of the illuminated field. There
remains, however, the interference product 2, This contributes nothing to the
background, as it is zero everywhere outside the object, where ¢, = 0. In the object
area it represents merely a small modulation of the correct density values. In the
case of black-and-white objects this effect is negligible, as the outlines remain
unchanged. How farit can distort graded objects is a matter for further investigation.

A combination of the two methods, i.e. masking the geometrical shadow and the
primary wave, appears to be particularly promising in the case of small objects.

A third, somewhat laborious method for improving the separation is taking a series
of reconstructions, with differcnt values of x. While the true image always remains
the same, the spurious image varies, and can thus be discriminated. A fourth method
will be discussed later, in connexion with non-homocentric illumination.

JLLUMINATING WAVES WITH ASTIGMATISM AND SPHERICAL ABERRATION

Following a method first introduced by Debye, we build up a general coherent
illuminating wave of plane wavelets, normal to the direction a,f,y, with an
amplitude AdQ in the infinitesimal solid angle d{2:

A, p) etp{ik[xcosa+ycosﬂ+zcos'y—p(a,ﬂ )1} dQ. (31)

— The amplitude 4 is assumed as real the phase factor e—%» expressmg the advance of
the phase compared with the direct ray through the origin 0. Assuming that O
S coincides with the ‘mean paraxial focus’ of the beam, let the phase function p be

pla, f) = $4,(cos? a—cos? f) + }(C, cos* a + 20, cos* a cos? £+ C) cost f). (32)

The first term is the phase advance due to astigmatism, the second is “elliptical’
spherical aberration. It has been assumed for simplicity that the elliptical errors of
second and fourth order have the same principal axes z, y.

With the polar angles y, 6, connected with «, # by

cosa = sinycosf, cosf =sinysinf, (33)
p can be put into the form
p(y,0) = $4,sin®y cos 20
+}sinty[§(C,+ C)) +1C,, + 3(C,— C,) cos 20— }[C,, — }(C, + C,) cos 46]. (34)
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The fourth-order term now appears as the sum of spherical aberration and two
astigmatism terms, one elliptical, the other with fourfold periodicity. If the lens is

round C;=0,=0, =0, (35)

and the fourth-order astigmatic terms vanish. C, is the constant of spherical
aberration. Its meaning is illustrated in figure 8, which shows the ray structure of
a beam. The geometric-optical approximation is well justified in the most important
practical applications of the present theory, as it is proposed to use beams with
apertures about ten times larger than in ordinary electron microscopy, where the
diffraction disk is of the same order as the geometrical aberrations. As the minimum
cross-section of the beam increases with the third power of the aperture, and the
diffraction effect is inversely proportional to the first power, it will represent a small
correction only, of the order of 10-* of the geometrical dimensions.

3
r=t2cf(2/3)1
Caustics

No fringes

Interference
fringes

26y}
Ficure 8. Focal figure of a beam with spherical aberration C,.

If the aperture angle is y,,, all rays cross the axis in the axial caustic, a line of length
Cy2, behind the paraxial focus 0. The diameter of the beam in the Gaussian plane
z = 0is 20,3, but at the cross-section of minimum confusion, at z = — }C vy, it is
four times less. The minimum cross-section is the intersection of the envelope or outer
caustic, a rotational surface with an equation » = + 2C%(z/3)}, with the cone of
maximum divergence, r = + (2+ Cyy2,)V.m This cone and the outer caustic divide up
the beam into four regions of different character, of which two are dotted, to indicate
that they contain interference fringes. The first of these is inside the envelope but
outside the cone. The rays cross in every point of this region. The second is the region
surrounding the axial caustic, limited by the envelope and by the cone of maximum
divergence, which has three rays crossing in every point. The interference fringes in
both regions are so sharp and contrasty as to make objects placed into them almost
invisible; thus the whole dotted volume must be ruled out as a possible location for
objects. In the remaining two regions, at the right and left, there is only one ray to
every point, and they represent smoothly graded backgrounds, suitable for micro-
scopic objects. In the region at the left the illumination density is largest near the
edge; in the second, at the right, the density has a maximum on the axis.

If, in addition, as is always the case in electron optics, the beam is also astigmatic,
figure 8 can still serve as an illustration, but only for the principal sections of the beam,
and these must be imagined as displaced longitudinally by + A4,. Thus O will be now
in the middle between the two focal lines, at right angles to one another and to the
beam axis, and a distance 24 apart.



Downloaded from https://royalsocietypublishing.org/ on 05 August 2022

474 D. Gabor

Returning to the wave-optical representation, summing the wavelets (31) gives
for the complex amplitude at the point z,y, 2

Un(2,y,7) =f A(y,0) exp {ik[(x cos 6 + y sin 6) siny +zcosy
—}A,sin?y cos 20 — }C,sin' y]}sinydydf. (36)

We have used here the simplifications arising from equation (35), and these will be
assumed also in the following formulae to simplify the discussion, but the results will
be of such a nature as to permit their extension without difficulty also to the more
general case expressed by equations (32) and (34).

Introduce under the integral sign in (36) the Fourier variables £ = (cosa)/A,
7 = (cos f)/A and p = (£2 +9?)t. The exact transformation equations are

_A%dédy

siny = Ap, cosy = (l—Azpz)‘, dQ:sinyd‘yda (1-22 2)i

We again assume a sufficiently narrow beam to justify neglecting sin®*y = A%? in
the denominator of the last expression. In the phase factor, however, we must take
into consideration terms up to the fourth order in p, and write

cosy = (1-A2p%)t = 1—§A%p% — JA%pt

In this approximation

Uy(,,7) = Adeiks f A(E, 7) exp {2mileE +yy— FAp? — BAAE 1)
—3(z+20,) A®p*} dEdy. (36:1)

This integral, like the exact expression (36), can be easily evaluated at large distances
R from the origin, in a direction «, #. One obtains

Uy(B, o, ) = — i Ay, 0) 6% @), (36:2)
0 R

where p is given by equations (32) or (34). The factor — 4, which expresses an advance
of the wave-front by }A as compared with the components (31) arises in the transition
from plane to spherical waves, and is familiar in diffraction theory. Equation (36-2)
supplies the background to the physical shadow of an object, which we are now going
to calculate.

The object, in a plane z = z,, may be characterized, as before, by the complex
transmission function #(z, ). Using the fundamental premissa of the Fresnel-Kirch-
hoff diffraction theory, we assume that the amplitude immediately before the object
is that of the undisturbed illuminating wave, U(,¥,2,), and #(z,y) times this
immediately behind it. We must now give the angular variables in the illuminating
wave by suffixes ‘0’ (‘original’) to distinguish them from the variables of the
outgoing wave, without suffixes.

The problem is building up the outgoing wave from the diffraction products of the
plane wavelets which compose the original wave. The Fresnel-Kirchhoff formula in
the simplified form (7-1) can be again applied, but with the modification that the
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waverg ! e must now be replaced by the sum of the wavelets (34). There is no change
in the meaning of 7,, the distance of the observation point Q(R, «, 8) from the object
point P. Thus the Fresnel-Kirchhoff formula now assumes the form

V(@) = UR e f)
1
= k) )| ) (. o) exp kTt ) 1 Ay g, (37)

where 7o(ctos Bo) = €08 oty + Y €08 By + 2, €08 Yo — Py, Yo)s
ri(ee, f) = R—xcosa—ycos ff —2z,co8Y.

Expressing the angles by the Fourier variables £, 7 and £;, 7, we obtain, with the same
approximations as in (36-1),

UR,E ) = ;.%e"‘"fft(x,y)dzdy

f A (o, 710) exp {2718 [x(Ey — £) + Y10 — 1) — $20 AP — p*) — 320 A%(§ — p*)
— A, ME —75) — $C %1} dEodrp.  (38)
The symmetry of this expression is disturbed by the last two terms, but it is at

once restored if we go over to the ‘physical shadow’, by dividing the amplitude
U(R, a, ) into the background U (R, «, £) as given by equation (36-2):

r(6m) = [ [ [t ) e ) expt2mi ot~ ) + 00— 1)~ 443~ )

— 34 ALE — 8%) — (1 — %)) — $A°(z0 + 2C,) (p§ — p*)}] dzdy dEodm,.  (39)
This is the formula for the physical shadow at infinity of an object at z = z,,
illuminated by a beam with fourth-order aberrations, but which can be evidently
extended to aberrations of any order. It is the equivalent of the transformation
formula (14) for homocentric illumination, but it cannot be put into the form of an
integral over the object plane, as the integration over the angular variables cannot
be carried out in terms of the transcendentals recognized in analysis. On the other
hand, it can be immediately reduced to a double integral over the angular variables
by means of the Fourier transform 7'(§, %) of #(z, y) which is

T(E,7) = f f bz, y) e-2ricktn de dy,

which converts equation (42) into
A(&,, y "
r(61) = [ [ 7€~ r =10 e W explmi Aot - 1)
+ A, AL(E2— &) — (1 —93)] + dA%(=20 + 2C5) (p* — p)}1 dEo . (40)
This transformation may be illustrated by a few simple examples. If =1,
i.e. if there is no object, 7' is a delta function

T(E—&os 1 — 1) = 8(E—Eo: 1 —0);
which means that the integral (40) is the value of the integrand for §, = &, 9, = 7,
Wwhich is unity, as before.
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If t(z, y) is a harmonic function of z, ¥ with periods 1/a, 1/b
H(z,y) = ePriazion), (41-1)

T is again a delta function, but shifted to the point a,b

T(E—Eg, 1 —1mo) = S(E—Ey—a,n—1p—b),

and we have again to take the value of the integrand, but this time at §, = {—a,
7o = 1 —b. The physical shadow is

r(6,1) = 2E72 1) exp fria(2f — @) [Nz + 4,) + 100+ 20,) (26— 26+ o))

exp {mib(2) — b) [Alz— 4,) + 1Az + 2C,) (212~ 2yb+B%)]}.  (41:2)

We have met the first factors under the exponential in the shadow transformation
with homocentric illumination. But the period in the shadow is no longer a constant,
that is to say, the shadow of a sinusoidal grid is not of the same type as the original.
If, for example, b = 0, i.e. the grid is parallel to y, the spacing between two maxima is

1/(Azga) [1 + A,/2y+ FA%(1 + 2C[2y) (262 — 28a +a?)].

The first factor is the geometrical shadow of the period 1/a, the second is the correction
arising from astigmatism and spherical aberration, and also from the fourth-order
term which expresses the departure of a spherical wave-front from a paraboloid. In
all practical applications z, will be of the order C, v}, and z, can be neglected against
20,. Thus the astigmatism and spherical aberration of a beam can be determined
from two holograms of a sinusoidal grid, taken in two positions, at right angles to one
another. But the method is not very sensitive. Near the edge of the field where
£>a,7> b, the spacing of two neighbouring maxima will be a fraction

oS
Zp

of the geometrical spacing. But as z, will be of the order C,y}, if good photographs
are to be obtained, this fraction will be of the order unity. This shows that a sinusoidal
grid, even if it were available, would not be a very suitable test object. Spherical
aberration can be much better determined from the physical shadow of a thin wire,
but the discussion of this case cannot be carried out in elementary terms, and may be
omitted.

RECONSTRUCTION IN THE PRESENCE OF SPHERICAL ABERRATION AND ASTIGMATISM

Assume that a photograph has been taken of the physical shadow of an object,
according to equations (39) or (40). We have seen that, if the background is relatively
strong, this is equivalent to substituting for 7, its real part, }(7, + 7¥), where, as
before, 7, relates to the ‘object proper’ without the background. In order to find the
spurious term in the reconstructed object, we must apply to 7 the transformation
inverse to (39). But this is rather complicated, while an interpretation in terms of
‘twin images’ is easy, and leads to much simpler and clearer results.
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An expression for 7§, the complex conjugate of the physical shadow 7, is obtained
from (39) by reversing the sign of i. Assume now, as before, in the plane z = z, a twin
object with a transmission function

iz, y) = 8 (—=, —y).
Renaming the integration variables —x, —y instead of z,y, one obtains for 7§ the
expression

1€ = [[[ [, 5o 1 exp mitaty— &)+ yim—) + oA 63—

+3A,ALEG — %) — (15— 7)1+ 3A° (29 + 2C) (p§ — p*)]} daedy dEydmy.  (42)
gThis is the physical shadow of an object #; in the plane —z,, according to equation
A (39), but with the important difference that the sign of 4; and C, has been also
= 2 reversed. The physical significance of this becomes clearer if mstead of 7§ we consider
Z’the complementary wave U] which arises in the reconstruction, and which is obtained
« from (42) by multiplying it with the background (36:2). The result can be written

(B E,7) = —e*mf fmx y) dedy f A(Eg, 90) exp (23 [2(Es— £) + y(10—7)

+ 42, A(p§ — P?) + $2oA%(p§ — p*) + 34 A(E3 — 73) + 1 C, A%8]}
x exp { — 2mi[ A, A(E2 — 9?) + § O, A%} dEg dip,. (43)
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Fircure 9. The twin object in & beam with spherical aberration.
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Comparing this with equation (41), it can be seen that the first two lines represent
3 the emission of an object #; in the plane —z,, but tlluminated by a wave in which the
= signs of the astigmatism A, and of the spherical aberration C,wre reversed. This assures
= complete symmetry in the illumination of the object and its twin. But the emitted
% wave is modified by the phase factor in the last line. This means that the wavelet
A issuing from any element #(z, y) dzdy of the twin object has astigmatism 24, and
spherical aberration 2C,. Thus in the presence of astigmatism or spherical aberration
the twin object which appears in the reconstruction will be no longer sharp, but uill
appear as if viewed through a system with twice the aberrations of the condenser system.
One could, of course, view the twin object instead of the original by means of
a viewing system with aberrations of the opposite sign, but not both simultaneously.

This result is illustrated in figure 9, which allows also an elementary verification.
The illuminating beam envelope is shown in continuous lines, the beam appearing
to issue from a point P’ of the twin object in interrupted lines. The axial caustic of
thisbeamisalways twice the caustic of the illuminating beam. This can be immediately

oade
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understood if one imagines the axial caustic as the locus of the centres of homocentric
beams, each emitting rays only in a certain cone.  For each of these partial beams
there exists a sharp twin point to P, on the line joining P with its centre. Equation
(43) proves that this geometric-optical reasoning is in fact justified.

Figure 9 shows also that the beam associated with any point of the twin object
intersects the object plane in an area four times larger than the field. From this we
can infer at once that if the illumination were even, the spurious amplitude in the
object plane would bear the same relation to the correct amplitude as in the case of
homocentric illumination, i.e. equation (29) would apply again. In fact the illumina-
tion is very uneven in a beam with spherical aberration in cross-sections not very
far from the caustic, and on this is based a fourth method of improving the separation,
in addition to the others which have been discussed in a previous section. Masking
is not very efficient in the presence of spherical aberration, as the geometrical shadow
of a point object is a radial line, the projection of the axial caustic. This becomes small
only if the object is in the axis, but in electron optics it is not possible to fix small
objects by means of a transparent support in the middle of the field.

This fourth method for improving the separation is to place the object in a position
where it receives less than the average of illumination density. To explain this briefly,
define as ‘ coefficient of illumination’, J, the ratio of the mean intensity over a small
object area to the mean over the whole illuminated field. If the object has the
average intensity transmission #* and covers a fraction « of the field, the fraction of
the total flux issuing from the object is ft*xJ. Exactly the same flux emerges also
from the twin object. But of this only a fraction }xJ will pass through the object.
The factor J is here the same as defined from the direct illumination of the object,
because, as may be seen in figure 9, the small twin objects interfere with one another
in the direction in which they are directly illuminated. Passing from the intensities
to the root mean square amplitudes one obtains a separation factor proportional to
J(kJ), i.e. \JJ times what we have previously obtained for uniform, homocentric
illumination. Thus by placing small objects in relatively dark parts of the field, where
J <1, one improves the separation, by reducing the spurious background in the
object area. Correspondingly more light is sent by the twin object to other regions of
the field, but the spurious amplitude is of course harmless if it falls well outside the
reconstructed object.

It may be noted that relatively weak illumination does not affect the contrast in
the reconstructed object, so long as it is not submerged by ghosts, scattered light,
and impurities arising from uneven development of the photograph.

COHERENCE CRITERIA

Up to this point we have assumed an absolutely coherent monochromatic
illuminating wave, originating from a point source, but distorted by passing through
a lens system. Absolute coherence means interference fringes of any order, but it
means of course zero intensity. In practice we must strike a compromise between
these two conflicting claims. The best compromise is obtained if the degree of
coherence is just sufficient to produce an interference pattern from which the object
can be reconstructed with the required resolution limit.
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A necessary criterion of coherence can be immediately formulated, without any
regard to details of the hologram. Imagine that an absolutely coherent illuminating
beam is moved during the exposure parallel to itself, so that a representative point
of it, e.g. the mean paraxial focus, fills a circular disk with diameter d,. But this is
equivalent to moving the object within a disk of the same diameter, as only therelative
position of beam and object matters for the physical shadow at infinity, and from
such a ‘wobbled’ hologram we could at best reconstruct an image with a resolution
limit d,. Thus we obtain the necessary condition that the Gaussian or nominal
diameter of the illuminating disk, d,, must not exceed the Abbe limit d 4

d,<d, = $A[siny,,. (44)

But we can show that this necessary condition is also sufficient, because it will
produce holograms practically indistinguishable from one taken with an absolutely
coherent beam, within a plate radius corresponding to the maximum angle y,,.
Express in equation (47) the wave-length by de Broglie’s relation as

A= h/p,

where p is the momentum associated with the wave. This relation is valid for photons
as well as for electrons or any other particles. Interpreting psiny,, as the maximum
transversal momentum p, of the particles in the beam, we write (47) in the form

d2p, < h. (44-1)
Confront this with Heisenberg’s inequality
de2p;> h, (45)

where d, is the maximum transversal uncertainty of position of particles in the beam
in the Gaussian focal plane, and 2p; is the maximum uncertainty in the transversal
momentum. Consider first the case that the beam is limited by a physical aperture
in the plane considered, i.e. d, = d;. Heisenberg’s principle states that if the particles
composing the beam are specified to the limit (45), they are indistinguishable, that
is to say, they produce effects, such as interference fringes, which cannot be dis-
tinguished from one another by observation within the cone-angle corresponding to
that value of p, which changes the inequality into an equality. Comparing (44-1) and
(45) we see that if d, = d,, we must have p, < pj, thus the interference fringes inside the
cone y,, are a fortiori the same for all beam particles.

But if d, is not a physical aperture, but the Gaussian image of one, formed by an
optical system, the criterion still holds, because d,sin y,, is an invariant in Gaussian
optics. If the criterion (44) were not sufficient, it would be possible to break through
Heisenberg’s principle -by placing a suitable lens system in front of the physical
aperture to produce observable differences in the fringe system, which would make the
particles to some extent distinguishable.

These very general considerations are of course uncertain to a factor of the order
unity. In order to obtain a more quantitative idea of the changes which are produced
in the hologram by departure from absolute coherence, consider the simple case of
illumination through a physical aperture of diameter d, and investigate its effect on
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the fringe system produced by a point object on the axis, at a distance z, from the
aperture. Each point of the illuminating aperture produces a fringe system concentric
with the axis which connects this point with the point object. These fringe systems
are incoherent with one another, hence their intensities must be summed. At the
edge of the hologram the angular spacing of two fringes is A/z,siny,,. Two fringe
systems will just wipe out one another if they are displaced by half this amount. This
will be the case if the spacing of the two point sources is $A/siny,,, which is just the
Abbe limit d 4.

With Zernike (1948), we define the ‘ degree of coherence’ D,, as the range of intensity
difference between maxima and minima in the fringe system at the marginal angle
Ym> divided by the corresponding quantity if the same light flux issues from a point
source at the centre of the aperture. Assuming that the intensity variation in the
fringe system is sinusoidal, one obtains

D, =ffcos (nx/dA)dzdy/f dxdy, (46)

where the integration has to be carried out over the area of the illuminating aperture
of diameter d. The integrand cos (7mz/d ) expresses the fact that two points spaced in
the X-direction by d, just oppose one another. The integration gives

Dy Jo(gni) + Jz(%ﬂi) , (47)
dy dy
where J, and J, are the Bessel functions of zero and second order. Some values are
d/d 4 0 0:5 0-75 1-0 1-25 15 1-75 2-0

D, 1 0-925 0-837 0-723 0-:590 0-448 0-312 0-181

This justifies the expectation that the fringes system at the edge of the hologram
will be rapidly effaced if the diameter of the light source appreciably exceeds the
Abbe limit.

The coherence condition (47) represents a severe limitation of the available
intensities, and it is the chief reason why the applications of the method of recon-
structed wave-fronts will be probably restricted to light, with wave-lengths not very
far from the visible, and to electrons. X-rays, protons and other particles will have
to be excluded, as no sufficiently intense sources are available. Even in the case of
electrons rather long exposures will be necessary, unless the present-day technique
is improved.

THE OPTICAL RECONSTRUCTION

So far we have assumed in the formulae, for simplicity, that the reconstruction is
carried out with the same wave-length as used in the production of the diffraction
pattern. Let us now distinguish the first wave-length byA’, the second by A”, and use
the primes ” and " also for distinguishing the data 4, C, in the analyzer and in the
synthetizer. The same formal distinction will be used also for z; and z;, but here
aword of explanation isrequired. z;is a datum of the analysis; it is the actual distance
of the object from the mean paraxial focus of the illuminating beam. But there is no
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original hologram reconstruction

Ficure 10. Optical reconstruction cycle. The original was a microphotograph of 15 mm.
diam. Illuminated with A =4358 A through pinhole 0-2 mm. diam., reduced by a micro-
scope objective to 5% nominal diameter, at 50 mm. fromobject. Geometrical magnification
12. Effective aperture of lens used in reconstruetion 0-025. Noisy background chiefly
due to imperfections of illuminating objective.

(Facing p. 480)
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Fiaure 11. Reconstruction cycle with pinhole illumination. The letters in the original were
inseribed in a rectangle 0-65 x 0-5 mm. Illumination with A=4358 A through pinhole of
54 diam. at 18 mm. from object. Geometrical magnification 10. Effective aperture used

in reconstruction 0-075.
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Fioure 12. Reconstruction with pinhole illumination and wave-length change. The original
was a micro-protractor of 1 mm. diam. Same conditions as in figure 11, but the wave-
length used in the reconstruction was A= 5461 A.
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physical object in the synthetizer, and z; means merely the plane on which the
viewing system must be focused in order to obtain a true, or at least the truest possible
image of the original object.

The result of the analysis, the physical shadow, now to be called 7', is described by
equation (42). We write down this equation again, but replace the Fourier variables
£,7 by the angles «, §,y. For reasons of symmetry it will be convenient to attach
the prime "not only to the data of the analyzer, but also to the co-ordinates z, y, &, £,
and a,, fy,7, used in the analysis. We write

- [ e

x exp {2mi[Q(xg, fo) — Q. B)1}
here the phase function @ is

d(cos ay) d(cos f) T
CO8 Vo

‘dy’, (48)

ust 2022

Qa, )= ;\,[z' cosa’ +y' cos ' — dzysin?yy — A (cos?a’ — cos? B') — 4 (zg + 2C;)sindy’].
(49)

org/ on 05 Aug

The same equation applies to the synthesis, i.e. to the reconstruction of an object
, with all primes ’ changed into ”. The fact that the hologram obtained in the analysis
is used in the reconstruction is expressed by

i (OL ’/3”17 )= D (a'sﬂ'! 7,): (50)

where the angles o', ', ¥’ and o, #”,7" belong to corresponding points of the holo-
m. The relation between them is given by the geometries of the analyzer and
the synthetizer.

Consider first the simple case, illustrated in figure 1, in which the focal length f of
XX the collimator lens in the synthetizer, which moves the hologram optica.ll v to infinity,
ais the same as the throw L in the analyzer. In this case the angles ', #’ and «”, A" are
Ethe same, and their primes can be disregarded. It can be seen by mspecmon of
Eequa,tlon (48) that it is transformed into the corresponding equation for 7" = 7’

HEif we put

”
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ypublis
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-
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Q (=R ” v r ’

"§ &= /\,,x ] 3/ = l\ny ’ A o A”AB) 0 ,\0 Cs’ “p Aﬁzo’ (5])
E A :
é%a,nd (@, y’) = (/\" Y ) (52)

The transformation of the integration variables is purely formal. The next two
equations postulate the scaling up of the aberrations A4;, C} in the synthetizer, and
the last of the conditions (51) states that one must focus on the plane z; in order to
see the object t” given by equation (52).

Consider now the more general case

f=kL, (53)

i.e. we use a collimator lens of focal length k times the throw in the analyzer, always
assuming of course that the hologram is in the focal plane of the lens. (This covers

Vol. 197. A. 32



Downloaded from https://royalsocietypublishing.org/ on 05 August 2022

482 D. Gabor

also the case in which the hologram used in the synthesis is an m times enlarged
replica of the original; in this case the parameter k which figures in the following
equations has the value f/mL.) The angles &’ ... and &” ... are now connected by the

relations
cos o’ 1 °08 a”  cospf’ A cos "

i &) ’ " (54)
cosy cosy”  cosy cosy

The solution of these equations can be written in the form

coso’ = kecosa’[1—§(k%—1)sin®y” — §(k2—1)%sinty” — ...]. (54-1)
Only the first two terms of the expansion will be required. Introduce these into
equation (48), where for simplicity we put A’ = A”, toseparate the change of geometry

from the change of wave-length. The essential properties of the transformation can
be deduced from the phase function @, equation (49), which now assumes the form

AQ = k(2 cosa” +y cos f") — k% sin®y” — k24 (cos 2a” — cos® f”)
- %Ic‘(z—"z + 20;) sindy” — $k(k%—1) (2’ cos &” +y' cos f”) sin®y”

+ B2ok2 (k2 — 1) sin?y” + 3 A ;k?(k® — 1) sin?y” (cos? o” — cos® B”). (55)

The terms in the first row and the first term in the second correspond to an exact

reproduction, the others represent errors which arise only if k%4 1. Considering the

first four terms only, equation (48) transforms into an identical equation for 7" instead
of 7 by putting

kr' =, ky' =y, kA =4, MKC,=C k=2, (56)
and (", y) = z(% %—) . (57)

This means that in order to see an image which is a k£ times enlarged replica of the
original we must scale up the astigmatism £® times, the spherical aberration k* times,
and focus the viewing system on a plane zg = k.

But this image will appear with certain aberrations, which are indicated by the new
terms in (55). The second term in the second row represents a coma. The first term
in the last row is an addition to the spherical aberration, which can be incorporated
in (. The last term shows that the astigmatism 4; of second order in the analyzer has
produced astigmatism of the fourth order in the analyzer, i.e. a spherical aberration
of the elliptical type.

All these error terms can be kept very small unless %< 1. It can be shown that the
best positions of the object are near z;, = — (';sin?7y,,, hence 2’, ' will be of the order
Cysin®y,., even if the object is in a marginal position. Hence the coma term in (55)
will be of the order

7 (=% ’ . " N l " s ’
k(k®—1) Cysin®y,, sindy, ~ 5 Cesinby, |
i.e. unless k*< 1 this will be a very small term, except in extreme cases when the
spherical aberration Csinty,, is of the order of several hundred fringes. In such
cases the coma might amount to a few fringes, and coma compensation in the viewing

system may become necessary.
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The last term in (55) is of the order

B~
ke
which is again very small unless k2 < 1. A in good electron lenses is 10~ or even less
of C}; thus even if the spherical aberration is of the order of a thousand fringes, this
term will represent a fraction of a fringe only.
Thus it is admissible to make the length of the optical synthetizer appreciably
different from the throw in the electronic analyzer. It may be particularly
~ advantageous to make k < 1, that is to say, not to make use of the full magnification
& A”/A’ which is about 100,000, but only of a part of it. The rest can be supplied by the
A viewing system. This has the advantage that one can work with smaller lenses,
athough with proportionately larger numerical aperture. Assuming, for instance,
2 C, = 1cm. and siny,, = 0-05, the minimum diameter of the electron béam is 0-625 4,
0 and if one makes & = 1 one requires an optical system capable of handling a light
g beam with 6:25 cm. minimum diameter. It will be advantageous to reduce this to
\ one-half, or even to one-quarter, as optical systems with numerical apertures of
H 0-1 to 0-2 present no difficulties if the lenses need not be large.
To sum up, ifin the optical synthetizer the data of the electronic condenser system
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4 =pla, o=pl
the transversal dimensions of the object will appear scaled up in a ratio kA"/A" and the
longitudinal dimensions in the ratio k2A”/A’. Thus the geometrical or k-part of the
tranaformatwn is of the type as produced by optical instruments, with a longitudinal
S ‘magmﬁcatwn equal to the square of the tramsversal, while the A-part is a uniform
up, not realizable by ordinary optical vmagery.

The accuracy with which the conditions (58) have to be fulfilled can be best stated
in' terms of fringes. The maximum admissible deviation of a wave-front from the
spherical shape without loss of resolving power has been estimated by Glaser (1943)
as 0-4 of a wave-length, by Bruck (1947) as one wave-length. The second can be
considered as the more reliable estimate. Thus the condition (58) for C; must be
observed to an accuracy of one fringe. Assuming again C; = 1 cm. and a resolution
limit of 1A, one requires by Abbe’s rule an aperture sinyj, = 0-025, and with the
more accurate numerical factor 0-6, siny,, = 0-030. This gives 200 or 400 fringes at
the edge of the field, according to which numerical factor one adopts. Thus the
spherical aberration in the optical model must imitate C; to about one fringe in
200 or in 400.

The astigmatism tolerance at the edge of the field is about a quarter fringe. In
carefully manufactured electron objectives 4, is of the order of a few microns, and
it can be reduced by the compensation methods introduced by Hillier & Ramberg
(1947) by at least one order of magnitude. This is necessary for realizing the full
resolving power of present-day electron microscopes. In terms of fringes, the
astigmatism in carefully manufactured but not compensated electron lenses amounts
to a few fringes at apertures of 0-003, and if this is opened up ten times, to realize
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a ten times improved resolving power, the distortion will be of the order of a few
hundred fringes. Thus 4, must be also imitated in the optical synthetizer to an
accuracy of one part in a few hundred.

One could think of imitating the data of the electron-optical system by first
carefully measuring 4, and €, and computing an optical system with these data.
But this is hardly a practicable method. Apart from the difficulties of measuring to
the required accuracy, by the time the computation is finished and the optical replica
is made the data of the electron-optical system are likely to have changed by far
more than the error tolerance. It will be much preferable to make the astigmatism
and the spherical aberration of the synthetizer variable, and adjust them until
certain known parts of the object, such as the support, or certain standard test
objects appear with maximum sharpness. The spherical aberration can be made
variable by shifting a fourth-order plate, the astigmatism by crossed cylindrical
lenses or by tilting lenses. Expert opticians will be doubtlessly able to work out
a schedule to carry out the three adjustments of focus, astigmatism and spherical
aberration in a systematic way. Thus only a moderate degree of constancy is required
of the electron-optical system, sufficient at least for a series of reconstructions,
without too frequent readjustments.

EXPERIMENTAL TESTS

Experiments were started almost as soon as the idea of reconstruction first emerged.
They confirmed the soundness of the basic principle, but pointed to the necessity of
elaborating and modifying the original, somewhat primitive views on the mechanism
of reconstruction, which have been described elsewhere (Gabor 1948). The experi-
ments were later continued in order to test the conclusions from the quantitative
theory described in this paper.

In these tests analysis and synthesis were both carried out with visible light,
though not always with the same wave-length. The arrangement for taking holograms,
was substantially as shown in the upper part of figure 1, but with optical instead of
with electron lenses. A condenser threw an image of a high-pressure mercury arc (of
the ‘compact’ type, with tungsten electrodes) through a colour filter on an aperture
of about 0-2mm. diameter. The lines used were 4358A (violet), and 5461A (green),
isolated by Wratten light filters nos. 47 and 61. In the earlier tests a microscope
objective was used to produce an image of this aperture, about 40 times reduced,
i.e. with a nominal diameter of about 5x, which formed the ‘point source’. The
objects were mostly microphotographs, sandwiched with immersion oil between two
polished glass plates. In the earlier experiments the distance between the point
source and the object was about 50 mm., the distance from the object to the photo-
graphic plate 550 mm., thus the geometrical magnification was about 12.

The photographic plate was held in position against three locating pins. Originally
it was planned to develop the holograms by reversal, to make sure of exactly identical
positions in the analysis and in the synthesis. In the negative-positive process the
printing was carried out on the same locating pins. These precautions proved
unnecessary in those experiments in which not only the Gaussian but also the
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physical diameter of the source was of the order of the resolution limit, which proves
that in these cases the theory of homocentric illuminating beams is a satisfactory
approximation. But they were required later, in experiments with very strong
spherical aberration in the illuminating beam. Reversal development, however, was
found unnecessary, and the far more flexible negative-positive photographic process
was used throughout. The negative hologram was usually processed with I' = 1-2 to
1:6, and the positive with I' = 0-7 to 1:6, so that a wide range of overall gammas
could be tested. When it was confirmed that an overall gamma of 2 gave the best
results, this was realized as closely as possible.
Q In the reconstruction the positive hologram was sandwiched with immersion oil
cbetween polished glass plates, which had to be carefully selected. It was backed by
«-»a, viewing lens, which was an achromatic doublet, cemented and bloomed, with a focal
Eﬂength of 175 mm. and a linear aperture of 47 mm. The spherical aberration was
<3 fringes at infinite conjugates. The diameter which satisfies the quarter-wave
tolerance can be estimated at 27 mm., and the numerical aperture figures given below
gare based on this ‘effective diameter’. The reconstructed image was viewed in
Fﬁ" microscope, and photographed on plates introduced into the eyepiece.
¢ Figure 10, plate 15, is a record of one of these earlier experiments. The figure at the
t““left is a direct photograph of the original, which was a microphotograph of the names
Zof the three founders of the wave theory of light. It was taken through the viewing

[}
=

Ssystem, with the same optics as used for the reconstruction. The top figure is the
Seentral part of the hologram, and the one at the right, is the reconstruction. All three
Swere taken with the violet mercury line 4358A. The effective numerical aperture was
00 025, thus the resolution Timit 0-6 x 0- *436/0-025 = 10 . This is 145 of the diameter of
~the reproduced part of the microphotographs, and corresponds about to the gap
>‘bei:ween the ‘Y’ and the ‘G’ in ‘HUYGENS’.

X Though in its best parts the reconstruction almost attains the resolution of the

72]

g2direct photograph, the picture is very ‘noisy’. This is due only to a smaller part to
-ﬂthe essential disturbance created by the twin image, to a greater part it is due to
Especks of dust, and inhomogeneities in the two microscope objectives. It may be
L°—<not,ed that these very troublesome effects, unwelcome concomitants of the great
®phase-dxscnmma.tmg power of the methods using a coherent background, cannot be
Sexpected to appear in an electronic analyzer. However imperfect an electron lens
"Emay be from the point of view of theoretical optics, it can contain neither dust nor
o “schlieren’, as the electromagnetic field smoothes itself out automatically, and in this
a respect any electron lens is superior to all but the best optical lenses.

In order to avoid these inessential disturbances, in some later experiments the
optical surfaces were reduced to a minimum. In the experiments of which figures
11 and 12, plates 16 and 17, are records, the source was a pinhole of 3, diameter,
pierced into tinfoil with a very fine needle. Thus no glass surfaces other than those of
the microphotographs were involved in the taking of the hologram. In the recon-
struction the optics was also reduced to a minimum by cutting out the second
microscope. The spacing between the object and the viewing lens was reduced to
180 mm., the distance between the lens and the plate increased to 700 mm., so that
a fourfold enlargement of the object was produced by the viewing lens, sufficient for

Iro
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direct photography on not unduly slow plates. Further enlargement was obtained
in some cases by taking the hologram with the violet line, but reconstructing it with
the green line.

The effective numerical aperture in this experimental series was 0-075, and the
theoretical resolution limit 3-5x. This is about 337 of the diameter of the part of the
microphotograph which is reproduced in figure 11 and which contains ten great
names in the theory of light. The resolution is just about sufficient to resolve the hole
inan ‘A’. The theoretical resolution of the reconstruction is less, because the pinhole
source of 3, used both in the analysis and in the synthesis, is of the same order. It
can be estimated at about 5:5x, by the thumb rule of orthogonal composition of
errors. This resolution has been in fact very nearly achieved in the case of figure 11
and also in figure 12. It cah be also seen that the background is very much more even
than in figure 10. The residual disturbance is mostly essential, and due to the twin
object. In these experiments the twin object could be separately focused, and as
regards sharpness could not be distinguished from the ‘true’ image.

Experiments for testing the theory in the case of illuminating beams with large
spherical aberration are in progress, but they have already confirmed its main results.

CONCLUSION

The new principle can be applied in all cases where coherent monochromatic
radiation of sufficient intensity is available to produce a divergent diffraction pattern,
with a relatively strong coherent background. While the application to electron
microscopy promises the direct resolution of structures which are outside the range
of ordinary electron microscopes, probably the most interesting feature of the new
method for light-optical applications is the possibility of recording in one photograph
the data of three-dimensional objects. In the reconstruction one plane after the other
can be focused, as if the object were in position, though the disturbing effect of the
parts of the object outside the sharply focused plane is stronger in coherent light than
in incoherent illumination. But it is very likely that in light optics, where beam
splitters are available, methods can be found for providing the coherent background
which will allow better separation of object planes, and more effective elimination
of the effects of the ‘twin wave’ than the simple arrangements which have been
investigated.

I thank Mr L. J. Davies, Director of Research of the British Thomson-Houston
Company, for permission to publish this paper and Mr J. Williams for assistance in
the experimental work.
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The thermal equilibrium at the tropopause and the
temperature of the lower stratosphere

By R. M. Goopy, St John's College, University of Cambridge

(Communicated by D. Brunt, F.R.S.—Received 16 August 1948—
Revised 14 February 1949)

Further considerations along the lines of Emden’s methods lead to continuity of temperature
at the tropopause as a condition for a stable transition from a state of convective to radiative
equilibrium. This explains the characteristic appearance of the temperature distribution
near the tropopause. Application of this condition leads to a simple explanation of the
latitude variation of stratosphere temperature, mainly in terms of the effects of water
vapour and carbon dioxide. The variation of stratosphere temperature with ozone concentra-
tion may be calculated, which confirms Dobson’s hypothesis that anomalous seasonal varia-
tions in stratosphere temperature are due to seasonal variations of ozone concentration,
Reasons for the approximately isothermal character of the lower stratosphere are also
discussed.

1. INTRODUCTION

The facts relating to the temperature of the lower stratosphere which require
explanation are now well established. They are:

(i) that the transition of temperature from the troposphere to the stratosphere
is smooth;

(ii) that the temperature is lower over the tropics than over the arctic;

(iii) that temperature gradients are small relative to those occurring in the tropo-
sphere, and often positive; and

(iv) that the seasonal variation of temperature differs from that of the troposphere
immediately below the tropopause.

The lower stratosphere is taken to mean the approximately isothermal region
between the tropopause and a height of approximately 30 km., above which tem-
perature begins to increase rapidly with height.

Any theory of heat interchange in the lower stratosphere must attempt to explain
these facts. Such a theory, in the present state of knowledge, must necessarily be
highly simplified, for the existence of winds at high altitudes, and of moving air
masses with distinet boundaries, make an exact treatment almost impossible. In
problems of similar complication, however, it is sometimes possible to isolate one



