
P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43

Microsearch: A Search Engine for Embedded
Devices Used in Pervasive Computing

CHIU C. TAN, BO SHENG, HAODONG WANG, and QUN LI

College of William and Mary

In this article, we present Microsearch, a search system suitable for embedded devices used in
ubiquitous computing environments. Akin to a desktop search engine, Microsearch indexes the
information inside a small device, and accurately resolves a user’s queries. Given the limited hard-
ware, conventional search engine design and algorithms cannot be used. We adopt Information
Retrieval (IR) techniques for query resolution, and proposed a new space-efficient top-k query res-
olution algorithm. A theoretical model of Microsearch is given to better understand the trade-offs
in design parameters. Evaluation is done via actual implementation on off-the-shelf hardware.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.3 [Special Purpose and Application-based Systems]: Real-Time
and Embedded Systems

General Terms: Design, Security, Algorithms

Additional Key Words and Phrases: Embedded search engine, information retrieval, pervasive
computing

ACM Reference Format:
Tan, C. C., Sheng, B., Wang, H., and Li, Q. 2010. Microsearch: A search engine for embedded devices
used in pervasive computing. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 43 (March 2010),
29 pages. DOI = 10.1145/1721695.1721709 http://doi.acm.org/10.1145/1721695.1721709

1. INTRODUCTION

Pervasive computing allows users to interact with their physical environ-
ment just as they would a laptop. A tourist can just as easily interact di-
rectly with a signpost for directions as he would a navigate a Web site.
Attendants in a conference can obtain minutes of the previous meeting by
querying the conference desk instead of obtaining the data from the group wiki.

This project was supported in part by US National Science Foundation grants CNS-0721443, CNS-
0831904, and CAREER Award CNS-0747108.
Authors’ address: C. C. Tan, B. Sheng, H. Wang, and Q. Li, College of William and Mary, Department
of Computer Science, Williamsburg, VA 23185; email: {cct, shengbo, wanghd, liqun}@cs.wm.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1539-9087/2010/03-ART43 $10.00
DOI 10.1145/1721695.1721709 http://doi.acm.org/10.1145/1721695.1721709

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:2 • C. C. Tan et al.

Fig. 1. Example of a PDA querying Microsearch.

Such applications all rely on small devices embedded into everyday objects and
environment.

In this article, we describe Microsearch, a search system designed for small
embedded devices. We use the following example to illustrate how Microsearch
can be used. Consider a collection of document binders. Each binder is em-
bedded with a small device running Microsearch. Each device contains some
information about the documents found in that binder. When a user wishes
to find some documents, he can query a binder using some terms (i.e., “acme,
coyote, refund”), and Microsearch will return a ranked list of documents that
might satisfy his query. Also included in the reply is a short abstract of each
document to help him make his decision. Later, the user decides to add some
notes to a document. Through input devices such as a digital pen [Logitec 2004]
or PDA, the user can store notes into each binder. Figure 1 shows a PDA modi-
fied with a sensor mote that can be used on Microsearch. Microsearch will then
index the user input for future retrieval.

Microsearch is designed to run on resource constrained small devices capa-
ble of being embedded into everyday objects. An example of a small device is
manufactured by Intel [Nachman et al. 2005] which has a 12MHz CPU, 64KB
of RAM, 512KB of flash memory, and wireless capabilities, all packaged in a
3×3cm circuit board. Larger storage capacity can also be engineered to store
more data. In this article, we use the terms “mote” and “small device” inter-
changeably.

Similar to desktop search engines like Google Desktop [Google 2007], Spot-
light [Apple 2007] or Beagle [Beagle 2007], Microsearch indexes information
stored within a mote and returns a ranked list of possible answers in response
to a user’s query. We envision that Microsearch can be an important component
in physical world search engines like Snoogle [Wang et al. 2008] or MAX [Yap
et al. 2005].

1.1 Background

Earlier pervasive systems [Abowd et al. 1997; Cheverst et al. 2000a, 2000b;
Rekimoto et al. 1998; Starner et al. 1997] typically embed simple RF devices
like RFID tags onto physical objects. Each tag contains a unique ID identifying
that particular object. Data about physical objects are stored remotely on large
servers and are indexed by their respective IDs. To send or receive information
regarding a physical object, a user first obtains the ID from the object and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:3

Fig. 2. (a) Typical design utilizing backend server. (b) Different paradigm without use of a server.

then contacts the remote server with the ID. This design paradigm embeds
very simple devices into physical objects and relies on powerful servers for
computation.

As embedded devices become more powerful, a different design paradigm
that does not utilize a backend server can be used. Instead of embedding a
simple RF beacon into an object, a more powerful device is embedded. Infor-
mation previously kept on a server will now be stored directly on this device.
User queries will also be resolved by the object itself. Figure 2 illustrates the
two approaches.

There are several advantages in using a more powerful device to store and
retrieve data, rather than relying on a server.

—Data accessibility. Storing the data on a more powerful embedded device
instead of a remote server allows the user to obtain data directly from the
object using protocols like Bluetooth. In areas without long-range wireless
networks, a simple RF device will only give the user an ID and no other useful
information.

—Simple deployment. An object embedded with a powerful device can be used
without additional configuration, whereas a simple RF device still needs to
be configured with a remote server before it can be deployed.

—Intuitive ownership transfer. Storing data directly on the device allows the
use of more intuitive security protections for ownership transfer. When user
A hands over the physical object to user B, user A can no longer access the
stored data, since he no longer has access to the object itself. When using a
simple RF device, when user A hands over the physical object to user B, the
associated data still resides on user A’s servers, allowing user A access even
though he no longer posses the physical object.

Despite the advantages, there are two main drawbacks for using a more
powerful device. The first is cost. Simple RF devices like RFID tags are inex-
pensive, each tag costing several cents, compared to tens of dollars for a more
powerful device. Since RF devices are so much cheaper, several of such devices
can be attached to the same object to improve reliability against damaged tag.
The relative higher cost rules out deploying multiple more powerful devices on
the same object. The second drawback is maintenance. The more powerful

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:4 • C. C. Tan et al.

device will require periodic maintenance such as replacing the batteries,
whereas a simple RFID tag, once attached, is essentially maintenance free.

Given the strengths and weaknesses, no approach is suitable for all applica-
tions. Pervasive applications involving multiple owners and objects operating
mostly in an outdoor environment are likely to benefit from using a more pow-
erful device over a weaker RF device. The simple ownership transfer property
makes it easier to manage data when the object has to move between different
owners. Also, the lack of wireless connectivity makes communication with re-
mote servers unreliable. Examples of such applications include tracking pack-
ing crates, which may want to record contents and notes as the crate moves
from one location to another. By storing the data directly on the crate, the data
is available only to the new owners holding the crate.

1.2 Our Contributions

The challenge of designing Microsearch lies in engineering a complete solution
that can run efficiently on a resource constrained platform. Desktop search
systems typically require large amounts of RAM to perform indexing. Similarly,
query resolution algorithms usually store intermediate results in memory while
resolving a query. With just kilobytes of RAM to spare, it is impossible to port
existing solutions directly onto motes. In addition, mote hardware uses flash
memory for persistent storage. While conventional flash file systems [Company
2008; Woodhouse 2001] have been designed, they require more memory than is
available on a mote. This necessitates a different system design.

We make the following contributions in this article: (i) We provide a system
architecture that effectively utilizes limited memory resources to store and in-
dex different inputs. (ii) Our architecture incorporates information retrieval
(IR) techniques to determine relevant answers to user queries. (iii) Since con-
ventional IR techniques are designed for more powerful systems in mind, we
introduce a space saving algorithm to perform IR calculations with limited
amounts of memory. Our algorithm can return the top-k relevant answers in
response to a user query. (iv) A theoretical model of Microsearch is presented to
better understand how to choose different system parameters. (v) Finally, we
implement Microsearch on an actual hardware platform for evaluation.

The rest of this article is as follows. Section 2 contains related work, and
Section 3 describes the Microsearch system design. Section 4 details the security
protections, Section 5 covers our search algorithms, and Section 6 presents
the theoretical model of Microsearch. Section 7 contains our evaluation, and
Section 8 concludes the article.

2. RELATED WORK

Desktop search engines are a mainstream feature found in most modem oper-
ating systems. In general, these search engines collect metadata from every file
and store the metadata into an inverted index, a typical data structure used to
support keyword search [Faloutsos 1985]. Information retrieval algorithms are
then used to determine the best answer to a query. Our work draws from the
basic principals of IR to rank query results.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:5

A counterpart to Microsearch is PicoDBMS [Pucheral et al. 2001], a scaled
down database for a smart card. PicoDBMS allows data stored inside the smart
card to be queried using SQL-like semantics. The main design difference be-
tween our work and PicoDBMS is that PicoDBMS uses a database design. Their
approach works well in a specific domain like storing health care information,
which can enforce structured inputs with specified attribute terms and assume
well-trained personnel. Microsearch, on the other hand, uses a search engine
design that allows for unstructured inputs without enforcing prespecified at-
tributes, and a natural language query interface. The relationship between the
two can thus be summed up as the differences between a search engine and a
database.

We proposed an embedded search system in Wang et al. [2008], which allows
one to search the physical environment but focused on integrating a hierar-
chy of sensors that can cover a large area rather than on how an individual
embedded device manages data. Our later work [Tan et al. 2008] considered
the problem of building an information management system on a single sensor.
However, Tan et al. [2008] does not provide any security solution to protect the
data. Furthermore, in this article, we improved on the theoretical model found
in Tan et al. [2008] and evaluated its accuracy.

Low-level flash storage systems on the sensor platform have only recently
gained interest among researchers. Earlier sensor storage research treated the
low-level storage as a simple circular log structure. Efficient Log-Structured
File System (ELF) [Dai et al. 2004] was the first paper that introduced a file
system especially tailored for sensors, providing common file system primitives
like append, delete, and rename. Another file system is the Transactional Flash
File System (TFFS) [Gal and Toledo 2005b], which deals with NOR flash. Both
research are different from ours in that they provide a sensor file system and
not a sensor search system. A search system emphasizes good indexing and
query response time, while a file system does not.

Closer to our work is MicroHash [Zeinalipour-Yazti et al. 2005], which fo-
cuses on efficient indexing of numeric data using the sensor flash storage. It
creates an index for every type of data monitored by the sensor, for example,
temperature or humidity. Since the data indexed by MicroHash is generated by
the sensor itself, the index size can be predetermined from the sensor hardware
specifications. For example, if the sensor hardware supports temperature mon-
itoring between 10 and 50 degrees at 1-degree granularity, the index with 40
entries can hold all possible data generated. An adaptive algorithm is applied
to repartition the index to improve performance. Our research differs from Mi-
croHash in two main ways. First, we allow indexing of arbitrary type of terms,
not just numeric ones, and second, we adopt information retrieval algorithms
to reply to queries.

Systems like the Journaling Flash File System [Woodhouse 2001] and Yet
Another Flash File System [Company 2008] are designed primarily for larger
devices, making them unsuitable for the sensor platform. We refer to Gal and
Toledo [2005a] for more details. One interesting exception is Capsule [Mathur
et al. 2006a], which provides object primitives like a stack or index for other
sensor applications. These object primitives are designed to work on sensor

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:6 • C. C. Tan et al.

platform. Unfortunately, Capsule’s index primitives require the indexable
dataset to be known beforehand, making it unsuitable for indexing the generic
metadata. There is also no retrieval algorithm for ranking query results.

File system search is a mainstream feature in most modem operating sys-
tems. Since most desktop search systems are commercial offerings, detailed sys-
tem design is unavailable. However, most search systems share some common
functionalities. Metadata for every file is collected and stored in an index. This
index data structure, in its simplest form, resembles an inverted table [Frakes
and Baeza-Yates 1992], where given a term, it returns the location of the file
containing that term. Information retrieval algorithms [Kobayashi and Takeda
2000; Faloutsos and Oard 1995; Frakes and Baeza-Yates 1992; French et al.
1999] are used to determine the best answer to a query.

3. SYSTEM ARCHITECTURE

We begin with describing the inputs to Microsearch. We assume that a user
uploads information to Microsearch via a wireless connection through a suitable
interface like a PDA. Microsearch requires every user input to consist of two
segments, a payload and a metadata. The payload is the actual information
the user wishes other people to download. The metadata is a description of the
payload data, and is used to determine whether a payload is relevant to a user’s
query. Both the payload and metadata are user generated.

The metadata is essentially a list of terms describing the corresponding pay-
load. Microsearch requires each term, known as a metadata term, to be ac-
companied by a numeric value, known as a metadata value, indicating how
important that term is in describing the payload. A metadata using n meta-
data terms to describe a payload can be represented as {(term1, value1), . . . ,
(termn, valuen)}. For a text-based payload, the simplest method to determine
the metadata value for a term is to count the number of times that term appears
in the payload. Metadata values for nontext-based payloads can be defined by
the user.

3.1 Microsearch Design

Microsearch maintains two data structures in RAM: a buffer cache and an
inverted index. The buffer cache is used to temporarily store and organize data
before writing to flash to improve overall performance. The inverted index is
used to track and retrieve the stored data. In general, when receiving an input
file, Microsearch stores the payload into flash memory, and the metadata into
the buffer cache. This continues as more inputs are sent to Microsearch until the
buffer cache is full. Selected metadata entries are then organized and flushed
to flash memory to free up space in the buffer cache, and the inverted index is
updated.

Receiving an input. Upon receiving an input file, Microsearch first stores
the metadata into RAM and then writes the payload directly to flash memory.
The starting address of the payload in flash is returned and added to each
metadata entry for that payload. With this payload address, Microsearch can

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:7

recover the entire payload, if needed. Each metadata entry in the buffer space
now becomes a tuple, (term, value, address), consisting of a metadata term,
a metadata value, and a payload address. For example, consider Microsearch
writing a payload to flash memory location addr3. All metadata associated with
this payload becomes {(term1, 3, addr3), . . . , (termn, 2, addr3)}.

As mentioned earlier, flash memory is used as permanent storage for user
inputs. Microsearch writes data to flash memory using a log structure style
write, which treats the entire flash memory as a circular log, always appending
new data to the head of the log. A pointer indicating the next available location
in flash memory is kept by Microsearch. Log-style writes have been found to be
suitable for flash memory [Gal and Toledo 2005a]. Since writes are performed
on a page granularity, Microsearch will always attempt to buffer the data into
at least a single page before writing to flash.

Buffer cache organization. As more payloads are sent to the buffer cache,
the buffer cache becomes a collection of metadata entries that describe the
different input files stored in the mote. There is no longer the concept of a set
of entries belonging to a particular payload. Instead, metadata entries that
have the same metadata term are grouped together. For instance, two different
input files may share some common metadata terms. Inside the buffer cache,
the tuples with the same metadata terms are grouped together. For instance,
two payloads stored in address addr3 and addr8 may share the same term
term1. Thus, inside the buffer cache, they will be grouped as {(term1, 2, addr3),
(term1, 5, addr8)}.

Inverted index. An inverted index is commonly used in search engine sys-
tems to retrieve the archived information. A conventional inverted index has
every slot correspond to a different term. Each slot stores a pointer to a list
of documents or web pages containing that term. By matching a given query
term with the inverted index, one can retrieve all the documents or Web pages
containing that term.

Microsearch uses a modified inverted index which differs from a conventional
design in two ways. First, Microsearch uses a hash function to map multiple
metadata terms to a certain slot in the inverted index. This results in a smaller
inverted index, which uses less RAM but is slightly inaccurate. We discuss how
Microsearch resolves this inaccuracy in the next section. Second, Microsearch
has each slot in the inverted index store the flash address of a page in flash
memory containing a group of metadata terms that hash to the same slot. This
flash page is known as a metadata page. An inverted index slot that already
has metadata terms hashed to it is considered initialized.

Buffer eviction with uninitialized index slot. When the buffer cache reaches
full capacity, tuples will have to be evicted to free up space for new entries. Mi-
crosearch hashes the tuples and selects the largest group with the same hashed
result and looks up the corresponding slot on the inverted index. If no metadata
term has been hashed to that slot before, that slot is considered uninitialized.
Microsearch organizes the group of tuples in the order of their arrival into the
buffer cache and writes the metadata pages into flash memory. If the group

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:8 • C. C. Tan et al.

Fig. 3. (a) Buffer eviction with uninitialized index slot: (1) Flushes tuples from buffer cache,
(2) Copies address of metadata page, addr17, into inverted index. (b) Buffer eviction with initialized
index slot: (1) Copies previous metadata page address from inverted index. (2) Flushes tuples from
buffer cache. (3) Copies new address, addr26, into inverted index.

of tuples spans multiple flash pages, each metadata page contains the flash
memory address of the next page. The address of the last metadata page con-
taining the tuples is returned to the inverted index. The inverted index stores
this address into the uninitialized slot. The slot is now considered initialized.
Figure 3(a) illustrates this process.

Buffer eviction with initialized index slot. In the event that an inverted in-
dex slot has already been initialized, Microsearch first reads the page indicated
by the address found in the index. Microsearch tries to add all the new tuples
to that page. If there is not enough space, a new metapage is created and the
address from the index will be copied onto the first metadata page of tuples.
The group of tuples are written to flash memory as before, and the address of
the last metadata page is returned and stored in the inverted index. Thus, the
inverted index will always have the address of the latest metadata page writ-
ten into flash memory. Since each metadata page in flash memory contains the
address location of the preceeding page, every metadata page can be retrieved
by traversing the links. We consider this a chain of metadata pages. Figure 3(b)
illustrates this process.

Data deletion. Deletion in flash memory occurs at a sector granularity. A
sector consists of many pages. Each page is 256B and a section is typically
64KB. A delete pointer is kept by Microsearch to indicate the next sector to
erase. Once the flash is reaching full capacity, Microsearch frees up storage
space by deleting the sector indicated by the pointer. Both payload pages and
metadata pages in that sector are deleted.

Deleting a sector may cause a metadata page to point to a payload page that
has already been deleted. We can use the delete pointer to determine what

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:9

address have already been deleted. Microsearch ignores these payloads when
returning data to the user. Deleting a sector may also cause a metadata page
to point to another metadata page that no longer exists. Microsearch uses the
delete pointer to determine if a metadata page has been deleted, and considers
the chain of metadata pages to have terminated.

4. SECURE MICROSEARCH

Security is not a part of conventional search engines, but it is an important
consideration for embedded search engines. This is because while the servers
used to run a conventional search engine can be kept in a secure location, small
devices running Microsearch are deployed on physical objects that are easily
misplaced or stolen.

4.1 Threats

As mentioned earlier, one advantage of storing data on the object instead of
a server is simple ownership transfer. Once an object is handed off to a new
owner, the previous owner automatically loses access to the stored data, since
he no longer has physical possession. However, this does not make Microsearch
secure against an adversary that is in the vicinity of the user’s object.

(1) Privacy attack. The adversary can query the user’s object to obtain some
private information.

(2) Storage DoS attack. The adversary can repeatedly send fake information to
the user’s object to deplete the storage space.

(3) Query-spoofing attack. The adversary can use a malicious device to fool the
user into querying the adversary’s device instead of his own, thus returning
incorrect information to the user.

(4) Storage-spoofing attack. The adversary tries to induce the user to store data
onto the adversary’s malicious device instead of his own. This effectively
“deletes” the user’s object, since no data is ever stored.

4.2 Straw Man Protocols

Given the high cost of updating embedded device software once deployed, ad-
ditional consideration in the design phase will be useful. Here, we consider
several protocols that appear to provide adequate security but in actuality con-
tain vulnerabilities.

Blanket encryption. One apparent solution is for the user to first create a
secret key and encrypt all the data before sending it to his object running Mi-
crosearch. Since Microsearch’s indexing does not distinguish between cipher-
text and plain text, no additional modifications are necessary. Since the adver-
sary does not know the user’s secret key, querying Microsearch only yields ci-
phertext that do not reveal the user’s private information. This defends against
the privacy attack. Blanket encryption also defends against the query-spoofing
attack. When the user receives any reply, he will decrypt using his secret key.
Without knowing the secret key, the adversary cannot generate the correct

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:10 • C. C. Tan et al.

ciphertext to respond to the user’s query. The adversary will be detected when
the user cannot decrypt a response.

However, blanket encryption does not defend against a storage DoS attack.
The adversary can still store a lot of fake information for Microsearch to index
and thus deplete the storage space. The user is also vulnerable to the storage-
spoofing attack, since he does not know whether his data has been stored on
his own device.

Simple user only authentication. Another solution is for the user to first
generate a public and private key pair, P K and SK . He then stores P K into
his object running Microsearch. When the user wishes to store data or query
Microsearch, he executes the following protocol,

User → Microsearch : Request (1)
User ← Microsearch : PK{n} (2)

User : SK{PK{n}} = n′ (3)
User → Microsearch : n′ (4)

Microsearch : If n′= n, continue, (5)
else terminate session

where n is a random number generated by Microsearch, PK{n} is encrypting
n with the public key PK, and SK {P K {n}} is applying the secret key SK to
a bundle encrypted with PK. Note that Microsearch will generate a new n for
each new request.

We see in Step (2) that Microsearch encrypts a random number n with the
public key. The value of n is obtained by applying the corresponding SK, which
is only known to the user. Thus, only the user can return the correct value of n′

to Microsearch in Step (4), which will match the original n. Without knowing
the correct n, Microsearch will no longer process the user’s request.

This protocol defends against the privacy attack and the storage DoS attack.
The adversary does not know the secret key SK and thus will not be able to
return the correct n in Step (4), leading Microsearch to terminate the session.
This way, the adversary cannot query data or add fake data to the object.

However, the simple user only authentication protocol is still vulnerable to
attacks 3 and 4. The adversary will follow the same steps, but in Step (5), it will
not check if n′ = n. Instead, the adversary will always continue to process the
user’s request. Since the user knows the SK and expects to be authenticated,
he will continue accessing the adversary’s device as if it were his own.

Hybrid solution. An apparent alternative is to combine the two straw man
solutions together by running the simple user only authentication protocol
and encrypting everything. However, this does not defend against the storage-
spoofing, attack, since the adversary’s device can accept the user’s encrypted
data.

Simple mutual authentication. The problem with the simple user only au-
thentication is that the user never verifies if the object processing his request

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:11

belongs to him. A straightforward approach seems to be for the user to authen-
ticate the device as well. The user first creates two public and private key pairs,
one for himself, PKu and SKu, and the other for his object running Microsearch,
PKo and SKo. The user stores PKu and SKo in the object. He then interacts with
his object as follows.

User → Microsearch : Request, PKo{n} (1)
Microsearch : SKo{PKo{n}} = n′ (2)

User ← Microsearch : PKu{n′} (3)
User : SKu{PKu{n′}} = n′′ (4)
User : If n′′ = n (5)

User → Microsearch : n′′ (6)
User : Else terminate session. (7)

Microsearch : If n′′ = n′, process request (8)
else terminate session.

This protocol appears to allow both the user and his object to authenticate
each other. If the object belongs to the adversary, it will not know SKo and cannot
obtain n′, which is equal to n. As a result, when the user decrypts the adversary’s
reply in Step (4), the user will observe n′′ �= n and conclude that the object does
not belong to him. Now, consider the adversary trying to query the user’s object.
Since the adversary does not know SKu, the adversary cannot send the correct
n′′ such that n′′ = n′, resulting in the user’s object declining to process the
request. This protocol improves on the simple user only authentication and
appears to defend against all previously listed attacks.

However, an adversary can launch an effective privacy and storage DoS at-
tack by ignoring the objects reply in Step (5). Since the adversary selects the
initial random number n, he can always return the same value in Step (6). The
object will then verify that n′′ = n′ and process the request.

4.3 Single-User Protocol

The problem with the simple mutual authentication is the repeated use of the
same random number. To be secure, two random numbers must be used, one
generated by the user and the other by the object. Assuming that we have
only one user, we use the same set-up as the simple mutual authentication but
execute the following protocol.

User → Microsearch : Request, P Ko{n1} (1)
Microsearch : SKo{P Ko{n1}} = n′

1 (2)
User ← Microsearch : n′

1, P Ku{n2} (3)
User : If n′

1 = n1 (4)
User : SKu{P Ku{n2}} = n′

2 (5)
User → Microsearch : n′

2 (6)
User : Else terminate session (7)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:12 • C. C. Tan et al.

If n′
2 = n2, continues (8)

else terminate session

where n1 is a random number chosen by the user, and n2 is the random number
chosen by the object.

When the user sends PKo{n1} to the object, only his object knows SKo to
decrypt and return the correct n1. Thus, at Step (4), if n′

1 = n1, the user knows
that the object belongs to him. Similarly, the object authenticates the user by
sending PKu{n2}, which can only be decrypted by SKu, which is only known to
the user. Thus, in Step (8), only the user can return the correct n′

2 = n2, at which
point the object can trust that the request was not issued by an adversary.

We see that this protocol defends against both the privacy attack and storage
DoS attack, since the adversary cannot return the correct n′

2, causing the ob-
ject to terminate the session. Both query-spoofing attack and storage-spoofing
attack are also foiled, since the adversary’s device cannot return the correct n′

1
to the user, causing the user to terminate the session.

4.4 Multiple Users

We can extend the single-user protocol mentioned earlier to accommodate k
users by storing PK1, · · · , PKk in the object. The user that sends a request will
indicate which public key to use, and the rest of the protocol can be executed.
However, the problem is that storing a large number of keys will take up limited
storage space in the embedded device.

We assume that the owner of the object creates a master public and private
key pair, PKmas and SKmas, as well as a key pair for the object, PKo and SKo. He
stores SKo and PKυ into the object. Each valid user, u, will be issued his own
public and private keys, PKu and SKu, and a certificate cert where

cert = SKmas{PKu}
Now, when the user wants to access the object, he will use the single-user

protocol, but include his cert and public key PKu in the request. The object can
apply the master public key to verity that PKu is valid,

PKmas{cert} = PKmas{SKmas{PKu}} = PKu.

Since only the object owner knows SKmas, verifying PKu through PKmas{cert}
indicates that this public key is authorized by the owner. The rest of the inter-
action remains the same as the single-user protocol.

4.5 Performance Details

The challenge of implementing security on an embedded device is hardware lim-
itations. With limited computation and battery power, conventional security
protocols cannot be directly applied. The protocols given earlier rely on pub-
lic key cryptography, which can be implemented using different cryptographic
primitives such as RSA, ElGamah, or Elliptic Curve Cryptography (ECC).

A security protocol for Microsearch will inevitably be application and deploy-
ment specific. Since different types of users will have different requirements,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:13

Table I. RSA and ECC Encryption Parameters

Parameter RSA ECC
Secret key size 128B 20B
Public key size 128B 40B
Certificate size 128B 40B

Ciphertext overhead 128B 60B
Encryption time 21s 2.8s
Decryption time 21s 1.4s

Table I shows several important parameters, such as the size of a public key
and the time needed to encrypt some data [Wang et al. 2007, 2006]. The values
are derived from an embedded device with 8MHz processor and 10KB RAM.
The table can serve as a guideline for designers in estimating the cost of their
protocols. A more detailed comparison of the costs is found in Wang et al. [2008].

The ciphertext overhead in Table I is the additional number of bytes that
result from encrypting the data. In other words, encrypting a 16-byte data-using
RSA will result in a 144-byte ciphertext. Furthermore, in practical security
implementations, we typically do not use public keys to encrypt data. Instead,
we use a symmetric key to encrypt the data and then use the public key to
encrypt the symmetric key. A typically symmetric key is 16 bytes in size.

5. QUERY RESOLUTION

Query resolution describes the process of returning an accurate answer to a
user’s query. A user queries a mote by sending a list of search terms and pa-
rameter k, which specifies the top-k rankings he is interested in. The user
receives an ordered list of k possible payload data as an answer. We begin by
first introducing a basic query resolution algorithm. The actual space-saving
algorithm used by Microsearch is presented later.

5.1 Information Retrieval Basics

Microsearch uses a simple information retrieval weighing calculation, the
TF/IDF function, to determine how relevant each payload address is in satisfy-
ing the user’s query. Under the TF/IDF function, the weight of each metadata
term of a payload is determined by the product of TF · IDF, where TF is the
metadata value of the metadata term, and IDF is log(N

DF), where N is the total
number of payloads stored within the mote, and DF is the number of payloads
that share the same metadata term. The relevancy of a payload, or the score
of the payload, is the combined weights of the metadata terms matching the
search terms.

For example, let Microsearch contain a total of 5 payloads. One of the pay-
load p1 has tuples (term1, 3), (term2, 2), and another payload p2 has a tuple
(term1, 6). The remaining payloads do not contain terms term1, term2. A user
issues a query (term1, term2). Clearly, the ideal answer should be p1, since it is
the only payload that contains both terms. Using TF/IDF, the weight of p1 will
be

3 · log
5
2

+ 2 · log
5
1

= 5.96,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:14 • C. C. Tan et al.

and the weight for p2 will be

6 · log
5
2

= 5.49.

From the calculation, we see that p1 has a larger final score than p2 despite
p2 having a larger term score 6.

5.2 Basic Algorithm

In the basic algorithm, Microsearch first obtains a set of metadata entries with
metadata terms that match the search terms. Remember that a metadata entry
is of the form (term, value, address). With this chosen set of metadata entries,
Microsearch then ranks the payload addresses in order of their relevancy and
uses the top ranking addresses to retrieve the payloads to return to the user.
Since each payload has a unique flash memory address, this address is used as
an identifier for a payload.

To obtain the set of metadata entries, Microsearch first scans all the meta-
data entries in the buffer cache for metadata terms matching the search terms.
Matching entries are then copied to a separated section of RAM. Next, Mi-
crosearch uses the inverted index to find matching metadata entries in flash.
Microsearch first applies the hash function to each search term to determine
the corresponding slot in the inverted index. These slots contain the addresses
of the metadata pages in flash memory. Each metadata page contains metadata
terms that hash to the same slot. Note that the metadata terms found in the
same page do not necessarily have to be the same. They only need to hash to the
same slot. Microsearch then retrieves each metadata page one at a time until
all metadata pages are read. For each metadata page read, Microsearch com-
pares the actual metadata terms to the search terms and copies the matching
ones to RAM.

At this point, Microsearch has a list of all metadata entries that match the
search terms. Microsearch uses the TF/IDF function to determine the score
for each payload address and orders them from the highest score to the lowest.
Microsearch then uses the top-k payload addresses to obtain the actual payloads
from flash to return to the user.

5.3 Performance Improvements

The basic algorithm first selects all the metadata entries that match the search
terms and then proceeds to eliminate low scoring payload address. This ap-
proach requires a large section of RAM to be set aside. A better solution is to
eliminate low-scoring payload addresses as they are encountered.

There are two difficulties in deriving a better solution. First, Microsearch
relies on TF/IDF calculations to determine the relevancy of each payload ad-
dress. Calculating the IDF requires knowledge of DF, the number of payloads
in flash that share the same metadata term. The DF score can only be obtained
by reading in every metadata page from flash and checking the corresponding
metadata terms. We cannot maintain a DF score for each inverted index slot,
since there could be multiple metadata terms that hash to the same slot.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:15

Second, even if we use only TF score without IDF, a simple elimination
scheme does not work. Consider the example when a user queries Microsearch
with two search terms x and y , with k = 1. For simplicity, we assume that
the buffer cache is empty and x, y hash to different slots in the inverted index
(i.e., hash(x) �= hash(y)). We have 10 metadata pages each in flash memory
matching hash(x) and hash(y). Now, after reading in the first metadata page
for x, we obtain two metadata entries with x. This means there are two poten-
tial payload addresses which can satisfy the user’s query. Let us denote these
two addresses as addr1 and addr2. The first metadata page for y does not con-
tain either addr1 or addr2. At this point, even though the user specifies the
top-1 answer, we cannot eliminate addr1 or addr2 because we cannot deter-
mine whether either payload address actually contains the term y . The reason
is that Microsearch does not guarantee that metadata from the same payload
are evicted from the buffer cache at the same time. To be sure addr1 or addr2
contain y , we have to continue reading in the metadata pages for hash(y) from
flash.

5.4 Space-Efficient Algorithm

To derive a space-efficient algorithm, Microsearch exploits the sequential write
behavior of log file system. This sequential behavior ensures that data is always
written to the flash memory in a forward order. This means that if payload p1 is
sent to the mote before payload p2, then the flash address of p1 will be smaller
than that of p2.

To describe the space-efficient algorithm, we first define some notations. We
let t be the number of search terms and a user query is {k, {st1, st2, . . . , stt}}. We
denote the inverted index as InvIndex and the latest metadata page written
to flash memory as the head metadata page. For example, InvIndex[hash(sti)]
returns the address of the head metadata page for sti. We represent this value
as head[i].

We allocate a memory space page[i] for each query term sti, which is sufficient
to load one metadata page from flash memory. We first check the buffer and load
the metadata entries whose metadata term is sti to page[i]. If sti is not found in
the buffer, we load head[i] to page[i]. Let min(page[i]) and max(page[i]) denote
the smallest and largest payload addresses in page[i], respectively. We define a
cutoff value as the maximum value among min(page[i]), that is,

cutoff = max{min(page[i]), ∀i ∈ [1, t]}.
Due to the following Lemma 5.1, we have all necessary information to calculate
the IR scores for the loaded index entries, whose payload address is greater
than or equal to cutoff. The entire algorithm is found in Algorithm 1.

LEMMA 5.1. For any index entry whose payload address ≥ cutoff, if its term
field is included in the query terms, it must have been loaded into memory.

PROOF. It can be proved by contradiction. Assume there exists such an index
entry whose term is one of the search terms sti, and payload address is p ≥cutoff.
In addition, the metadata page it belongs to has not been loaded yet. It means

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:16 • C. C. Tan et al.

Algorithm 1. Reply Top-k Query:

1: Input: k, {st1, st2, . . . , stt}
2: Output: k-length array result
3: head[i] = InvIndex[hash(sti)]
4: Scan buffer and each relevant metadata page chain to accumulate the document

frequency (df[i])
5: Load relevant index entries in buffer to the buffer page page[i]
6: If page[i] is empty, load Flash(head[i]) and move head[i] to the next page
7: while there exists a nonempty page[i] do
8: cutoff = max{min(page[i]), ∀i ∈ [1, t]}
9: for nonempty page[i] and max(page[i]) ≥ cutoff do

10: for every entry e ∈ page[i] and e ≥cutoff do
11: score = calScore(e)
12: if score > minimum score in result then
13: replace the entry with the minimum score in result by {e, score}
14: for j = 1 to t do
15: remove e from page[j]
16: for i = 1 to t do
17: if page[i] is empty then
18: load Flash(head[i]) to page[i]
19: move head[i] to the next metadata page
20: return result

that the contents in page[i] are from some preceding metadata page in the
same chain, that is, the loaded metedata page is closer to the chain head. For
example, in Figure 3(b), the metedata page at addr26 precedes the page at
addr17 in the same chain. According to our protocol, if metedata page a precedes
metadata page b, page b must be flushed into flash earlier than page a. Thus,
any payload address in a must be larger than any payload address in b. Based
on our hypothesis, therefore, we can derive that any payload address in page[i]
must be larger than p, thus

min(page[i]) > p ≥ cutoff.

It is a contradiction with the definition of cutoff, which implies ∀i ∈
[1, t], min(page[i]) ≤ cutoff.

A k-length array result[k] is used to store the intermediate results that are
the candidates of final reply. Every time we get a new IR score, this array will
be updated to keep the current top-k results. The processed index entries will
be eliminated from memory. When page[i] is empty, we load the next metadata
page in the chain from flash memory and repeat this process. Based on the
definition of cutoff, there must be at least one page[i] becoming empty after
each iteration. The algorithm terminates when ∀i, page[i] = φ and every chain
reaches its tail. In this design, instead of loading every metadata page, we load
at most one page for each query term. Thus, the memory space needed is at
most O(E · t), where E is the size of a metadata page.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:17

Note that, in practice, we traverse each index chain twice, the first time to
obtain the DF for the term, and the second time to execute the actual query
algorithm. This is done to match the DF definition in the simple TF/IDF scoring
algorithm adopted for this article. If alternative scoring algorithms that do
not require this form of IDF calculation are used, this extra traversal can be
avoided.

6. THEORETICAL MODEL

A key parameter in designing Microsearch is the size of the inverted index. We
first present the intuition behind the choice of inverted index size, followed by
the theoretical model.

With a smaller inverted index, uploading information into Microsearch is
faster. When the buffer cache is full, Microsearch evicts data from the buffer
cache into flash memory. Microsearch groups all the metadata terms that hash
to the same inverted index slot together for eviction. Recall that writing data to
flash memory occurs on a page granularity. In other words, the cost of writing
a page into flash memory is the same even in situations where there are not
enough metadata terms hashing to the same inverted slot to make up a flash
page. A smaller inverted index results in more metadata terms hashing to the
same inverted index slot. This increases the probability of more entries being
flushed out of the buffer cache each time.

With a larger inverted index, query performance may be improved because
each index slot will have fewer metadata terms hashing to it. As a result, the
chain of metadata pages in flash memory that map to each inverted index slot
become shorter. When replying to a query, Microsearch has to read in the entire
chain of metadata pages. A shorter chain of metadata pages means that fewer
pages are needed to be read from flash memory, thus speeding up query perfor-
mance. Next, we first analyze a important parameter, the number of metadata
terms in each metedata page. Then, we derive query performance and insert
performance of Microsearch. Table II lists some variables in our model.

Analysis of E ′ and x. Although each metadata page can hold E metadata
terms, the actual number of terms in each metadata page (E ′) might be less
than E. It depends on the number of metadata terms Microsearch flushes to the
flash when the buffer is full. Recall our eviction process described in Section 3;
the largest group of tuples that hash to the same index slot will be evicted to
the flash. Let x denote the number of metadata terms in this largest group
(i.e., every eviction could put x terms to the flash). According to our protocol,
if x > E, Microsearch will write multiple metadata pages in the flash, where
the last page contains (x mod E) terms and the other pages are full with E
terms. Thus, in this case, E ′ = x

� x
E � . Otherwise, if x ≤ E, Microsearch will write

at most one new metadata page each eviction. Recall our eviction process will
first attempt to pad the last written metadata page. As a result, every metadata
page will contain E

x � · x terms. In summary,

E ′ =
{

x/� x
E � if x > E;

 E
x � · x if x ≤ E.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:18 • C. C. Tan et al.

Table II. System Model Variables

of documents D
of metadata per document m
of query terms t
Size of main index (# of slots) H
Size of metadata page (# of metadata terms) E
of actual metadata terms per metadata page E ′

Size of buffer (# of metedata terms) B
of terms flushed per eviction x

4 8 16 32 64 128
0

20

40

60

80

100

120

Size of Main Index

of terms flushed per eviction (x)

of terms per metadata page (E’)

Fig. 4. Value of x and E ′ vs. Index Size (H): We allocate 5K bytes to buffer cache. Thus, buffer
size B is set to B = 640. The flat line illustrates the value of E = 31.

Next, we give an analysis of deriving the value of x. Based on its definition, x is
obviously at least � B

H �. For one hashed value hi, the probability that p entries
in the buffer map to hi is(

B
p

) (
1
H

)p (
1 − 1

H

)(B−p)

.

Thus, the probability that at least p entries map to hi is

q =
∑
j≥p

(
B
j

) (
1
H

) j (
1 − 1

H

)(B− j)

.

The probability that x ≥ p is P (x ≥ p) = 1 − (1 − q)H . Thus,

P (x = p) = P (x ≥ p) − P (x ≥ p + 1).

Therefore, the expected value of x is

x =
B∑

i≥� B
H �

P (x = i) · i.

The following Figure 4 illustrates an example of x and E ′.

Query Performance. Assume there are D number of files stored in the flash
memory and each of them is described by m terms, on average. Totally, we

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:19

4 8 16 32 64 128
0

50

100

150

200

Size of Main Index

N
u

m
b

e
r

o
f

R
e

a
d

s

Fig. 5. Query Performance vs. Index Size (H): We set D = 1000, m = 10, t = 1, E = 31, B = 640
(5KB buffer).

need store D · m index entries in the flash, which occupy D·m
E ′ metadata pages.

Considering a fair hashing, the average length of metadata page chain is D·m
E ′ ·H .

When Microsearch processes a query for one term, based on the hash value of
the term, it has to go through one of the metadata page chain twice. One round
for collecting the value of document frequency and the other for finding the
top-k answers. Expectedly, Microsearch will need to read 2·D·m

E ′ ·H metadata pages
from the flash. For a query for t terms, Microsearch has to access t distinct
metadata page chains, when t � H. Thus, it takes at most 2·t·D·m

E ′ ·H page reads
to reply. Figure 5 illustrates an example of query performance.

Insert Performance. Insert performance is measured by the number of reads
and writes operated during inserting D files. Microsearch only reads once in
each buffer eviction. As we mentioned, each eviction flushes x metadata terms.
Since there are D ·m metadata terms in total, the number of reads for insertion
is D·m

x . The number of writes must be no less than the number of reads. If
x ≤ E, each eviction only write on metadata page; thus, the number of writes
is the same as the number of reads. If x > E, however, Microsearch will write
multiple pages in each eviction process. Since each metadata page contains E ′

terms, the number of writes is � D·m
E ′ �. Figure 6 illustrates an example of query

performance.

7. SYSTEM EVALUATION

7.1 Hardware and Implementation

We used the TelosB mote for our experiments. TelosB features a 8MHz proces-
sor, 10KB RAM, 48KB ROM, and 1MB of flash memory. An IEEE 802.15.4 stan-
dard radio is used for wireless communication. The entire package is slightly
larger, measuring 65×31 × 6mm and weighing 23 grams without the battery.
We implement Microsearch using NesC in TinyOS environment and a user in-
terface using Java. The core program takes around 1,700 lines of NesC codes,
and the interface takes around 800 lines of Java codes.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:20 • C. C. Tan et al.

4 8 16 32 64 128
0

500

1,000

1,500

Size of Main Index

of reads

of writes

Fig. 6. Insert Performance vs. Index Size (H): We set D =1,000, m = 10, E = 31, B = 640 (5KB
buffer).

From Table II, the parameters related to implementation include the size of
main index (H), the number of metedata terms in each metadata page (E), and
the size of buffer cache (B). In our implementation, we set H = 32, E = 31, and
B = 372. Each entry in H is 3 bytes. Each metadata entry (term, value, address)
is 8 bytes. We use the first 5 bytes to store the term, 3 bits to store the value
field, and the rest for the address field. The total amount of space allocated to
the buffer and index is 3K memory.

7.2 Generating Workload Data

A difficulty in evaluating a search system lies in determining an appropriate
workload. An ideal workload should consists of traces derived from real world
applications. However, since Microsearch-like applications do not yet exist, we
cannot collect such traces for evaluation. This also makes it difficult to generate
synthetic traces that approximate user behavior. We generated our workload
by observing related real world applications.

We envision that most objects such as a wedding photograph album or a
document binder will embed a mote running Microsearch. Since each object has
its own mote, each mote does not necessarily have to contain a large amount of
unique data. For instance, a large bookshelf may contain hundreds of document
binders, with a combined total of thousands of documents. However, each binder
may contain only a dozen documents. Since each binder embeds a mote, each
mote only needs to index the contents of its own binder. Consequently, none of
our workload considers excessive large number of unique pieces of data. Our
evaluation considers the following two workloads.

Annotation workload. This workload represents a user storing many short
pieces of information, similar to Post-it reminders or memos, onto a mote. The
metadata a user would associate with these type of applications is usually very
short. We want a real world application where many users provided annota-
tions, since this closely resembles the metadata we desire. One such applica-
tion is the annotation of online photographs. We extracted 622 photographs and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:21

0 200 400 600 800
0

10

20

30

40

50

Rank

T
e
rm

 F
re

q
u
e
n
c
y

Fig. 7. Term distribution for annotation workload.

their accompanying annotations from the website www.pbase.com. This created
a set of 2059 metadata terms, an average of 3.3 metadata terms per photograph.
We consider each photograph as a unique input, and each photograph’s anno-
tation as the corresponding metadata terms. The metadata value of each term
is set to 1. Figure 7 shows the metadata term distribution for this workload.
Recall in Table II that the parameters related to workload are D = 622 and
m = 3.3.

Doc workload. This workload represents a mote used for tracking purposes,
such as keeping track of the documents inside a binder. We assume that the
binder contains academic publications, and the accompanying mote contained
the abstracts of all the papers. A user can query Microsearch just like querying
Google Scholar to determine if a particular paper is inside the binder. To create
the doc workload, we extracted 21 papers from the conference proceedings of
SenSys 2005, and derived an average of 50 metadata terms for each paper. The
metadata terms include author names, paper title, and keywords. Metadata
values are based on the number of times each term appeared in the paper
abstract. Recall in Table II that the parameters related to workload are D = 21
and m = 50.

7.3 System Performance

We use the annotation workload to evaluate system performance. The objec-
tive is to determine the performance of the two main Microsearch components:
indexing the data sent by a user and replying a user query. Time is the main
metric used. In addition, for every evaluation, we present both the actual mea-
sured performance and the predicted performance derived from our theoretical
model introduced earlier. The closer the predicted results match the actual re-
sults, the more accurate our theoretical model is.

To prepare, we first generate a set of queries by randomly choosing terms
from the 2,059 harvested annotations. We then divided the set of queries into
four groups, with the first group containing queries with one search term, the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:22 • C. C. Tan et al.

2 4 8 16 32
2

4

6

8

10

12

Size of Main Index

T
im

e
 (

s
e

c
)

Experiment

Estimate

Fig. 8. Predicted and actual insert performance.

second group with queries containing two search terms, and so on. Each group
has a total of 100 queries. We limit the number of search terms to at most four
terms, since studies conducted on mobile search conclude that most searches
consists of between two and three terms [Church et al. 2007; Baeza-Yates et al.
2007; Kamvar and Baluja 2006].

We then inserted the 622 metadata files with a total of 2,059 metadata terms
into Microsearch. This is equivalent to inserting 622 short messages into the
mote. Figure 8 shows the time taken to insert all the terms into Microsearch.
We see uploading information is faster given a smaller inverted index. This is
consistent with the intuition given in the prior section.

Figure 9 shows the time taken for Microsearch to answer a user’s query. As
discussed in the theoretical model, we see that a larger inverted index processes
queries faster than a smaller inverted index. The predicted query response time
is also very close to the measured time. Overall, Microsearch is able to answer
a user’s query in less than 2 seconds. Figure 10 shows the actual overhead of
Microsearch minus the time taken to read from flash memory. We see that the
additional time taken to rank the query answers is less than 0.5 seconds.

7.4 Search Accuracy

The precision verses recall metric is commonly used to evaluate search systems.
Precision is defined as the number of relevant items retrieved divided by the to-
tal number of retrieved items. Recall is the number of relevant items retrieved
divided by the total number of relevant items in the collection. A better search
system consistently returns a higher precision for any given recall rate. How-
ever, the precision versus recall metric does not measure how well the search
system ranks the results.

Shah and Croft [2004] suggested using metrics from question answering
(QA) research [Voorhees 2001] to evaluate search algorithms for bandwidth or
power constrained devices. QA is a branch of information retrieval that returns
answers instead of relevant documents in response to a query. In QA research,
the goal is to return a single or a very small group of answers in response to

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:23

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Size of Main Index

R
e
s
p
o
n
s
e
 T

im
e

Experiment

Estimate

2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Size of Main Index

R
e
s
p
o
n
s
e
 T

im
e

Experiment

Estimate

(a) 1 term

2 4 8 16 32
0

0.5

1

1.5

2

Size of Main Index

R
e
s
p
o
n
s
e
 T

im
e

Experiment

Estimate

2 4 8 16 32
0

0.5

1

1.5

2

Size of Main Index

R
e
s
p
o
n
s
e
 T

im
e

Experiment

Estimate

(b) 2 term

(d) 4 term(c) 3 term

Fig. 9. Predicted and actual query response time measured in seconds.

2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

Size of Main Index

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
e
c
)

1 Query Term

2 Query Term

3 Query Term

4 Query Term

Fig. 10. Processing time overhead of search system processing.

a query, not all relevant documents. The main evaluation in QA is the mean
reciprocal rank (MRR). MRR is the calculated as

MRR = 1
rank of first correct response

.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:24 • C. C. Tan et al.

LastName Title Keyterms
0

0.2

0.4

0.6

0.8

1

M
R

R
 S

c
o

re

Fig. 11. Query accuracy (k = 3).

The first correct response is the top-ranked document in the model answer.
For example, if the model answer to a query is the ranked list (A, B, C) and
IR system returns the list of (C, B, A). The first correct answer should be A,
and the returned answer is two spots off. The MRR for this question is thus
1
3 = 0.33. We evaluate the performance of our search system by modifying the
guidelines for QA track at TREQ-10 [Chen et al. 2001]. We consider only the
top three answers in calculating MRR. If the model answer does not appear
within the top three ranks, it has a score of 0.

We use the doc workload to evaluate the accuracy of Microsearch. We first
determine a set of queries based on the 21 publications and their corresponding
answers by hand. These questions are divided into three groups, LastName,
Title, and KeyTerms. The queries for the first two categories are terms from
the last names and paper titles of the conference proceedings. The queries for
the last category are a mixture of terms from last names, titles, and abstract
keywords.

Figure 11 shows the results of our search system for the three categories. For
each category, we plot the MRR for the different categories over the average
of 21 questions. From the figure, our system returns a MRR of 0.95 for both
LastName and KeyTerms. The MRR for Title is lower at 0.83, because some of
the paper titles contained very common words like “Packet Combining In Sensor
Networks.” In all cases, we see that, on average, Microsearch will return the
correct answer when the user specifies k = 3.

7.5 Experiment Limitations

We stress that the results shown in Figure 11 do not suggest that Microsearch
will yield similar accuracy results in a real deployment. The reason for the very
high accuracy results is that we have deliberately avoid using vague queries,
since it is difficult to objectively quantify what the answer should be. Instead, we
first generated a set of queries which contain terms that are found in multiple
documents, and then manually determine what the correct answers to those
queries. In all instances, the answers we select are unambiguous. For instance,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:25

Table III. Recommended Size of Main Index (H) for
Different Query Response Requirements

(B × 8 + H × 3 = 3KB)

Groups 1 term 2 terms 3 terms 4 terms
1(0.1s) 16 156 x x
2(0.2s) 8 16 68 156
3(0.3s) 6 11 16 46
4(0.4s) 4 8 12 16
5(0.5s) 4 7 10 13

given a query “underwater sensor storage.” There is only one paper containing
the term “underwater”, and three papers containing the term “storage.” Almost
all papers contained the word “sensor.” The correct answer is should be the
only paper on underwater sensors despite the two other papers containing more
occurrences of the term “storage.”

Microsearch uses TF/IDF calculation to resolve queries, a conventional
weighing algorithm widely used in information retrieval research. Our con-
tributions are the space-saving algorithm (Algorithm 1) that uses less memory
space to compute TF/IDF and that the results in Figure 11 can only be in-
terpreted as showing the correctness of applying our space-saving algorithm
technique in determining TF/IDF, not the accuracy of Microsearch.

7.6 Model Accuracy

As we expect higher-level applications to be built above our low-level search
system, the predictability of our system is an important performance metric.
Since sensors, as embedded devices, have more stringent resource limitations,
it is important when developing applications to be able to accurately budget the
sensor resource. A low-level component that is gives unpredictable performance
will adversely impact sensor application design and deployment. To evaluate
our performance, we give a set of requirements and derive the expected perfor-
mance based on our model. Then, we modify our prototype based on these re-
quirements and compare the experimental results against the expected results.
The closer the match, the better the predictability of our system. In all cases, we
limit the available RAM for main index and buffer size to 3KB. Table III shows
our requirements and recommendations. For a given targeted query response
time and expected query term length, the model provides a recommendation
of size of index. The buffer cache size is then 3KB subtracted from the index
size. An x indicates our search system cannot meet the targeted query response
time given the hardware requirements. Figure 12 shows the results. We see that
the experimental results are sightly higher than the targeted query response
time when the number of query terms is expected to be larger. The difference
is less than 0.05 seconds.

7.7 Alternative Design

An alternative system design is to not use an inverted index at all. The incom-
ing metadata is buffered and flushed to flash when there are enough entries to
make up a full metadata page. Each metadata page will contain a pointer to

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:26 • C. C. Tan et al.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Groups

T
im

e
 t

a
k
e

n
 (

s
e

c
)

1 Query Term

2 Query Term

3 Query Term

4 Query Term

Fig. 12. Actual query response time.

1 2 3 4
0

0.5

1

1.5

2

2.5

Number of Query Terms

T
im

e
 (

s
e
c
)

Alternate

Original

Fig. 13. Comparing alternative scheme with our scheme.

the previous metadata page in flash. A single entry kept in memory remembers
the latest metadata page’s location in flash. When querying, Microsearch ac-
cesses every metadata page in flash before replying, since every metadata page
could contain a payload matching the query terms. The intuition is that such a
scheme will have a better indexing performance at the expense of worse query
performance.

To evaluate, we used a 3KB memory limit. The alternative design will allo-
cate all as much space as possible to the buffer cache and have just one main
index entry. Microsearch uses a balanced approach, using an inverted index
size of H = 32 (96 bytes), and a buffer cache of B = 372 (2,976 bytes). The
alternative system takes an average of 6.5ms to insert the metadata in one file
compared to the 17.5ms for our scheme. Figure 13 shows the difference in query
response time for different number of query terms. Next, we compare the en-
ergy consumption between our scheme and the alternative scheme. Since both
schemes have to do the same amount of writing for the payload data given the
same document set, our comparison only measures the energy consumption of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:27

100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ratio of fu over fq

R
a
ti
o
 o

f
o
u
r

s
o
lu

ti
o
n
 o

v
e
r

a
lt
e
rn

a
ti
v
e 1 Query Term

2 Query Term

3 Query Term

4 Query Term

Fig. 14. Comparing power consumption of our scheme verses alternative scheme.

metadata input and query. Let Pw and Pr be the energy consumption for writ-
ing and reading one page of data in flash memory respectively. Given the input
insertion frequency fu and user query frequency fq , the energy consumption
is determined by the amount of metadata writing during the input insertion
period and the amount of metadata reading during the query period. For the
simplicity, we ignore the energy consumption of CPU processing because that
part is much smaller compared with the flash memory read and write opera-
tions. On a per-unit time basis, the energy consumption of our scheme can be
expressed as E1 = fu · (Wi · Pw + Ri · Pr) + fq · Rq · Pr , where Wi and Ri are
the numbers of write and read operations for insertion, and Rq is the number
of reads required for the query. From Section 5, we have Wi = � D·m

E ′ �, Ri = D·m
x ,

and Rq = 2·D·m·t
E ′ ·H .

For the alternative scheme, we consider a more efficient insertion process
without reading the last flushed metadata pages. Instead, new metadata pages
will be directly written to the flash. Therefore, the energy consumed by the
alternative scheme can be expressed as E2 = fu · W ′

i · Pw + fq · R ′
q · Pr , where

W ′
i = � D·m

E � and R ′
q = 2·D·m·t

E . With the system parameters fixed at D = 622, m =
3.3 and H = 32, we estimate the energy consumption for both schemes based on
TelosB flash memory read and write energy performance presented in Mathur
et al. [2006b] (i.e., Pw = 0.127 × 256 = 32.5μJ , Pr = 0.056 × 256 = 14.3μJ).

To compare our scheme with the alternative, we find the ratio of E1
E2

. Values
less than 1 favor our solution, while values larger than 1 favor the alternative.
To simplify the results, we divide both E1 and E2 by fq , which does not affect
the ratio. As a result, E1

E2
becomes a function of fu

fq
. We plot the energy ratio

graph with 1, 2, 3, and 4 query terms, respectively. The estimation results are
found in Figure 14. The figure shows that for an average of 1 query term, the
alternative performs better when there are about 350 document insertions to a
single query. For other cases, our scheme is always superior to the alternative
solution. This suggests that the alternative scheme should be used only when
the mote is used to store data and rarely if ever queried.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

43:28 • C. C. Tan et al.

8. CONCLUSION

In this article, we present a search system for small devices. Our architecture
can index an arbitrary number of textual metatdata efficiently. A space-saving
algorithm is used in conjunction with IR scoring to return the top-k answers to
the user. Our experimental results show that Microsearch is able to resolve a
user query of up to four terms in less than 2 seconds and provide a high level
of accuracy.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valu-
able comments, as well as Dr Joerg Henkel and Martin Buchty for their kind
assistance.

REFERENCES

ABOWD, G. D., ATKESON, C. G., HONG, J., LONG, S., KOOPER, R., AND PINKERTON, M. 1997. Cyberguide:
A mobile context-aware tour guide. Wireless Networks 3, 5, 421–433.

APPLE. 2007. http://www.apple.com/macosx/features/spotlight/.
BAEZA-YATES, R., DUPRET, G., AND VELASCO, J. 2007. A study of mobile search queries in Japan.

In Proceedings of the World Wide Web Conference: Query Log Analysis: Social and Technological
Challenges (WWW’07). ACM, New York.

BEAGLE. 2007. http://beagle-project.org/main page.
CHEN, J., DIEKEMA, A., TAFFET, M. D., MCCRACKEN, N. J., OZGENCIL, N. E., YILMAZEL, O., AND LIDDY, E. D.

2001. Question answering: CNLP at the TREC-10 question answering track. In Proceedings of
the Text Retrieval Conference. TREC, Gaithersburg, MD.

CHEVERST, K., DAVIES, N., MITCHELL, K., AND FRIDAY, A. 2000a. Experiences of developing and de-
ploying a context-aware tourist guide: The guide project. In Proceedings of the 6th Annual In-
ternational Conference on Mobile Computing and Networking (MobiCom’00). ACM, New York,
20–31.

CHEVERST, K., DAVIES, N., MITCHELL, K., FRIDAY, A., AND EFSTRATIOU, C. 2000. Developing a context-
aware electronic tourist guide: Some issues and experiences. In Proceedings of the SIG Conference
on Human Factors in Computing Systems (CHI’00). ACM, New York, 17–24.

CHURCH, K., SMYTH, B., COTTER, P., AND BRADLEY, K. 2007. Mobile information access: A study of
emerging search behavior on the mobile internet. ACM Trans. Web 1, 1, 4.

COMPANY, A. 2008. Yaffs: yet another flash file system. In http:/www.yaffs.net/.
DAI, H., NEUFELD, M., AND HAN, R. 2004. Elf: An efficient log-structured flash file system for

microsensor nodes. In Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys’04). ACM, New York, 176–187.

FALOUTSOS, C. 1985. Access methods for text. ACM COMPUT. SURV. 17, 1.
FALOUTSOS, C. AND OARD, D. W. 1995. A survey of information retrieval and filtering methods.

Tech. rep. CS-TR-3514, University of Maryland, College Park.
FRAKES, W. B. AND BAEZA-YATES, R. A., EDS. 1992. Information retrieval: Data structures and

algorithms. Prentice-Hall, Upper Saddle River, NJ.
FRENCH, J. C., POWELL, A. L., CALLAN, J. P., VILES, C. L., EMMITT, T., PREY, K. J., AND MOU, Y. 1999.

Comparing the performance of database selection algorithms. In Proceedings of the Annual Con-
ference on Research and Development in Information Retrieval. ACM, New York.

GAL, E. AND TOLEDO, S. 2005a. Algorithms and data structures for flash memories. ACM Comput.
Surv. 37, 2.

GAL, E. AND TOLEDO, S. 2005b. A transactional flash file system for microcontrollers. In Proceed-
ings of the Annual Conference on Annual Technical Conference (ATEC’05). USENIX, Berkeley,
CA, 7–7.

GOOGLE. 2007. http://www.desktop.google.com.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

P1: VLM
ACMB243A-43 ACM-TRANSACTION March 3, 2010 21:49

Microsearch: A Search Engine for Embedded Devices • 43:29

KAMVAR, M. AND BALUJA, S. 2006. A large scale study of wireless search behavior: Google mobile
search. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’06).
ACM, New York, 701–709.

KOBAYASHI, M. AND TAKEDA, K. 2000. Information retrieval on the Web. ACM Comput. Surv. 32,
2, 144–173.

LOGITEC. 2004. http://www.logitech.com.
MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2006a. Capsule: an energy-optimized

object storage system for memory-constrained sensor devices. In Proceedings of the 4th Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys’06). ACM, New York, 195–
208.

MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY, P. 2006b. Ultra-low power data storage for
sensor networks. In Proceedings of the 5th International Conference on Information Processing
in Sensor Networks (IPSN’06). ACM, New York, 374–381.

NACHMAN, L., KLING, R., ADLER, R., HUANG, J., AND HUMMEL, V. 2005. The intel Rmote platform: A
bluetooth-based sensor network for industrial monitoring. In Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks (IPSN’05). IEEE, Los Alamitos, CA,
61.

PUCHERAL, P., BOUGANIM, L., VALDURIEZ, P., AND BOBINEAU, C. 2001. Picodbms: Scaling down
database techniques for the smartcard. VLDB J. 10, 2-3, 120–132.

REKIMOTO, J., AYATSUKA, Y., AND HAYASHI, K. 1998. Augment-able reality: situated communication
through physical and digital spaces. In Proceedings of the 2nd International Symposium on
Wearable Computers. IEEE, Los Alamitos, CA, 68–75.

SHAH, C. AND CROFT, W. B. 2004. Evaluating high accuracy retrieval techniques. In Proceedings of
the 27th Annual International Conference on Research and Development in Information Retrieval
(SIGIR’04). ACM, New York, 2–9.

STARNER, T., KIRSCH, D., AND ASSEFA, S. 1997. The locust swarm: An environmentally-powered,
network-less location and messaging system. In Proceedings of the 1st International Symposium
on Wearable Computers. IEEE, Los Alamitos, CA, 169–170.

TAN, C. C., SHENG, B., WANG, H., AND LI, Q. 2008. MicroSearch: When search engines meet small
devices. In Proceedings of the 6th International Conference on Pervasive Computing. Springer,
Berlin, 93–110.

VOORHEES, E. M. 2001. Overview of the trec 2001 question answering track. In Proceedings of the
10th Text Retrieval Conference. TREC, Gaithersburg, MD, 42–51.

WANG, H., SHENG, B., AND LI, Q. 2006. Elliptic curve cryptography based access control in sensor
networks. Int. J. Sensor Networks.

WANG, H., SHENG, B., TAN, C. C., AND LI, Q. 2007. WM-ECC: An Elliptic Curve Cryptography Suite
on Sensor Motes. Tech. rep. WM-CS-2007-11, College of William and Mary, Computer Science,
Williamsburg, VA.

WANG, H., SHENG, B., TAN, C. C., AND LI, Q. 2008. Comparing symmetric-key and public-key based
security schemes in sensor networks: A case study of user access control. In Proceedings of the 28th
International Conference on Distributed Computing Systems (ICDCS’08). IEEE, Los Alamitos,
CA, 11–18.

WANG, H., TAN, C. C., AND LI, Q. 2008. Google: A search engine for physical world. In Proceedings
of the IEEE Conference on Computer Communications. IEEE, Los Alamitos, CA, 1382–1390.

WOODHOUSE, D. 2001. Jffs: The journaling flash file system. In Proceedings of the Ottawa Linux
Symposium.

YAP, K.-K., SRINIVASAN, V., AND MOTANI, M. 2005. Max: Human-centric search of the physical world.
In Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems
(SenSys’05). ACM, New York, 166–179.

ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V., GUNOPULOS, D., AND NAJJAR, W. A. 2005. Micro-hash:
An efficient index structure for flash-based sensor devices. In Proceedings of the 4th Conference
on File and Storage Technologies (FAST’05). USENIX, Berkeley, CA, 3.

Received May 2008; revised February 2009; accepted March 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 43, Publication date: March 2010.

