
Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

907

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff BBiioollooggiiccaall SScciieenncceess
2018; 14(8): 907-919. doi: 10.7150/ijbs.24617

Research Paper

MicroShare: Privacy-Preserved Medical Resource
Sharing through MicroService Architecture
Yilong Yang1,2, Quan Zu2, Peng Liu2, Defang Ouyang1, Xiaoshan Li2

1. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
2. Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China

 Corresponding author: Xiaoshan Li, Email: xsl@umac.mo

© Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license
(https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2017.12.28; Accepted: 2018.01.30; Published: 2018.05.22

Abstract

This paper takes up the problem of medical resource sharing through MicroService architecture
without compromising patient privacy. To achieve this goal, we suggest refactoring the legacy EHR
systems into autonomous MicroServices communicating by the unified techniques such as RESTFul
web service. This lets us handle clinical data queries directly and far more efficiently for both internal
and external queries. The novelty of the proposed approach lies in avoiding the data de-identification
process often used as a means of preserving patient privacy. The implemented toolkit combines
software engineering technologies such as Java EE, RESTful web services, JSON Web Tokens to
allow exchanging medical data in an unidentifiable XML and JSON format as well as restricting users
to the need-to-know principle. Our technique also inhibits retrospective processing of data such as
attacks by an adversary on a medical dataset using advanced computational methods to reveal
Protected Health Information (PHI). The approach is validated on an endoscopic reporting
application based on openEHR and MST standards. From the usability perspective, the approach can
be used to query datasets by clinical researchers, governmental or non-governmental organizations
in monitoring health care and medical record services to improve quality of care and treatment.

Key words: EHR, MicroService, privacy-preserved, EHR sharing

Introduction

Patients’ Electronic Health Records (EHRs) are
stored, processed, and transmitted across several
healthcare platforms and among clinical researchers
for on-line diagnostic services and other clinical
research. This data dissemination serves as a basis for
prevention and diagnosis of a disease and other
secondary purposes such as health system planning,
public health surveillance, and generation of
anonymized data for testing. However, exchanging
data across organizations is a non-trivial task because
of the embodied potential for privacy intrusion.
Medical organizations tend to have confidential
agreements with patients, which strictly forbid them
to disclose any identifiable information of the
patients. Health Insurance Portability and
Accountability Act (HIPAA) explicitly states the
confidentiality protection on health information that

any sharable EHRs system must legally comply with.
To abide by these strict regulations, data custodians
generally use de-identification1techniques [1,2] so that
any identifiable information on patient’s EHR can be
suppressed or generalized.

However, in reality, research [3] indicates that
87% of the population of U.S. can be distinguished by
sex, date of birth and zip code. We can define
quasi-identifiers as the background information about
one or more people in the dataset. If an adversary has
knowledge of these quasi-identifiers, it can possibly
recognize an individual and take advantage of his
clinical data. On the other hand, we can find out most

1 De-identification process is defined as a technology to delete or remove the
identifiable information such as name, and SSN from the released
information, and suppress or generalize quasi-identifiers, such as zip code

date of birth, to ensure that medical data is not re-identifiable (the reverse
process of de-identification.)

Ivyspring

International Publisher

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

908

of these quasi-identifiers have statistical meanings in
clinical research. There exists a paradox between
reducing the likelihood of disclosure risk and
retaining the data quality. For instance, if information
related to patients’ residence was excluded from the
EHR, it would disable related clinical partners to catch
the spread of a disease. Thus, strictly filtered data may
lead to failure in operations. Conversely, releasing
data including patients’ entire information including
residence, sex and date of birth would bring a higher
disclosure risk.

In this paper we address the emerging problem
of de-identification techniques, namely, the problem
of offering de-identified dataset for a secondary
purpose that makes it possible for a prospective user
to perform retrospective processing of medical data
endangering patient privacy. Figure 1 overviews the
proposed technique, and the standard data request
process. Our approach differs from the traditional
techniques in the sense that it employs software
engineering principles to isolate and develop key
requirements of data custodians and requesters. We
apply MicroService Architecture [4,5] that provides an
effective solution for connecting business functions
across the web—both between and within enterprises.

We also present a prototype of our evolving
toolset named MicroShare, implemented using web
services to handle data queries. The results are
retrieved in an XML data format that excludes all
personal information of patients. The basic model
used here follows the principles of RESTful web
services by combining three elements: a URLs
repository for identifying resources uniquely
corresponding to clinical data queries, service
consumers requesting data, and service producers as
custodians of clinical data. The idea of combining web
services with SQL queries is although not new, but it
tends to provide a technological approach to avoid
medical data re-identification risks. The implemented
toolkit uses Java EE that offers an easy way to develop
applications using EJBs. Needless to mention that Java
EE is widespread and is largely used by community.

Our proof-of-concept implementation uses
GastrOS, an openEHR [7] database 2 describing an
endoscopic application. The underlying technique
provides the ability to construct or use stored queries
on a clinical dataset. Employing this clinical toy data
warehouse of the GastrOS prototype is a useful way
to demonstrate queries on medical data for secondary
use. The proposed technique avoids compromising
patients’ personal information without utilizing
de-identification framework tools. For instance, the
following query can be posed to GastrOS database

2 http://gastros.codeplex.com

using our toolkit:
–Find the number of patients who are still

susceptible to developing a Hepatitis B infection even
after full compliance to the Hepatitis B vaccination
schedule–i.e. the baseline and second detection dates
for the HBsAg and Anti-HBs tests both show negative
results.

Figure 1. a) shows a traditional lifecycle of medical datasets. Custodians can be
hospitals, agents may be entities working on their behalf, and recipients are
individuals, or organizations such as a pharmaceutical company [6], b) depicts
the proposed approach that links external entities to data centers using a web
interface. The approach excludes all direct data accesses on a dataset.

The set of clinical data queries described in the
paper have been crafted with the help of clinical
researchers at Vanderbilt University. Supporting such
complex queries required developing a set of tools, to
which this paper provides the first attempt. In
contrast to recent developments on big data, this
paper does not focus on the management challenges
of medical dataset repositories, but rather focuses on
software engineering solutions to deal with the
challenges of querying medical data endangering
patient privacy. Our approach mainly contributes to
the development of privacy preserving techniques on
patient data by treating datasets as blackboxes. In this
way, disclosure risks associated with patient data are
minimized. One of the key constraints before
accomplishing this goal requires keeping the
computability with data custodians. Relocating
datasets is not only unsafe but leads to data
re-identification attempts. To ensure that legitimate
users access and execute clinical data queries, we
implement an authentication and authorization
mechanism using role-based access control (RBAC).
RBAC offers a flexible architecture that manages users
from different organizations by assigning roles and
their corresponding permissions.

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

909

Note that: This paper is made substantial
extensions to our conference papers [8,9]. We 1) adopt
system architecture from monolith Java EE to
MicroService for scalability and reliability, and 2)
extend EHR resource sharing with additional medical
data and queries, 3) support both XML and more
readable and efficient JSON for resource format, 4)
support accessing control for displaying URL paths
and invoke RESTFul web services through JSON Web
Token (JWT), 5) reimplement resource queries from
structure SQL to object-oriented JPQL, and 6) open
source MicroShare at GitHub. The details will be
presented in the section 7.

The paper proceeds as follows: Section 2
describes the related work. Section 3 states an
application example. Section 4 presents the technical
details of our approach. Section 5 overviews the
clinical data queries corresponding to the GastrOS
dataset. Section 6 discusses the authentication and
authorization mechanism connecting users to clinical
datasets. Section 7 mentions the extensions from the
original papers. Section 8 summarizes the work and
details some future research directions.

Related Work

In contrast to some of the existing techniques
[10,11,12,13], our approach relies on advanced
software engineering principles and technologies for
analyzing clinical datasets. For example, caGrid 1.0
[11] (now caGrid 2.0), released in 2006, is an approach
that discusses a complex technical infrastructure for
biomedical research through an interconnected
network. It aims provide support for discovery,
characterization, integrated access, and management
of diverse and disparate collections of information
sources, analysis methods, and applications in
biomedical research. caGrid 1.0 has been initially
designed only for cancer research. caGrid combines
Grid computing technologies and the Web Services
Resource Framework (WSRF) standards to provide a
set of core services, toolkits for the development and
deployment of new community provided services,
and APIs for building client applications. However,
caGrid does not focus on an explicit query mechanism
to infer details from medical datasets, as the one
proposed here. Similar work [14] in discusses a
combined interpretation of biological data from
various sources. This work, however, considers the
problem of continuous updates of both the structure
and content of a database and proposes the novel
database SYSTOMONAS for systems biology of
pseudomonas. Interestingly, this technique combines
a data warehouse concept with web services. The data
warehouse is supported by traditional ETL (extract,
transform, and load) processes and is available at

http://www.systomonas.de.
De-identification techniques for medical data

have been studied and developed by statisticians
dealing with integrity and confidentiality issues of
statistical data. The major techniques used for data
de-identification are (i) CAT (Cornell Anonymization
Kit) [2], (ii) 𝜇 -Argus3 , and (iii) sdcMicro [1]. CAT
anonymizes data using generalization, which is
proposed [10] as a method that specifically replaces
values of quasi-identifiers into value ranges. 𝜇-Argus
is an acronym for Anti-Re-Identification General
Utility System and is based on a view of safe and
unsafe microdata that is used at Statistics
Netherlands, which means the rules it applies to
protect data comes from practice rather than the
precise form of rules. Developed by Statistics Austria,
sdcMicro is an extensive system for statistical
computing. Like 𝜇 -Argus, this tool implements
several anonymization methods considering different
types of variables. The paper [10] has reported a
comparison on the efficacy of these numerical
methods that are used to anonymize quasi-identifiers
in order to avoid disclosing individual’s sensitive
information. The Privacy Analytics Risk Assessment
Tool (PARAT) 4 is the only commercial product
available so far for de-identifying medical data.
quantitative analysis [10] of de-identification tools
shows that de-identifying data provides no guarantee
of anonymity [15]. A study [16] also shows that
organizations using data de-identification are
vulnerable to re-identification at different rates.

Another approach [17] describes a special query
tool developed for the Shared Pathology Informatics
Network (SPIN) and integrated into the Indiana
Network for Patient care (INPC). This tool allows
retrieving de-identified data sets using complex logic
and auto-coded final diagnoses, and it supports
multiple types of statistical analyses. However, much
of the technical details have not been published; for
example, the use of complex logic. This and other
similar efforts [18] are mostly data-centric. A slightly
similar work to this paper has been developed at
Massachusetts General Hospital (QPID Inc.5), offering
solutions at a commercial level, but no prototype is
available to experiment with. A Web-based approach
for enriching the capabilities of the data-querying
system is also developed [12] that considers three
important aspects including the interface design used
for query formulation, the representation of query
results, and the models employed for formulating
query criteria. The notion of differential privacy [19]
aims to provide means to maximize the accuracy of

3 https://github.com/sdcTools
4 http://www.privacyanalytics.ca/software/
5 http://www.qpidhealth.com

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

910

queries from statistical databases while minimizing
the chances of identifying its records.

Our analysis shows that the effort to secure
medical datasets is mainly two-faceted: 1) most
research endeavors have explored the design and
development of de-identification tools, and, 2) some
work, mostly led by medical doctors, has tried to
address the construction of clinical queries, but they
do not provide technical details on the construction of
their toolsets. Our approach that treats medical
datasets as blackboxes mainly considers the
automation of services expected from a data
custodian in order to minimize data disclosure risks
and making clinical datasets easily accessible for
internal and external users.

GastrOS: An Example Application

GastrOS6, an openEHR database describing an
endoscopic application, is used as a case-study of
electronic medical data. This application formed part
of the research done at University of Auckland by
Koray Atlag in 2010 that investigated software
maintainability and interoperability. For this, the
domain knowledge model of Archetypes and
Templates of openEHR has driven the generation of
its graphical user interface. Moreover, the data
content depicting the employed terminology, record
structure and semantics were based on the Minimal
Standard Terminology for Digestive Endoscopy
(MST) specified by the World Organization of
Digestive Endoscopy (OMED) as its official standard.

Employing the clinical toy data warehouse of the
GastrOS prototype is a useful way to demonstrate
clinical research-based queries on medical data for
secondary use without compromising patients’
personal information by using the approach proposed
here. The queries shown here focus on endoscopic
findings that provide valuable anonymized
information to clinicians. The implemented queries
are to be mainly used by medical practitioners and
health decision-makers alike to help them in their
clinical management of patients at the point-of-care
and in formulating appropriate health policies,
respectively. For example, the following queries are
obtained through brainstorming with medical doctors
to illustrate our approach.

• Total number of dialysis endoscopic examination

from January 1, 2010 to December 31, 2010.

• Top 5 diagnoses for those patients who received
endoscopic examination and the number of cases
for each diagnosis from January 1, 2010 to
December 31, 2010.

6 http://gastros.codeplex.com

• Age profile of endoscopic patients from January
1, 2010 to December 31, 2010? i.e. number of
dialysis patients belonging to each of the age
bracket [below 18; 18 to below 40; 40 to below 60;
60 and above.

• Number of patients who are still susceptible to
developing a Hepatitis B infection even after full
compliance to the Hepatitis B vaccination
schedule–i.e., the baseline and second detection
dates for the HBsAg and Anti-HBs tests both
show negative results.

The queries given above are only a subset of
original queries. The database structure of GastrOS
application is described below.

GastrOS data structure

Figure 2 describes the data structure of the
GastrOS database. GastrOS database contains the
following tables: the clinicaldetection (doctor detection
records), patient (patient information), and examination
(examination records) tables are stored in the
database.

The table has two relations: one patient may
have more than one clinical detection record or
examination record by doctor(s), so the is added as a
foreign key in tables. GastrOS is a toy database
example with insufficient amount of data available.
The original database contains less than 20 rows in
each table that makes is not useful for our SQL
queries. Therefore, we automatically generated
virtual data of 10,000 entries (note that any real data
on patients also cannot be published.) An example of
the generated data is given in Figure 3. Table 1
provides the up-to-date information on the number of
entries in each column of the GastrOS database.

Table 1. Generated data in tables

Table Row Size

ClinicalDetection 6,393 432 KB

Examination 2,020 272 KB

Patient 1,881 224 KB

Sum 10,294 928 KB

The Proposed Technique

The proposed approach implements a three-tier
application and is devoid of releasing medical
datasets, as opposed to traditional techniques. The
major purpose and characteristic of the technique
extends relatively new software technologies for
supporting clinical data queries. To support clinical
queries under consideration, we develop an
integrated application using SOA and Java EE
(Enterprise Edition), to extract data from GastrOS
database. There are a plenty of other commercial

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

911

containers such as JBOSS (Redhat), Websphere (IBM),
Weblogic and Glassfish (Oracle), which could be used
for our purpose. However, our prototype tool
combines Java EE based on JSF Primeface, EJB, and
Java Persistence Architecture API (JPA). JPA is a Java
specification for accessing, persisting, and managing
data between Java objects/classes and a relational
database. REST architecture, underlying RESTful web
services, treats everything as a resource and is
identified by an URI. Resources are handled using
POST, GET, PUT, DELETE operations that are
identical to Create, Read, Update and Delete (CRUD)
operations. Note that in our toolkit it is sufficing to
implement operations for handling the described
queries. Every request from a client is handled

independently, and it must contain all the required
information to interpret the request.

Implementing Clinical Queries using
SOA

Web-based authorization and authentication is
enforced using role-based access control, before
allowing any queries to be accessible by external
entities. For instance, the first two queries are shown
in Figure 4. They are linked to Organization A, that
shows a limited access varying according to the
enabled permissions by a security administrator.
Listing 1.1 shows the result of applied query. SQL
queries, exception results, and running time are
presented in columns 1, 2, and 3, respectively.

Figure 2. E-R Diagram

Figure 3. Data generated of patient table

Figure 4. Query list for role of organization A

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

912

Note that XML-based format is devoid of
platform and programming language dependencies.
Using this Web-based approach a diverse set of
queries can be supported to query clinical data
repositories. For the RESTful-based web services, that
is the table urlforwebservice. A code snippet is given in
Listing 1.2 that reveals how the SQL queries are
constructed. Note that all the data saved in a program
are objects; nonetheless, our database has been
represented in the form of relational tables. For this, it
needs to implement some ORM (Object-Relational
Mapping) techniques. In our prototype implement-
tation we have used JPA (Java Persistence API),
because it comes with Java EE technique framework
and can be run in either native SQL, or in an object
form to allow data manipulation. For instance, we
show a service code snippet in Listing 1.2. @Path show
the URL address for this web service, @GET is the
method of Restful-based web service, that can be used
for other reasons such as @UPDATE @DELETE

@POST. Upon invoking a web service using URL in
browser or a session bean, the SQL can be executed
and return result by query method which invokes the
entity manager of JPA.

Figure A. Listing 1.1. Generated XML Data

XML data retrieved for a couple of queries are

shown in Listings 1.1 and 1.3. The corresponding
queries are given below, respectively.

• Number of patients for each gender who are still
susceptible to developing a Hepatitis B infection
even after full compliance to the Hepatitis B

vaccination schedule --i.e. the baseline and
second detection dates for the HBsAg and
Anti-HBs tests both show negative results.

• Top 5 diagnoses for those patients who receive
dialysis treatment and the number of cases for
each diagnosis from January 1, 2010 to December
31, 2010.

Figure B. Listing 1.2. Java code of web service

Figure C. Listing 1.3. Generated XML data

Enabling dynamic clinical queries

The construction and execution of clinical
queries on a given dataset are implemented through a
web-interface of the tool. The interface allows a user
to dynamically construct a clinical query on a dataset.
Thus, it adds a greater flexibility to the query

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

913

mechanism in developing user-oriented analysis of a
dataset. For instance, Figure 5 demonstrates how to
execute a query such as “total number of dialysis
endoscopic examination of a country starting and
ending on a date, respectively.”, followed by the
output in Figure 6.

These queries show that all specific details on
patients are avoided when executing a query, which
also means that it disables all direct accesses to patient
records. It is actually realized by providing a more
aggregated form of data on patients instead of
conventional techniques that provide medical
datasets to infer such details. Note that the toolkit
does not allow any query that provides specific
information on patients, such as “Provide details of all
patients with a certain age”. These queries are directly
irrelevant to researchers since they are mainly
interested in collective analysis on a dataset. The idea
of combining web services with SQL queries is

although not new, but it tends to provide a
technological solution to a technological problem
avoiding medical data re-identification risks. The
rationale Using Java EE stems from the fact that it
provides a straightforward way to develop
applications, for example, EJB are convenient to use
by adding only one annotation. Java EE is also
widespread being largely used both in academia and
industry.

Authentication and Authorization
Process

Our prototype system implements role-based
access control [20]. For example, for a medical dataset,
operations might include insert, delete, append, and
update. The data model of RBAC is based on five data
types: users, roles, objects, permissions and
executable operations by users on objects.

Figure 5. Interface for executing runtime clinical queries

Figure 6. The retrieved data in XML format corresponding to the query in Figure 5

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

914

A sixth data type, session, is used to associate
roles temporarily to users. A role is considered a
permanent position in an organization whereas a
given user can be switched with another user for that
role. Thus, rights are offered to roles instead of users.
Roles are assigned to permissions that can later be
exercised by users playing these roles. Modeled
objects in RBAC are potential resources to protect.
Operations are viewed as application-specific user
functions. For example, Figure 7 shows a list of
queries provided to an administrator role.

To maintain a set of permissions on GastrOS
database, we use the constructs from RBAC maintain,
and enlist entries in corresponding tables user, roles,
textsfquerytoroles, querylist, and urlforwebservice. We
create a user account in user table with the assigned
role. Here, all the roles are defined in table. Users
privileges and a list of queries are defined in tables
querytorole and querylist, respectively. URLs are stored
in the table. For example, logging in as administrator
provides five SQL queries shown in Figure 7, whereas
logging in as allows a restricted set of SQL queries as
given in Figure 4. Security management is supervised
by an administrator who can do deletion, addition of
roles as required. Using RBAC allows users to take

multiple roles, for example, the user could act as
researcher that belongs to organization A but can be
assigned another role from the set of roles. Similarly, a
permission can be associated to many roles
depending on the RBAC policy. The multi-to-multi
relation between roles and queries that is given in the
querytorole table (Figure 8).

Avoiding SQL injections and sensitive
information release

Web application security vulnerabilities occur in
cases when an attacker or an authorized user tries to
submit and execute a database SQL command on a
web application, and thus, a back-end database is
exposed to an adversary. These SQL injections can be
avoided if queries are validated and filtered before
their execution and are checked against input data or
any encoding made by a user. To prevent similar
security issue in our web application we first
authenticate the user input against a set of defined
rules given below: 𝐵𝑙𝑜𝑐𝑘𝐿𝑖𝑠𝑡 = {𝑛𝑎𝑚𝑒, 𝑎𝑔𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑧𝑖𝑝𝑐𝑜𝑑𝑒} 𝐴𝑛𝑡𝑖𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 = {′, ", 𝑒𝑡𝑐. }

Figure 7. Query list for role of administrator

Figure 8. E-R Diagram

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

915

Note that the special characters given in a block
list helps to avoid SQL injections. The set disables all
possible access to attributes in a table such as name,
age, address, and zip code to keep the fetched data
completely anonymized. Set members in filters out
three possible vulnerable inputs, i.e., so that any
similar attempts could be restricted. Here are the
filters that check inputs against. Before running a web
service, these two atomic services are always invoked
to avoid identifying the actual patients and SQL
injections.

Service one: Checks input string for characters in
BlockList.

Service two: Checks input string for characters in
AntiInjectionList.

Extension to the Conference Papers

We made some substantial extensions from our
conference papers: monolith architecture to
MicroService architecture, extending EHR with
medical data and queries, support both XML and
JSON, resource sharing with JWT, Native SQL to

JPQL, and open source MicroShare at GitHub. The
details will be presented in the following subsections.

Monolith Java EE to MicroService Architecture

EHR system usually adopts the traditional heavy
stacks (Figure 9) such as Java EE and .NET Platform
and deploying them into enterprise-class application
container for achieving high stability and reliability
[21]. But the large-size monolith system is difficult to
extend and communicate with external system
because of the complex dependency and implement-
ation techniques [22]. RESTFul Web Services [23] is a
promising technology, which provides standard
HTTP wrapper on the internal business layer for the
external communications. From this point, our papers
[8,9] used RESTFul web services to encapsulate
medical resource for external queries. This approach
makes sharing medical data from the monolithic
system without too much efforts. However, this will
lead to a disaster when too many services are required
to serve the external queries. We not only need to
implement many wrappers for the different services
of the business layer, but also face to dependency hell.
MicroService architecture [21] can well-handle this
issue by decompose the monolithic system into small
independently and autonomous components with
standard communication protocol like HTTP. This
will provide a unified environment for both internal
and external communication. Then the original
wrapper for external queries does not need to be
re-implemented. Moreover, microservice architecture
offers the standard authentication mechanism JSON
Web Token (JWT) [24] to make flexibly control to the
system services, allowing them to be reached from
outside customers.

Figure 9. Monolith Architecture vs MicroService Architecture. Note that JSF component and Web MicroService are GUIs for display the available RESTFul queries
for the requester. Once the requester retrieved the RESTFul path of the queries, the query requests are directly sent to the corresponding sharing MicroService, then
the they directory return the query result to the requesters.

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

916

Figure 10. E-R Diagram of extending tables

Under the guidelines of microservice profile7, we

decompose our proposed monolith Java EE
architecture into five microservice. Left side of Figure
9 contains the monolith architecture in Java EE
enterprise stacks. The external query requester is in
the middle of the figure. Right side holds the
decomposed microservice architecture, which
includes web microservice, health record micro-
service, medical record microservice, authentication
microservice, and log microservice. Web microservice
provides the graphical user interface to patients and
doctors to use the EHR system, it requires the services
from health record and medical microservices.
Authentication microservice identifies the identifica-
tion of patients and doctors, and the external query
requesters. Furthermore, all above microservices
require the audit through log microservice to records
all the activities in the system for supporting the
post-breach analysis. Comparison to monolith
architecture, microservice architecture is more
scalable and maintained for sharing any microservices
to external requester without implementing the heavy
service wrapper. In addition, microservice architect-
ture provides the unified authentication portal for all
the internal and external queries and preserves the
privacy through additional log microservices.
Moreover, each microservice is deployed into
independent container such as docker container [25].
That makes microservice architecture cloud-native,
that can be directly deployed into cloud platform such
as Amazon Web Service, Google Cloud Compute [26],

7 https://microprofile.io/

Microsoft Azure [27] or private cloud to reach high
reliability and fault tolerance.

Extending with Medical Data and Queries

To support the medical record microservice, the
GastrOS database extends the following tables: doctor
(doctor information), prescription (prescription record
which doctors given to patients), medication
(medication information), and prescriptmed (prescript-
tion and medication record). Figure 10 describes the
extending data structures.

The medical record microservice provides the
records of prescriptions which given by doctors to
patients, and the records of medications dispensed in
prescriptions. In the database, there exists
many-to-many relationships between patients and
doctors, and between prescription and medication.
Thus, the prescription table has the foreign keys
referring to the tables patient and doctor and the table
prescriptmed has the foreign keys referring to the tables
prescription and medication. Table 2 provides the
information on the number of entries in each
extending table of the GastrOS database.

Table 2. Generated data in extending tables

Table Row Size

doctor 912 80 KB

prescription 3,856 160 KB

medication 100 16 KB

prescriptmed 8,801 4 MB

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

917

Based on the extending data structures, the
medical record microservice can provides the medical
relevant queries, illustrated by the followings:

• Total number of prescription made up from

January 1, 2017 to December 31, 2017.

• Total number of patients who received medical
prescription from the doctor Tom Baker from
January 1, 2017 to December 31, 2017.

• Age profile of patients who took the medication
Abilify from January 1, 2017 to December 31,
2017.

• Top 5 medication given in prescriptions and for
each medication the number of patients who
took it from January 1, 2017 to December 31,
2017.

Supporting both XML and JSON Data Format

XML is the standard message format for
SOAP-based Web Service [28], it is widely used
configuration file format in the software
development. However, it is not readable for human
and not effective for front-end processing of web
application. JavaScript Object Notation (JSON) is an
alternatives of XML format for lightweight exchange
resources [29]. It is native supported by the front-end
programming language JavaScript. JavaScript can
load the use JSON without any extra efforts. The
corresponding JSON format of XML in Figure 6 and
Listing 1.3 are as following:

Figure 11 A. JSON Result of Query “Top 5 diagnoses for those patients who
receive dialysis treatment and the number of cases for each diagnosis from
January 1, 2010 to December 31, 2010.” B. JSON Result of Query “Number of
patients for each gender who are still susceptible to developing a Hepatitis B
infection even after full compliance to the Hepatitis B vaccination schedule --i.e.
the baseline and second detection dates for the HBsAg and Anti-HBs tests both
show negative results.”

Figure 11A and 11B shows the query result in

JSON format, we can see it much clear and readable

than XML. In our proposed MicroShare platform, we
support both XML and JSON format, the customer
can pick any format as return format as their
requirements.

Query Language from SQL to JPQL

Structured Query Language (SQL) is the
standard query language for the relational databases
[30]. It is widely used in enterprise application
development. However, it is often suffered from the
“SQL-injection” attack [31]. The hackers can get the
highest privileges of system with the specific
designed SQL query. That is why we elaborately build
a filter in section 6.1 for the SQL query before
submitting them to the SQL engine. There is another
obstacle for using SQL in the modern application
development. The modern programming language is
object-oriented, but the SQL is based on relational
database. That mean will need extra works for
mapping relational data source to objects. That is the
reason using the JPA in Java EE developments. Java
Persistence query language (JPQL) [32] is a platform
independent object-oriented query language, which
can greatly alleviate this issue. The SQL query for
“total number of endoscopic examination for different
country from January 1, 2010 to December 31, 2010” is
in the Listing 1.2, the corresponding JPQL query is as
follows:

We can see the table examination of SQL become

to object examination e, the result is columns of tables
in SQL become to the properties in the new object
dqlistresult. Thanks to JPQL, the developer can stand
in the same object-oriented methodology in
programming and design the queries. Furthermore,
the JPQL can automated filter any harmful character
before execution. In short, JPQL can make a query
design and execution in to the safe and efficient level.

Resource Sharing with JSON Web Token

We use role-based access control mechanism to
display different queries to different level requesters
such as administrator, researchers, and organizations.
We know the RESTFul queries is based on the unique

Uniform Resource Locator (URL). Although low level
customers cannot see the high-level queries, they can
access the queries once they can get the URL paths of

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

918

high level queries. Therefore, we not only need to
control the displaying the URLs for different level
requesters but also need to control the access to the
RESTFul queries. MicroShare adopts industry
standard access control methods JSON Web Token
(JWT) [24] for representing claims securely among the
microservices. Before accessing any RESTFul service
of MicroShare, an authentication token must retrieve
first from MicroService authentication. Then the
external and internal requesters can query the medical
resources through the RESTFul sharing service with
the retrieved token. For the safety purposes, the token
can only use in a limited time with an expired
timestamp. When the token is expired, the requesters
need to retrieve a new token with their identifications.
The detail workflow of resource sharing is shown in
Figure 12.

The workflow is: 1) The query requesters get the
authentication REST path from web microservices, 2)
send authentication request to the authentication
microservice to retrieve the token, 3) get the query
REST paths from web microservice, 4) send the query
request to the health record microservice or medical
record microservice with token to retrieve the medical
resources.

Open Source MicroShare

We implemented the proposed approach as the
sharing platform named MicroShare. GitHub is the
most activity open source community and code
repository providers. Unlike the previous paper, we
pushed our source code of MicroShare into the
GitHub repository8. The reader can freely download
the source code and make any improvement under
the protocol GNU General Public License9.

8 https://github.com/yylonly/MedShare-MicroService
9 https://www.gnu.org/licenses/gpl-3.0.en.html

Conclusions and Future Perspectives

We presented a technique for automatic
identification of clinically-relevant patterns in medical
data. The main contribution of this paper is in
defining and presenting an alternative approach to
the data de-identification techniques commonly
employed for anonymizing clinical datasets. Our
technique treats datasets as blackboxes and allows data
custodians to handle clinical data queries directly.
Relocating a dataset not only endangers anonymity of
patients, it allows adversaries to apply advanced
computational methods for retrospective processing
of data. As clinical data is frequently updated, our
approach enables data custodians to provide
up-to-date resources to their users. We integrate
MicroService architecture with a backend clinical
database exchanging anonymous JSON and XML
data, enabling them to be language and technology
independent. Java EE, due to equipped with
MicroService architecture, is easy to use for
developing applications.

In circumstances related to sharing of patients’
data, complex administrative regulations are placed at
various levels of management that sometimes
unnecessarily complicate the data acquisition process.
Providing a tool support for linking data custodians
and data requesters using software engineering
techniques could pave the way to query clinical
datasets more transparently and systematically.

The work provided an initial attempt to build
toolset for anonymously analyzing clinical datasets.
Our future work includes expanding the approach to
more complex databases and supporting an enriched
interface for analyzing bigger data repositories. We
are currently dealing with the challenge of replacing
de-identification techniques in use for de-identifying

specific attributes in a database table,
for example, patient id, and a doctor
needing to find patients who had an
increase of systolic blood pressure
within a specific period, or patients
with steady states of diastolic blood
pressure for more than a week. Our
future work considers incorporating
such queries into the toolset, includ-
ing implementing ETL processes
such as in data warehouses to
support clinical data analyses on
large-scale integrated databases.

Acknowledgments

This work was supported by
the Macau Science and Technology
Development Fund (FDCT) (Grant

Figure 12. MicroShare Resource Sharing Workflow.

Int. J. Biol. Sci. 2018, Vol. 14

http://www.ijbs.com

919

No. 103/2015/A3 and 018/2011/A1), Multi-Year
Research Grant (MYRG) of University of Macau
(Grant No. 2017-00141-FST) and the National Natural
Science Foundation of China (NSFC) (Grant No.
61562011).

Competing Interests

The authors have declared that no competing
interest exists.

References
1. Templ M. Statistical Disclosure Control for Microdata: Methods and

Applications in R. Cham, Switzerland: Springer International Publishing;
2017.

2. Xiao X, Wang G, Gehrke J. Interactive anonymization of sensitive data.
Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data. Providence, Rhode Island, USA: ACM; 2009: 1051-4.

3. Sweeney L, Simple Demographics Often Identify People Uniquely. Carnegie
Mellon University, Data Privacy Working Paper 3. Pittsburgh 2000.

4. Newman S. Building Microservices: Designing Fine-Grained Systems.
Sebastopol, CA: O'Reilly Media; 2015.

5. Hassan S, Ali N, Bahsoon R. Microservice Ambients: An Architectural
Meta-Modelling Approach for Microservice Granularity. 2017 IEEE
International Conference on Software Architecture (ICSA); 2017: 1-10.

6. Emam KE, Fineberg A. An Overview of Techniques for De-Identifying
Personal Health Information. Ottawa, Canada: SSRN Electronic Journal; 2009.

7. Garde S, Hovenga E, Buck J, Knaup P. Ubiquitous information for ubiquitous
computing: expressing clinical data sets with openEHR archetypes. Stud
Health Technol Inform. 2006;124: 215–220.

8. Qamar N, Yang Y, Nadas A, Liu Z. Querying Medical Datasets While
Preserving Privacy. Procedia Computer Science. 2016; 98: 324-31.

9. Qamar N, Yang Y, Nadas A, Liu Z, Sztipanovits J. A Tool for Analyzing
Clinical Datasets as Blackbox. Lecture Notes in Computer Science. 2017:
222–238.

10. Vimercati SDC, Foresti S, Livraga G, Samarati P. Protecting Privacy in Data
Release. Lecture Notes in Computer Science. 2011: 1–34.

11. Oster S, Langella S, Hastings S, Ervin D, Madduri R, Phillips J, et al. caGrid 1.0:
An Enterprise Grid Infrastructure for Biomedical Research. J Am Med Inform
Assoc. 2008;15: 138–149.

12. Ping XO, Chung Y, Tseng YJ, Liang JD, Yang PM, Huang GT, et al. A
web-based data-querying tool based on ontology-driven methodology and
flowchart-based model. JMIR Med Inform. 2013;1: e2.

13. Price M, Weber JH, McCallum G. SCOOP - The Social Collaboratory for
Outcome Oriented Primary Care. 2014 IEEE International Conference on
Healthcare Informatics; 2014; 210-5.

14. Choi C, Münch R, Bunk B, Barthelmes J, Ebeling C, Schomburg D, et al.
Combination of a data warehouse concept with web services for the
establishment of the Pseudomonas systems biology database SYSTOMONAS.
J Integr Bioinform. 2007;4: 12-21

15. Samarati P. Protecting respondent’s identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering. 2001; 13: 1010-27.

16. Benitez K, Malin B. Evaluating re-identification risks with respect to the
HIPAA privacy rule. J Am Med Inform Assoc. 2010;17: 169–177.

17. McDonald CJ, Blevins L, Dexter P, Schadow G, Hook J, Abernathy G, et al.
Demonstration of the Indianapolis SPIN Query Tool for De-identified Access
to Content of the Indiana Network for Patient Care’s (a Real RHIO) Database.
AMIA Annu Symp Proc. American Medical Informatics Association;
2006;2006: 1194–1194.

18. P Tafti A, Badger J, LaRose E, Shirzadi E, Mahnke A, Mayer J, et al. Adverse
Drug Event Discovery Using Biomedical Literature: A Big Data Neural
Network Adventure. JMIR Med Inform. 2017; 5: e51.

19. Nii OA. Big Data and Differential Privacy: Analysis Strategies for Railway
Track Engineering Hoboken, USA: WILEY; 2017.

20. Ferraiolo DF, Sandhu R, Gavrila S, Richard Kuhn D, Chandramouli R.
Proposed NIST standard for role-based access control. ACM Trans Inf Syst
Secur. 2001;4: 224–274.

21. Thönes J. Microservices. IEEE Software. 2015; 32: 116.
22. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, et

al. Microservices: Yesterday, Today, and Tomorrow. In: Mazzara M, Meyer B,
editors. Present and Ulterior Software Engineering. Cham: Springer
International Publishing; 2017: 195-216.

23. Paik HY, Lemos AL, Barukh MC, Benatallah B, Natarajan A. Web Services –
REST or Restful Services. Web Service Implementation and Composition
Techniques; 2017: 67–91.

24. Haekal M, Eliyani. Token-based authentication using JSON Web Token on
SIKASIR RESTful Web Service. 2016 International Conference on Informatics
and Computing (ICIC); 2016: 175-9.

25. Ma L, Yi S, Li Q. Efficient service handoff across edge servers via docker
container migration. Proceedings of the Second ACM/IEEE Symposium on
Edge Computing. San Jose, California: ACM; 2017: 1-13.

26. Gonzalez JU, Krishnan SPT. Building Your Next Big Thing with Google Cloud
Platform. New York, USA: Apress; 2015.

27. Copeland M, Soh J, Puca A, Manning M, et al. Microsoft Azure: Planning,
Deploying, and Managing Your Data Center in the Cloud. New York, USA:
Apress; 2015.

28. Song BK. Performance Analysis of Web Service Middleware based on
SOAP/RESTFUL. Journal of IKEEE. 2014;18: 146–151.

29. Hanwell MD, de Jong WA, Harris CJ. Open chemistry: RESTful web APIs,
JSON, NWChem and the modern web application. J Cheminform. 2017;9: 55.

30. Pearson WR, Mackey AJ. Using SQL Databases for Sequence Similarity
Searching and Analysis. Curr Protoc Bioinformatics. 2017;59: 9.4.1–9.4.22.

31. Clarke J. SQL Injection Attacks and Defense. Radarweg, Netherlands: Elsevier;
2012.

32. Juneau J. The Query API and JPQL. In: Juneau J, editor. Java EE 7 Recipes: A
Problem-Solution Approach. Berkeley, CA: Apress; 2013: 447-70.

