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Abstract

Background: Cell nuclei segmentation is a fundamental task in microscopy image analysis, based on which multiple

biological related analysis can be performed. Although deep learning (DL) based techniques have achieved

state-of-the-art performances in image segmentation tasks, these methods are usually complex and require support

of powerful computing resources. In addition, it is impractical to allocate advanced computing resources to each

dark- or bright-field microscopy, which is widely employed in vast clinical institutions, considering the cost of medical

exams. Thus, it is essential to develop accurate DL based segmentation algorithms working with resources-constraint

computing.

Results: An enhanced, light-weighted U-Net (called U-Net+) with modified encoded branch is proposed to

potentially work with low-resources computing. Through strictly controlled experiments, the average IOU and

precision of U-Net+ predictions are confirmed to outperform other prevalent competing methods with 1.0% to 3.0%

gain on the first stage test set of 2018 Kaggle Data Science Bowl cell nuclei segmentation contest with shorter

inference time.

Conclusions: Our results preliminarily demonstrate the potential of proposed U-Net+ in correctly spotting

microscopy cell nuclei with resources-constraint computing.

Keywords: Cell and cell nuclei segmentation, Deep learning, Enhanced U-Net

Background

Cell or cell nuclei segmentation is typically the first crit-

ical step for biomedical microscopy image analysis [1].

On the basis of accurate cell or cell nuclei segmenta-

tion, multiple biological or medical analysis can be per-

formed subsequently, including cell type classification [2],

particular cell counting [3], cell phenotype analysis [4]

etc., providing valuable diagnostic information for doctors

and researchers. Although conventional image process-

ing techniques are still employed for this time and labor

consuming task, they often cannot achieve the optimized

performance due to multiple reasons, such as limited

capability of dealing with diverse images [1].

With the rapid developments of deep learning (DL)

based techniques, multiple researchers begin to investi-

gate the potential applications to employ DL in cell or cell

nuclei segmentation. For example, C. Hernández et.al. [5]
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proposed using feature pyramid network (FPN) combined

with VGG-style neural nets to predict the masks of cells.

F. Araújo et.al. [6] employed convolutional neural net-

work (CNN) to predict the highly abnormal cell regions

in Pap smear test. T. Tran et.al. [3] used Seg-Net to seg-

ment white blood cells (WBCs) and red blood cells (RBCs)

in peripheral blood smear images, showing 89.45% global

accuracy. Among multiple cell or cell nuclei segmentation

algorithms, U-Net [7] based ones are the most popular

selections and often achieve the state-of-the-art segmen-

tation results as reported in [1]. For example, R. Hollandi

et.al. [8] proposed a method which employed both Mask

R-CNN and U-Net to predict the segmentation of cell

nuclei and the accuracy of algorithm outperformed 739

methods submitted to 2018 Kaggle Data Science Bowl.

The first place algorithm on the same contest [9] also

employed U-Net as fundamental model.

Although DL algorithms has demonstrated the effi-

ciency in segmenting cell or cell nuclei, these state-of-

the-art segmentation algorithms rely heavily on complex
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operations or strategies, such as model ensemble, bag-

ging techniques or complicated pre- and post-processing

of images, which impede the applications of algorithms in

real clinical situations (often only equipped with limited

computing power). For example, methods reported in [10]

employed 2 U-Nets to make final predictions, increas-

ing the accuracy at the sacrifice of higher computing load

during inference. In addition, the wide spread use of sim-

ple bright- or dark-field microscopy can generate large

number of images which need to be processed and ana-

lyzed rapidly. This requires the segmentation algorithms

to be highly accurate and light-weighted, with the abil-

ity of running fast with constrained computing resources,

since transferring large number of images to cloud server

will generally cause long uploading time and large net-

work pressure [11]. Hence, it is still necessary to develop

new DL based technology to increase the accuracy of

segmentation, especially with limited computing power.

Therefore, our aim in the manuscript is to explore

a) the possible performance improvement of cell nuclei

segmentation algorithms through DL with less pre- and

post-processing of images; b) the possibility to deploy the

model with limited computing power (in other words, the

model size should be small). Considering our aim, sev-

eral prevalent, winning methods in various biomedical

competitions are to be excluded, such as multiple mod-

els ensemble or combination as mentioned above. Also

for the same reason, deeper and complex models such

as ResNet-101 [12], InceptionResnet-V2 [13] etc. work-

ing as backbone models are not preferred solutions. The

possible solution is then to check if modifications of clas-

sical U-Net will boost the accuracy of segmentation as

[14–16] shown. Therefore, in our methods, the encoded

branch of conventional U-Net was redesigned to fuse

more image features between shallow and deep hierarchy

layers (see “Model structure” section).We argue that more

fine-grained feature fusions from shallow layer will carry

more details of semantic information, which will benefit

the cell segmentation. In order to test the effect of the

proposed structure (named as U-Net+), a series of exper-

iments was performed (see “Results” section) with U-Net

and U-Net++ [14] served as control. In the experiments,

U-Net was employed as a benchmark of segmentation

due to its wide application in such tasks. The selection

of U-Net++ as control is based on the following consid-

erations: in [14], it is reported that the model prediction

results were based on the same cell nuclei segmentation

dataset (see “Cell nuclei dataset” section) in our experi-

ments. Besides, the comparisons between U-Net++ and

other popular U-Net based structures were drawn and

U-Net++ was reported to achieve the best results.

However, performing impartial comparisons between

different DL algorithms may not be as straightforward as

anticipated. First, it is widely acknowledged that without

knowing the details of training, such as optimization

methods, training related parameters (e.g. initial learn-

ing rate, learning rate decay scheme etc.), the prediction

results of deep model can be quite difficult to reproduce.

To make things worse, implementations of deep models

with different DL frameworks can also induce the vari-

ations in accuracy, running time [17, 18] etc. In other

words, one prerequisite condition for impartial model

comparisons is to employ the same DL framework with

comparative training settings and scheme. Otherwise one

cannot discriminate the origin of metric value variations.

Second, for deep models, sometimes it will be difficult

to accurately identify the source of empirical gains either

from the modification of model or just the results of

fine tuning the parameters [19]. For example, research

from [20] has shown that with adequate settings of hyper-

parameters (batch size, image patch size and number

of pooling operations), classical U-Net without complex

structure modifications can achieve state-of-the-art per-

formance on several challenges or dataset. Third, different

image pre- and post-processing techniques can lead to the

changes of predictions. Based on above reasons, all the

other factors (pre- and post-processing, training scheme,

hyper-parameters settings, number of filters in each depth

etc.) except the neural nets structure were fixed in our

experiments, ensuring that the performance changes were

indeed originated from different design of model struc-

ture.

The main contributions of our manuscript are: with

strictly controlled single variable (neural net structure)

experiments, the proposed U-Net+, which can be viewed

as a light-weighted enhanced U-Net (through implement-

ing densely connected convolutional blocks between dif-

ferent depth in encoded branch), has been proved to have

comparative performance with other popular U-Net like

structures at least in cell nuclei segmentation task.

The manuscript is arranged as following. In “Results”

section, the comparisons of model performances with

different settings are introduced with details. Some nec-

essary explanations of results are also demonstrated in

the same section. Some critical problems when employ-

ing DL techniques in analyzing biomedical images are

discussed in depth in “Discussions” section. Moreover,

future improvements of our work will be illustrated in

“Conclusion” section. In “Methods” section, the details

of cell nuclei dataset are introduced. The techniques

employed in pre-processing of images and how to gener-

ate the training and validation set will also be described.

The structure of U-Net+ and intuitive explanations of the

design will be emphasized and illustrated in the same

section. Besides, the details of training settings will be

introduced, confirming that all the comparisons of algo-

rithms are founded on exactly the same base. At the

last part of “Methods” section, the post-processing and
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metric values to evaluate the performance of algorithms

are illustrated.

Results

In the experiments, the number of filters in the first layer

B was set to 8 and 16 respectively and the model depth

N was fixed to 5 (see “Model structure” section for more

details). Note that these settings would make U-Net and

U-Net++ with fewer number of weights compared to their

original published version. Besides, to U-Net++ model,

when B = 16, the regularization parameter λ was set to

0.0001 as suggested in [14] and 0.0 when B = 8.

Validation loss curve during training

First, the validation losses of the models with different B

settings during training are shown in Fig. 1. To U-Net+,

T.C. denotes transposed convolutional andU.S. represents

up-sampling operation (see “Model structure” section for

explanations). From the figure, it is clear that the vali-

dation losses of all the models remain stable after first

20 epochs training. At the end of training, the valida-

tion losses of U-Net and U-Net+ approach similar values

around 0.13 to 0.15 for both B. Also, different up-sampling

manners of U-Net+ make no obvious changes of vali-

dation loss at the end of training. In contrast, in both

cases, the validation losses of U-Net++ are still higher

than losses of the other two models, which encourages us

to perform fine tuning of U-Net++ for another 5 epochs as

stated in “Training settings” section. By the end of the fine

tuning, the validation loss of U-Net++ reaches similar val-

ues (0.17) as U-Net and U-Net+, meaning all models have

been trained with similar extent. This also demonstrates

that comparisons of model performance are firmly based

on the same ground.

Segmentation with B = 16

The comparisons of segmentation results (image size

256 × 256) with different model structures (U-Net+ with

transposed convolutional operation) are shown in Fig. 2.

The images in first 4 rows were directly cropped from the

original larger ones. In the figure, the white color shows

the correct predictions. In order to clearly see the differ-

ence between the predicted cell label and ground truth,

two colors are employed: the red color shows the FN

predicted pixels (pixels in ground truth but not in predic-

tion) and blue one indicates the FP predicted pixels (pixels

in predicted label but not in ground truth). From the

figure, to most cases, the error just occurs at the bound-

aries of cell nuclei. Clearly, the U-Net+ predictions exhibit

the least amount of colored pixels, showing the highest

accuracy.

Table 1 shows the comparisons of average IOU,

precision and average inference time (ms) per patch

(256 × 256, see “Training and validation set generation”

section) in the test set. In Table 1, the average IOU

is reported as mean value ± standard deviation. The

meanings of T.C. and U.S. are the same as shown in

“Validation loss curve during training” section. Besides,

the number of weights for each model is reported in the

table with unit million (M). From the table, the average

IOUs of U-Net+ (T.C. and U.S.) and U-Net++ are similar

with difference less than 1.5% althoughmetric values of U-

Net+ are better, but these values exceed the average IOU

of U-Net more than 2%. The average precision also shows

the same trend as average IOU. We observe that U-Net+

with transposed convolutional operation achieves better

performance than U-Net+ with up-sampling operation,

probably because of its more number of weights (better

capability of generalization). However, when comparing

the number of weights of different models, U-Net+ has

greater advantages than U-Net++. FromTable 1, the num-

ber of weights of U-Net+ with transposed convolution

is about 15% less compared with U-Net++ model, which

only needs less than 8 Mb space to save. The number of

weights of U-Net+ with up-sampling is even fewer, only

75% of the number of parameters in U-Net++ model. The

Fig. 1 Validation losses of U-Net, U-Net++ and U-Net+. a B = 8. b B = 16
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Fig. 2 Segmentation comparisons between U-Net, U-Net++ and U-Net+. Red color indicates the FN predictions while blue color shows the FP

predictions. From left to right, the columns represent original image, ground truth, U-Net predictions, U-Net++ predictions and U-Net+ predictions

respectively

number of weights of U-Net+ (T.C. and U.S.) is slightly

fewer than U-Net. The average inference times of U-Net+

with transposed convolutional operation and U-Net are

almost the same (approximately 15 ms), which are obvi-

ously less than the average inference time of U-Net++

(22 ms). However, the average inference time of U-Net+

with up-sampling is almost the same as U-Net++ although

with fewer number of weights. The difference of infer-

ence time between two up-sampling modes of U-Net+

is because when performing the transposed convolution,

the number of channels in output tensor has already been

reduced to half of input tensor before performing subse-

quent two convolutional operations. Therefore, this will

decrease the size of the kernel of subsequent first convolu-

tional operation and reduce the number of floating-point

computations. In contrast, the number of channels in out-

put tensor with up-sampling manner remains the same

as input, hence increasing the total computation time. In

sum, to B = 16, U-Net+ performs better than the other

two competing models due to more accurate predictions,

less number of weights and lower inference time.

Segmentation with B = 8

Table 2 lists the similar metrics for evaluating the accu-

racy of segmentation with B = 8. The performances of

U-Net+ and U-Net++ are similar (although U-Net+ is

slightly better in average IOU than U-Net++) and exceed

the performance of U-Net a lot (over 3% for average IOU

and average precision). The overall performance of B = 8

almost remains the same compared to the case B = 16 for

U-Net++ and U-Net+. In contrast, the performance of U-

Table 1 Comparisons of model performances with B = 16

U-Net U-Net++∗ U-Net+ (T.C.) U-Net+ (U.S.)

Ave. IOU (m ± s) 0.533 ±

0.173
0.552 ± 0.217 0.566 ± 0.178 0.551 ± 0.187

Ave. precision (%) 60.0 61.7 63.4 62.0

No. of weights
(M)

1.941 2.262 1.926 1.730

GPU infer. time
(ms/patch)

14.9 22.0 15.3 21.5

* regularization parameter λ = 0.0001
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Net decreases a little. From Tables 1 and 2, we emphasized

the pivotal role of regularization parameter in training

U-Net++, which influences the accuracy a lot on test set.

One possible speculation of this phenomenon is the

number of weights which determines the capacity of deep

models. In order to verify this hypothesis, several more

experiments were performed and the results are shown

below. When B = 16, U-Net++ model was also trained

using regularization parameter λ = 0.0 with other train-

ing settings same as λ = 0.0001. We observed the per-

formance decreasing with this setting. The average IOU is

only 0.503 ± 0.217 and average precision is 57.1%. There-

fore, in this case B = 16, we argue that larger number

of weights of U-Net++ is prone to over-fit on training set

and non-zero regularization parameter reduces the over-

fitting, thus increasing the accuracy of the U-Net++ on

test set. In contrast, when B = 8, setting non-zero regu-

larization parameter will restrain the capacity of U-Net++

and intuitively speaking, this will make deep model not be

able to cope with complex training and test sets, also lead-

ing the reduced performance (average IOU 0.503 ± 0.162

and average precision 57.1%).

From Table 2, the average inference times of U-Net+

with transposed convolution and U-Net are less than aver-

age inference time of U-Net++ while the average time

of U-Net+ with up-sampling is still similar as U-Net++.

However, the average inference time of U-Net (9.5 ms)

is much less than the average one of U-Net+ with trans-

posed convolution (12.4 ms). Herein, we speculate that

more concatenation operations of U-Net+ and U-Net++

will lower the inference speed compared to U-Net. How-

ever, the actual reason needs to be explored in our future

work.

Discussions

In the manuscript, we proposed an enhanced version

of classical U-Net, through re-designing the encoded

branch with densely connected convolutional blocks.

Through strictly controlled experiments, the perfor-

mance improvements of U-Net+ are confirmed from the

new design of model structure. Overall, U-Net+ per-

forms more accurate segmentation with fewer number

Table 2 Comparisons of model performances with B = 8

U-Net U-
Net++∗

U-Net+
(T.C.)

U-Net+ (U.S.)

Ave. IOU (m ± s) 0.526 ±

0.170
0.564 ±

0.181
0.572 ±

0.179
0.567 ± 0.177

Ave. precision (%) 59.5 63.0 62.5 62.4

No. of weights (M) 0.486 0.566 0.484 0.435

GPU infer. time
(ms/patch)

9.5 14.1 12.4 14.0

* regularization parameter λ = 0.0

of weights compared with widely employed U-Net and

state-of-the-art U-Net++ in the first stage test set of

cell nuclei segmentation contest (grey-scale images only).

Here we would like to point out that U-Net++ with deep

supervision training during inference (accurate mode)

would probably achieve better performances than U-Net+

reported in the manuscript. Briefly, as mentioned above,

since U-Net++ has multiple up-sampling branches (L1

to L4 [14], in contrast, multiple down-sampling path-

ways exist in U-Net+), when performing accurate mode

prediction, it actually averages outputs from different

up-sampling branches and eventually increases the accu-

racy of prediction. However, under that circumstance,

U-Net+ still has advantage of 15 to 25% fewer number of

weights and shorter inference time as shown in “Results”

section. Note that another advantage of the model with

fewer number of weights allows setting larger batch size

during training under certain hardware configurations,

which will reduce the total time of training procedure

with specific number of training epochs. On the other

hand, when performing the fast mode prediction through

model pruning, U-Net++ utilizes one output form multi-

ple up-sampling branches. In fact this can be viewed as

one U-Net with smaller N, herein decreases the inference

time paying the price of moderate accuracy loss. Since the

prediction accuracy of U-Net+ is better than accuracy of

segmentation inferred by branch L4 of U-Net++, it can be

concluded the results from U-Net+ will still be superior

to predictions from up-sampling branches L1 to L3. Even

if the inference time of segmentation branch other than

L4 may be shorter than U-Net+ and U-Net, we empha-

size that the comparison may not be neutral because the

shorter inference time is due to smaller number of layers

(fewer floating-point operations) than U-Net or U-Net+.

From the aspect of DL techniques, there still exist quite

a lot open theoretical problems. For instance, without the-

oretical support, it is impossible to understand why some

U-Net based structures will improve the accuracy of seg-

mentation, as questioned by [19]. In the manuscript, we

can only provide intuitive explanations without any theo-

retical explanations while this phenomenon also appears

commonly in most biomedical image analysis papers

using DL. Large amount of novel neural nets design

emerge, yet the efficacy is only verified with the exper-

iments not theory. Besides, because of the deficiency

theoretical support of tuning hyper-parameters, in most

cases, it will be quite difficult to validate whether the

trained model is optimized. For example, if continuously

fine tuning the parameters of all the models examined

in the manuscript, is it still possible to acquire better

segmentation? The answer would be quite probably pos-

itive. However, the correct direction for adjustments may

not be easily discovered without theoretical guidance.

Hence, it urgently needs rigorous theoretical support for
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DL further development. From the viewpoint of appli-

cations, although U-Net+ has the potential to deal with

complex cell image segmentation, there still exist lots of

unsolved problems when utilizing such DL techniques in

real clinical situations, which actually impede the exten-

sive applications of DL techniques in biomedical image

analysis.

First, the clean, well-organized data in almost all the

biomedical related contests is an ’optimized’ or probably

’over-optimized’ version of real data which could contain

noise, artificial damages, huge staining non-uniformity,

large variability of peripheral illumination or various arti-

facts etc. In other hand, accurate annotation of medical

related data requires highly professional prior knowledge

and is often time consuming. To make things worse, it

is quite common to observe human annotation error in

the dataset even for professional annotators, which will

dramatically influence the accuracy of models. All factors

mentioned above will make these open medical datasets

not only contain annotation error [21] but also insuffi-

ciently reflect multiple characters of real data. The DL

models pre-trained on this kind of dataset can be antic-

ipated to have deteriorated performance when employed

in clinical institutions. The limited performances of DL

techniques under real situations explain why conventional

image processing techniques are still prevalent in area of

biomedical image analysis [22], which often do not require

large number of correctly annotated samples to train the

model. Second, the researchers from the DL commu-

nity are continuously pushing forward the performance

of deep model, even with very complicated combinations

of various techniques, hoping to get state-of-the-art met-

ric values, such as IOU or classification accuracy. For

instance, [8] shows a complicated training and inference

method to increase the average precision of cell nuclei seg-

mentation. In other tasks of biomedical image analysis,

the phenomenon with more and more complicated meth-

ods is also commonly seen. However, one crucial question

has to be asked, does the increase of metric values of

deep model really mean the significant improvements of

clinical issues? The answer may differ from the applica-

tion to application [21]. Hence, whether DL techniques

indeed increase the accuracy and efficiency of solving real

biomedical relevant issues has to be carefully examined,

which is also the next step of our future work to test the

efficacy of proposed U-Net+ in clinical cases. We also

would like to point out another disadvantage of employing

complicated DL models, which often leads higher model

loading burden and longer prediction latency, is its diffi-

cult or even infeasible deployment in clinical institutions.

Conclusion

In the manuscript, the model performance of proposed

U-Net+ achieves approximately 1.0% to 3.0% gain with

fewer number of weights and shorter inference time com-

pared to U-Net and U-Net++ in the first stage test set

of 2018 Kaggle Data Science Bowl cell nuclei segmenta-

tion contest (grey-scale images only). Our experiments

preliminarily demonstrate a potential application of U-

Net+ in microscopy cell image segmentation. However,

besides theoretical explorations, there still exists much

work to be done to bridge the gap between DL based seg-

mentation and clinical applications as discussed above.

In the future, from the aspect of proposed model struc-

ture, the generality of U-Net+ must be fully validated by

multiple segmentation tasks, such as lung or liver segmen-

tation from different imaging modalities (X-ray or MRI).

Besides, cell nuclei dataset consisting of much more sam-

ples with various capture conditions has to be established

to further train U-Net+ and test the usability. Moreover,

the performance of U-Net+ with edge computing will also

be appraised in our future work.

Methods

Cell nuclei dataset

The dataset from 2018 Kaggle cell nuclei segmentation

competition [23] was employed as original training and

test dataset. The dataset itself is extremely challenging for

the images were captured with various situations, such

as different cell type, illumination status, imaging modal-

ity (bright-, dark-field and fluorescence microscopy) and

image size etc. As shown in the Fig. 3a and c, it is obviously

seen that the cell appearance is different. Besides, the illu-

mination status is nonuniform between different samples,

making nuclei detection and segmentation more chal-

lenging. Without contrast adjustment, one could hardly

observe the details and boundaries of cells shown in

Fig. 3b. The released first stage training set consists of 670

cell images accompanied with their segmentation stored

as image files. In contrast, the first stage test set consists of

65 images with the segmentation encoded as run-length

files (check the contest for more information). Consider-

ing bright- or dark-filed microscopy is widely employed

in clinical institutions and most samples in the released

dataset belong to these kinds of microscopy images, only

the grey-scale images were employed to be investigated

in our experiments. This leads to the training set with

546 images and the test set with 53 images accordingly.

To eliminate or reduce the non-uniform illumination

noise, several image pre-processing techniques had to be

employed and will be illustrated in the next subsection.

Images pre-processing

In order to adjust the contrast of images in the dataset,

especially for dimmed ones as shown in Fig. 3b, con-

trast limited adaptive histogram equalization (CLAHE)

[24] algorithm was first employed. However, for some

images in the training set, CLAHE will also increase the
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Fig. 3 Original cell images. Different cell appearance (a), background illumination (b) and microscopy magnification (c) are shown

magnitude of image noise and possibly make the model

’focus on’ these amplified high frequency noisy parts.

Herein, total-variation de-noising [25] algorithm was sub-

sequently applied to the histogram equalized image to

reduce the noise and smooth the image yet with cell edge

preserved. Finally, the value of the image was rescaled to

[ 0, 1] conventionally. Figure 4a and b shows the processed

copy of Fig. 3b. It is visually clear that the image details,

such as boundaries, can be easily seen compared with

original dimmed one.

Training and validation set generation

Normally, it is necessary to augment the number of train-

ing samples to reduce over-fitting of the deep model

and mimic possible environmental changes during the

capture of images, such as deficient background light

intensity, image blurring due to motion and staining/color

non-uniformity etc., which may not be sufficiently repre-

sented in original dataset. Considering the dataset with

great variation of illumination intensity, the augmentation

techniques (besides common geometry augmentations)

adjusting the hue and contrast or illumination of images

were mainly employed. Also, out of focus of microscopy

and the de-noising pre-processing operation would result

in relative blurred edges of cells, which led us to pay

attention to various blurring augmentations. To sum, sev-

eral image augmentations, including blurring (Gaussian,

median and average), hue, color saturation and con-

trast adjustments, were randomly applied to the original

images from dataset. Here we would like to point out that

our image augmentations are indeed quite light compared

to some public winning schemes of the contest such as [9]

shown.

After the images were augmented and pre-processed,

multiple patches with target size 256×256 were extracted

from single image followed by the rules described below.

In details, a structured grid (i�x, j�y) with grid spacing

�x = �y = 256 along column and raw was first gener-

ated and the patches whose coordinates of top-left corner

coincide with structured grid point were cropped from

the image accordingly (see Fig. 4c black blocks). For the

images with height or width less than 256, zero-padding

was applied to the corresponding dimension to make the

cropped patches always with the same target size as oth-

ers. Besides, to the images whose height or width is larger

than 256 but indivisible by 256, patches were re-cropped

at the boundary of image to ensure whole image was cov-

ered (Fig. 4c red, blue dotted and green solid squares). In

addition, random selected patches with same target size

were cropped from the image to further increase the num-

ber of training samples. To each randomly cropped patch,

the ratio between foreground (nuclei) and background

must be greater than a pre-defined threshold (0.4 in the

experiments), otherwise the patch would be discarded.
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Fig. 4 Demonstration of pre-processing images and patches generation pattern. a CLAHE processed image. b Total-variation de-noised image. c

Patches generation pattern. Each small rectangle represents one patch

The generated patches were then randomly split into two

subsets, training and validation set with proportion 8 : 2.

Model structure

Inspired by the classical structures of U-Net [7] and

U-Net++ [14], we redesigned the encoding branch of

U-Net as shown in Fig. 5a. Here are several key obser-

vations and explanations of the proposed U-Net+ struc-

ture. First, at the same U-Net+ level (depth), compared

to direct concatenation between encoded and decoded

features as U-Net, the image (encoded) features of U-

Net+ are generated by several more convolutional opera-

tions to get more abstract semantic representations (e.g.

Fig. 5a, C12,C13). Second, features from shallow level have

more pathways to be merged and convoluted with subse-

quent encoded features of deeper levels before decoded

by transposed convolutional or up-sampling operations.

Intuitively, before up-sampling, compared with U-Net or

U-Net++, the encoded features will be enriched withmore

features from low level, fine-grained and high-resolution

images, increasing the accuracy predicting the boundary

of objects. Besides, the fusion of low resolution image

features from deeper layers, which are recognized to

carry more context information [26], also makes U-Net+

increase the accuracy of segmentation. For instance, the

input of U2 up-sampling block will not only consist of

the output of deeper up-sampling block U3 and encoded

image features from the same level n = 3, but also directly

concatenate the encoded image features from level 1 and 2

(see the arrow in Fig. 5a, showing one possible image fea-

tures flow, C10 → C11 → C12 → D13 → D23 → U2)

which are not encoded and decoded by the deeper parts of

neural net. Also note that the image features flow as well

as the gradient flow during back-propagation are different

compared with U-Net++ model, which can be viewed as

an ensemble of multiple U-Nets with distinct depth due to

multiple up-sampling branches [14] (see Fig. 5b).

Specifically, in each convolutional block (C11,C23 etc.),

convolutional operation was performed with kernel size

3 × 3, stride (1, 1) and zero-padding as most modern

structures used. The batch normalization layer [27] was

employed for accelerating the training speed and the

activation function for each neuron in the block was

set to rectified linear unit (ReLU). The down-sampling

block was implemented through the convolutional oper-

ation with stride (2, 2) in row and column dimension
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Fig. 5 Structure of U-Net+ and one skip-connection from U-Net++. a Structure of U-Net+. For simplicity, the convolutional blocks are not shown in

the up-sampling blocks. b One skip-connection of U-Net++. Re-drawn from [14] Fig. 1b

respectively. The rest settings of down-sampling block

were the same as convolutional block (kernel size, batch

normalization and activation function). The up-sampling

block was implemented by either transposed convolu-

tion (kernel size 3 × 3 and stride (1, 1)) or up-sampling

(repeating tensor rows and columns, such as TensorFlow

UpSampling2D) followed by two convolutional blocks

(not shown in Fig. 5a for simplicity). The difference of

performance between two up-sampling manners is illus-

trated in “Results” section. Note to a particular opera-

tional block, for instance C23 or U1, the inputs were the

concatenation of all the connected block outputs (see

Fig. 5a). With depth increasing, the number of filters in

each convolutional, down-sampling or up-sampling block

was accordingly set to 2n−1B, n = 1, ...,N , in which B

represents the number of filters in the first level and N

denotes the number of levels or depth (in Fig. 5a, N =

5). For example, the number of filters in convolutional

block C31,C32 were all 4B while the number of filters in

the down-sampling block D41 was set to 16B (this also

explains why N = 5 in the figure). Both B and N deter-

mine the size of U-Net+. For increasing the computational

efficiency, B was set to the multiplier of 2. To the con-

volutional block C15, only single convolutional operation

(1 × 1 kernel and stride (1, 1)) with sigmoid activation

function was employed so as to predict the probability of

each output class. In nuclei spotting and segmentation,

the number of classes was 1, indicating the cell nuclei.

Another point needs to be noticed is the fewer num-

ber of weights of U-Net+ compared with U-Net++ (also

see “Results” section for detailed comparisons). This can

be concluded from different skip-connection structure

between U-Net+ and U-Net++ since down-sampling and

up-sampling branches of two structures are similar. In

Fig. 5b, to U-Net++, the input of each convolutional unit

is the concatenation from two categorical outputs; the

tensors from previous densely connected blocks along

the skip pathway at same depth and the ones from up-

sampling blocks located in the deeper level. This will

enlarge the size of input tensor before performing convo-

lutional operation especially for the convolutional blocks

near the decoded branch (e.g. C3 or C4 shown in Fig. 5b)

and herein increase the number of channels of convolu-

tional kernels andmodel weights. For simplicity, assuming

the number of channels of output tensor for every convo-

lutional block in Fig. 5b is c and the number of channels

for up-sampling block is b (in [14], b = c), then to convo-

lutional block C4, the kernel size is (3c + b) × h × w × c,

in which h and w represent the kernel height and width

respectively. In contrast, to U-Net+, the inputs to most

convolutional blocks (e.g., C22,C32 etc.) only consist of

two outputs from connected convolutional and down-
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sampling blocks. For instance, using the same assump-

tions and notations as U-Net++, the kernel size of convo-

lutional block C23 is only 2c×h×w×c. Besides, the kernel

size remains the same for all the intermediate convolu-

tional blocks at same depth. Overall, this design results in

less number of weights of U-Net+ than U-Net++.

Training settings

As illustrated in “Background” section, the parameters

besides the neural net structure were all fixed during

training for subsequent rigorous comparisons of perfor-

mance of different model. Below lists the details during

training models (U-Net 1, U-Net+ and U-Net++ 2).

The loss function is set to negative log Dice coefficient

loss plus binary cross-entropy loss between the predicted

and true labels of all training samples, namely,

L = λBCELBCE +
1

M

M
∑

i=0

− logD
(

yitrue, y
i
pred

)

(1)

In Eq. 1, λBCE is employed to balance log loss and binary

cross-entropy loss and empirically set to 1.0 in the experi-

ment. The Dice coefficient is defined as,

D(ytrue, ypred) =
2|ytrue ∩ ypred|

|ytrue| + |ypred|
(2)

Here, | · | denotes cardinal operator. Geometrically, Dice

coefficient measures the similarity between 2 sets (includ-

ing size and position). During training, Adam algorithm

[28] with initial learning rate 0.0005 was employed to

optimize the loss function defined in Eq. 1. In order to

reduce the over-fitting of deep model, loss was moni-

tored on the validation set. The model with best accuracy

(lowest loss) would be stored, employed to predict the seg-

mentation on the test set. The batch size was adjusted

based on the type and size of the model but to satu-

rate all the GPU memory in the experiments inspired

by [20]. The number of epochs was empirically set to

20 and the losses on the validation set were stable (see

“Validation loss curve during training” section) at the

end of training. Here several points need to be noticed

when training U-Net++. First, in the experiments, U-

Net++ was fine-tuned for another 5 epochs on the

basis of first 20 epochs training results with smaller

learning rate 0.0001 or 0.0003 due to its lower con-

vergent rate. Second, we found L2 regularization played

important role of U-Net++ performance, possible due

to the larger number of weights of U-Net++ (see

“Segmentation with B = 8” section for the discussions in

details). Third, the deep supervision training of U-Net++

which may increase the accuracy of predictions during

inference with accurate mode was not employed since

1code from https://github.com/zhixuhao/unet
2code from https://github.com/MrGiovanni/UNetPlusPlus

no corresponding structures exist for both U-Net and

U-Net+. Indeed, we emphasize that, in the manuscript,

the comparison between results predicted by U-Net++ L4

segmentation branch and corresponding predictions from

U-Net and U-Net+ was performed. All the trainings were

performed on two Nvidia GTX 1080 Ti GPUs, with Keras

2.2.4 (Tensorflow 1.12.0 backend) as framework.

Predictions post-processing

During the inference phase, the image from test set

was first pre-processed as “Images pre-processing”

section shown and decomposed to multiple patches as

“Training and validation set generation” section illus-

trated. As described above, when the height or width

of image is indivisible by 256, overlapping patches will

be generated at the region near the edge of image (see

Fig. 4c). For the non-overlapping patch, the predicted

value per pixel was determined to 1 (cell nuclei) or 0

(background) based on whether the output value of model

at that pixel was larger than 0.5 or not. In contrast, to

the overlapping part, the maximum value of all predic-

tions from different patches at one pixel was first selected

and then the label at that pixel was determined using

the same rule as non-overlapping part (1 if the maxi-

mum value larger than 0.5, otherwise 0). Final masks were

constructed after performing two simple morphological

operations to remove the small holes and isolated objects

with approximately area size of several hundred pixels.

Metrics to evaluate the performance of model

As suggested in [21], selection of metrics plays pivotal

role in evaluating the performance of deep learning mod-

els. In the experiments, average aggregated method was

selected as the metric due to its strong statistically robust-

ness [21].We compared the intersection over union (IOU)

(not the Dice coefficient in the training phase) cell by cell.

Specifically, one ground truth and predicted image were

first decomposed to multiple connected regions and each

connected region represents one true cell or predicted

cell respectively. For every cell in the ground truth set

{gi, i = 1, ...,Ng}, we iterated the predicted label set {pj, j =

1, ...,Np} and found one whose IOU value with gi was

greater than a preset threshold from {Tk}. If such a pre-

dicted mask existed, it was considered as a true positive

(TP) prediction (the IOU value was recorded), otherwise

gi was categorized as a false negative (FN) truth (the IOU

value was set to 0.0 accordingly). In other words, each iso-

lated cell in ground truth image will be assigned one value,

which is either the IOU value with TP case or 0.0 with

FN case. False positive (FP) value was counted when the

IOU of one predicted cell with all gi was 0.0. The aver-

age IOU could then be calculated for one image. Besides,

we followed the precision definition in the contest,

namely for one predicted image, the precision is defined

https://github.com/zhixuhao/unet
https://github.com/MrGiovanni/UNetPlusPlus
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as (similar as AP50:95 commonly employed in object

detection task),

precision =
1

|{Tk}|

∑

k

TPk

TPk + FNk + FPk
(3)

In the equation, {Tk} is the collection of values starting

from 0.50 to 0.95 with step size 0.05. Eventually, the aver-

age IOU and precision for all the images in the test set

were calculated and used as the metric values to evaluate

the performance of algorithm (see “Results” section).

The average inference time was also evaluated using

GPU (one Nvidia GTX 1080 Ti). In the experiments, the

total inference time for all the images in test set (53

images, 174 patches) was counted and the above pro-

cedure was repeated for 5 times. Eventually the average

inference time per patch (256 × 256) was estimated.
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