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For well over a decade, academia and industry have devoted a lot of e�ort and resources into 

solving the indoor localization problem. �e research community has not converged to a 

single, widely accepted solution that can achieve the desired accuracy at the required cost. 

We believe that this is partly due to the highly ad-hoc evaluation process of indoor location 

systems: each system is usually evaluated in a custom, highly controlled environment, 

making it hard to draw conclusions about its performance and overhead in realistic 

conditions. Even worse, this type of evaluation makes the comparison of di�erent solutions 

almost impossible.

With this in mind, we organized the Microso� Indoor Localization Competition [1]. 

�e main motivation behind the competition was to give di�erent academic and industry 

groups the opportunity to test their indoor location technologies in a realistic, unfamiliar 

environment. �is environment established a common baseline for assessing the relative 

accuracy and overhead of the di�erent indoor location technologies. At the same time, it 

allowed researchers working on the indoor location to meet and interact with each other, 

and closely observe the competing solutions in action. Il
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magnetic resonators, ultrasound speakers, 
and custom RF transmitters.

Overall, 9 teams competed in the 
infrastructure-free category, and 13 teams 
competed in the infrastructure-based

category (Table 1).

Setup and Evaluation

�e competition took place in Berlin, 
Germany at the hotel venue of the 2014 
International Conference on Information 
Processing in Sensor Networks (IPSN). Two 
attached rooms, each measuring 10m by 9m

in dimensions, and the hallway in front of 
the two rooms (measuring approximately 
10m by 4m) were used for the competition. 
Figure 1 shows the 	oor plan of the 
approximately 300m² evaluation area .

�e competition was a 2-day event. 

During the �rst day, all competitors were 
given 7 hours to set up their indoor location 
technologies in the evaluation area. During 
this time, teams were able to deploy their 
custom hardware, if any, and also perform 
any pro�ling of the space necessary (i.e., 
�ngerprinting, map construction etc.). 
Each team was allowed to deploy up to 10 
infrastructure points (i.e., access points, 
custom RF modules, magnetic �eld 
modulators, light-modulating lamps, etc.) 
in the evaluation area.

To avoid having each team deploying 
their own generic WiFi access points, the 
competition organizers deployed 10 WiFi 
access points in the evaluation area. Each 
room was equipped with 5 access points, 
one at each corner of the room and one 
in the middle of the room. �e deployed 

COMPETITION
Participating Teams

21 teams with 22 di�erent approaches 
attended the competition (Table 1). All 
teams were classi�ed into two categories: 
infrastructure-free and infrastructure-based,
based on their hardware deployment 
requirements. Teams in the infrastructure-

free category did not require the deployment 
of any custom hardware, apart from existing 
WiFi infrastructure, to compute indoor 
locations. Most of these approaches leveraged 
existing WiFi signals and combined them 
with sensors, such as an accelerometer, 
gyro, and compass, on existing o�-the-shelf 
devices such as phones and tablets. On the 
other hand, teams in the infrastructure-

based category required the deployment of 
custom hardware, such as bluetooth beacons, 

FIGURE 1. The 300m2 area used for the competition. 20 evaluation points were placed into two rooms and the hallway. 

Besides the manual evaluation, the EVARILOS robot automatically mapped the competition area and then was used to 

automatically evaluate the accuracy of the top two teams.

(a) The 20 test points on the evaluation area

(d) Recording system under test’s location (e) EVARILOS robot

(b) Room A (c) Room B
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points on the 	oor of the evaluation area 
and measured the X and Y coordinates of 
these points with respect to the prede�ned 
origin point (Figure 1(a)). �e ground truth 
measurements of the evaluation points were 
taken using laser range �nders, leading to 
centimeter-level accuracy.

During the second day of the competi-
tion, each team showed up at a pre-assigned 
time slot, turned on its deployed hardware, 
and handed the device to be localized to the 
organizers. �e organizers carried the device 
above each of the 20 evaluation points and 
recorded the locations reported by the sys-
tem under test. All systems were evaluated 
based on the average location error across 
all 20 evaluation points. �e location error 

access points were mounted on cocktail 
tables like the ones shown in Figure 1(b) at 
a height of approximately 1.5m from the 
ground. All the teams that relied on generic 
WiFi access points for estimating indoor 
location could only use these access points.

At the beginning of the �rst day, the 
organizers indicated an origin point for the 
reference coordinate system that each team 
should use to report locations. Locations 
were reported as two-dimensional 
coordinates (i.e., (2.12m, 5.1m)) with 
respect to the origin point.

At the end of the �rst day, the deployed 
hardware from all teams was turned o�, 
and all contestants le� the evaluation area. 
At that time, the organizers marked 20 

for a given point was de�ned as the Euclid-
ean distance between the true and reported 
coordinates for that point.

To assess the ability of each approach 
to localize devices at dynamic/unfamiliar 
environments, part of the evaluation area’s 
furniture placement was modi�ed a�er 
the setup day and before the evaluation 
day. More speci�cally, both rooms in 
Figure 1(a) were equipped with furniture. 
Approximately half of each room was 
�lled with tables and chairs resembling a 
typical classroom setup. �e other half of 
the rooms were either empty or sparsely 
occupied by tall cocktail tables (Figure 1(a) 
and Figure 1(b)). Room A, shown in Figure 

1(a), remained unchanged between the setup 

TABLE 1. The teams that participated in the Microsoft Indoor Localization Competition. Teams in each category are listed in order of the 

localization accuracy they achieved (highest to lowest). Adler et al., and Li et al. achieved almost identical location errors (0.005m dierence), 

and we considered this to be a tie. The second place was awarded to Li et al., because they deployed fewer anchor nodes.

Team Country Technical Approach
Global
Rank

Bestmann et al. [19] Lamda:4 Germany 2.4GHz Phase Oset 1

Li et al. [14] Microsoft Research China Modulated LEDs 4

Adler et al. [3] Freie Universitat Berlin Germany 2.4GHz Time-of-Flight 5

Lazik et al. [11] Carnegie Mellon University USA Ultrasonic Time-of-Flight 6

Ashok et al. [4] Rutgers University USA IR/Radio Time-of-Flight 8

Nikodem et al. [17] Wroclaw University of Technology Poland 2.4GHz Time-of-Flight 9

Dentamaro et al. [6] NextoMe Italy WiFi+Bluetooth+IMU 10

Abrudan et al. [2] University of Oxford U.K. Modulated Magnetic Signals 15

Sark et al. [20] Humboldt University of Berlin Germany SDR Time-of-Flight 16

Pirkl et al. [18] DFKI Germany Modulated Magnetic Signals 17

Schmid et al. [21] Greina Technologies USA 2.4GHz Phase Oset 18

Jiang et al. [10] Xian Jiaotong University, China WiFi+Sound Time-of-Flight 1

Selavo et al. [22] I.E.C.S. Latvia Steerable Antennas ToF 22

Klepal et al. [5] Cork Institute of Technology Ireland WiFi Fingerprinting 2

Laoudias et al. [13] University of Cyprus Cyprus WiFi+IMU Fingerprinting 3

Zou et al. [25] Nanyang Technological University Singapore WiFi Fingerprinting 7

Ferraz et al. [7] Ubee S.A. Brazil WiFi+IMU Fingerprinting 11

Li et al. [15] Microsoft Research China WiFi+IMU Fingerprinting 12

Marcaletti et al. [16] ETH/IMDEA/Armasuisse Switzerland/Spain WiFi Time-of-Flight 13

Xiao et al. [23] University of Oxford U.K. WiFi+IMU+Maps 14

Zhang et al. [24] Nanyang Technological University Singapore WiFi+Magnetic Fingerprinting 19

Ghose et al. [8 Tata Consulting Services India WiFi+IMU Fingerprinting 20

TABLE 1: The teams that participated in the Microsoft Indoor Localization Competition
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and evaluation days. �e furniture in Room 
B (Figure 1(b)) were completely rearranged 
in terms of both placement and orientation. 
Competitors were not aware of which 
room will be modi�ed and how until the 
evaluation day. �is allowed us to evaluate 
the accuracy of the di�erent approaches in 
both familiar and unfamiliar setups.

Two more sources of unfamiliarity were 
also introduced during the competition. 
First, even with the organizers deploying 
the WiFi access points, there was still a huge 
level of wireless interference during the 
�rst day of the competition when all teams 
were simultaneously pro�ling the space 
and calibrating their systems. �e wireless 
interference was signi�cantly reduced 
during the second day of the competition 
when evaluation took place, as only one 
system was active at a time. Second, during 
both days of the event (setup and evaluation 
days), people attending the competition 
as well as people attending the IPSN 
conference were more than welcome to enter 
the rooms and walk around. �is provided 
varying levels of occupancy and human 
movement in the evaluation area.

Automatic Evaluation

Even though the o�cial evaluation was 
based on the manual process described 
in the previous section, the organizers 
had the ability to leverage the EVARILOS 
benchmarking platform [9] to automatically 
evaluate the localization accuracy of the two 
wining solutions in the infrastructure-based

and infrastructure-free categories.

�e EVARILOS benchmarking platform 
is an integrated experimental infrastructure 
that fully automates the evaluation of 
indoor localization systems [12]. It leverages 
the TWISTbot mobility platform (Figure 

1(e)) comprised of a Kubuki mobility base, 
a Microso� Kinect sensor and a Hokuyo 
URG-04L laser ranger, to enable accurate 
and repeatable positioning of the evaluated 
localization devices at di�erent evaluation 
points.

During the competition, the TWISTbot 
platform was able to automatically extract 
the 	oor plan of the evaluation area using 
its onboard sensors (Figure 1(f)). Each 
team’s device was mounted on top of the 
robot, and then the robot was given the true 
coordinates of each of the 20 evaluation 
points. In response, the robot autonomously 
navigated to the evaluation points and 
when there, it recorded the location of 
the system under test. Even though, the 
EVARILOS benchmarking platform can 
interact with the evaluated localization 
system over a well-de�ned API, locations 
were manually recorded and compared with 
the ground-truth information provided by 
the TWISTbot to reduce the integration 
overhead for the competitors.

RESULTS
Figure 2 shows the localization accuracy of 
all 22 competing approaches. �e average 
location error achieved varied between 
0.72m and 10.22m. Only 3 teams were able 
to achieve less than 2m accuracy, while half 
of the teams achieved less than 3m error. 

�e clear winner of the competition was 
the EasyPoint system by Bestman et al. [19] 
with an average location error of 0.72m. It 
is worth noting that Bestmann et al. opted 
to deploy only 6 out of the total 10 anchor 
nodes they were allowed to deploy.

In the infrastructure-based category, 
Bestman et al. was followed by Li et. al [14] 
(only 5 LED lamps were deployed), Adler et 
al. [3], and Lazik et al. [11], with all 3 teams 
achieving almost identical location errors 
(2m - 2.1m).

In the infrastructure-free category, the 
MapUme submission by Klepal et al. [5] 
achieved the lowest location error (1.6m). 
Submissions by Laoudias et al. [13], Zou et 
al. [25], and Ferraz et al. [7] followed with 
location errors of 1.96m, 2.22m, and 2.81m,
respectively.

Overall, even though di�erent teams 
leveraged similar techniques for indoor 
location estimation, the variance across 
implementations was signi�cant. For 
instance, the accuracy achieved by 
approaches measuring time-of-	ight or 
phase o�set in the 2.4GHz range varied 
from 0.72m (Bestmann et al.) all the way to 
approximately 4m (Schmid et al.). Similarly, 
WiFi-only approaches exhibited similar 
variations ranging from 1.6m (Klepal et al.) 
to approximately 5m (Ghose et al.) location 
accuracy. On the other hand, the two teams 
that leveraged modulated magnetic signals 
(Abrudan et al., and Pirkl et al.) achieved 
similar accuracy (approximately 4m).

Figure 3 shows the empirical CDF of 
the location errors for the top 4 teams 

FIGURE 2. Average location error, root mean square error(RMSE), and the standard deviation of the location error for all 22 competing approaches. 

As a reference, if a team were to always report the center of the evaluation area as the true location, the average location error would be 7 meters.

[(ALMOST) UNPUBLISHABLE RESULTS]
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in both categories. �e top approaches 
in both categories (Bestmann et al., and 
Klepal et al.) are clearly ahead of the other 
teams. Surprisingly, the performance of the 
remaining top approaches is very similar 
independently of any custom infrastructure 
used. �e di�erence between infrastructure-

based and infrastructure-free approaches is 
rather small (approximately 0.5m). Also, 
the maximum location errors produced 
by infrastructure-based approaches can 
be higher than that of infrastructure-free

approaches.

The Impact of Furniture Setup

Right a�er the setup day and before the 
evaluation day, the furniture setup in Room 
B was modi�ed, while the furniture setup 
in Room A remained the same (Figure 

1). Table 2 shows the average location 
error achieved by the top 4 teams in both 
categories and for each of the two rooms 
separately. With the exception of Laoudias 
et al., the rest of the infrastructure-free

approaches report higher location errors 
in the room where the furniture setup 
was modi�ed. �e error increase varies 
anywhere between 0.47m and 0.94m.

Surprisingly, even infrastructure-based

approaches seem to be a�ected by the 
changes in the furniture setup. �e top $4$ 
teams in this category, with the exception of 
Adler et al., exhibited increase in location 
errors in the modi�ed room that varied 
anywhere between 0.11m and 2.99m. For 
Bestmann et al., and Adler et al. the error 
di�erence between the rooms is rather 
small, but for the rest of the approaches the 
error increase can be even higher than that 
of infrastructure-free approaches. We believe 
that this is primarily due to di�erences in 
the way these teams deployed hardware in 
the two rooms, and not due to the furniture 
setup in the rooms. For instance, Li et al. 
deployed only 2 LED lamps in the modi�ed 
room and 3 LED lamps in the room that 
remained identical. �is type of deployment 
decisions are the main source of error 
increase in the case of infrastructure-based

approaches in Table 2.

Variance Across Evaluation Points

Figure 4 shows the average location error 
across all teams for each of the 20 evaluation 
points. At a high-level, there seem to be 
good and bad points in terms of location 

FIGURE 3. Empirical cumulative distribution function of the location error for the top 4 teams 

in the infrastructure-free and infrastructure-based categories.

TABLE 2. Average location error achieved by the top 4 approaches in each category 

for the two rooms. Most of the approaches experienced signicant increase in location 

error in the room where the furniture location and orientation was modied.

(b) Top 4 infrastructure-based approaches

(a) Top 4 infrastructure-free approaches

Approach
Identical
Room Room

Infrastructure-free

Klepal et al. 1.2 1.67

Laoudias et al. 2.21 1.92

Zou et al. 1.75 2.69

Ferraz et al. 2.09 2.91

Infrastructure-based

Bestmann et al. 0.6 0.71

Li et al. 1.15 2.06

Adler et al. 2.16 1.95

Lazik et al. 0.71 3.7

TABLE 2: Average Location Error (meters)

[(ALMOST) UNPUBLISHABLE RESULTS]
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accuracy. For instance, points 6, 9, 10, 11, 
12, and 16 tend to generate lower location 
errors compared to the rest of the evaluation 
points. It is interesting to note that all these 
points tend to be located towards the center 
of the two evaluation rooms. On the other 
hand, points located at the edges of the 
rooms (i.e., 1, 2, 7, 8), or at the hallway (i.e., 
19, 20) generate the highest location error 
with the largest deviations.

Robot-based Evaluation

�e best two teams in the competition 
(Bestmann et al., and Klepal et al.), as 
determined by the manual evaluation 
process, were invited to another evaluation 
round using the EVARILOS benchmarking 
platform described in Section 2.2.1..

Table 3 shows the average location 
error for both the robot and the manual 
evaluation process. Surprisingly, the 
approach by Bestmann et al. was able 
to achieve the exact same localization 
accuracy indicating the stability and 
reliability of the technology. �e accuracy 
of the approach by Klepal et al. was only 
slightly increased by 0.15m. Given that this 
is a pure WiFi-based approach, the overall 
accuracy and its stability is impressive.

�e results in Table 3 also show the 
feasibility of automating the evaluation 
process of indoor location technologies 

using properly equipped robots. Even 
though the evaluation area was a very 
challenging navigation and locomotion 
environment due to the presence of 
lot of people and installed localization 
infrastructure (including a lot of loose 
cabling on the 	oors), the TWISTbot 
mobility platform was able to position the 
system-under-test devices to the di�erent 
evaluation points with acceptable precision 
and reliability. With an average positioning 
error of less than 25cm, the results con�rm 
that the quality of the TWISTbot navigation, 
even under such challenging conditions, 
is su�ciently high so that the robot can be 
indeed used as a source of ground-truth 
information for automatic evaluation of 
many indoor localization solutions that 
typically have location estimate errors that 
are several multiples of this value.

LESSONS LEARNED
�is competition allowed us to closely 
observe and evaluate multiple teams 
deploying various technologies in an 
unfamiliar area. Even though the competing 
teams did not cover every single research 
and industry e�ort in the indoor location 
space, we believe that the submissions are 
representative of the most popular indoor 
location technologies. �erefore, based on 
the analysis of the results and our experience 

organizing this event, we believe we can 
safely extract a set of high level conclusions.

The Indoor Location Problem 

is NOT Solved

A�er more than a decade of intensive work 
in this area, the indoor location problem 
remains unsolved. �ere does not seem 
to exist a technology or a combination 
of technologies that can recreate the 
experience that GPS o�ers outdoors in the 
indoor environment. Even though Klepal 
et al. managed to achieve an impressive 
1.6m accuracy solely based on o�-the-shelf 
access points, and Bestmann et al. were able 
to achieve 0.72m location error, this level 
of accuracy can only enable a subset of the 
envisioned indoor localization scenarios. 
Applications that require room-level or 
even meter level accuracy (i.e., indoor 
navigation), can be easily powered by such 
technologies.

However, more sophisticated 
applications such as dynamic personalized 
pricing, and product placement and 
advertisements in the context of retail 
stores (i.e., grocery or clothing stores) 
require much higher granularity of location 
information. In such scenarios, there might 
be tens of di�erent products within a meter 
distance from the user, rendering the 
current systems ine�cient.

FIGURE 4. Average location error and its standard deviation across 

all teams for each of the 20 evaluation points.

TABLE 3. Automatic evaluation using the EVARILOS benchmarking 

platform. For Klepal et al., the robot evaluation included only 18 out 

of the total 20 evaluation points. Obstacles or failures in robot’s

navigation, prevented the robot from placing the system-under-test 

above the remaining two evaluation points.

Approach Manual Robot

Bestmann et al. 0.72 0.72

Klepal et al. 1.56 1.71

TABLE 2: Average Location Error (meters)

[(ALMOST) UNPUBLISHABLE RESULTS]
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Deployment Overhead 

Remains Too High

Most of the teams that participated in 
the competition had to deploy custom 
infrastructure, and the rest had to 
manually pro�le the evaluation area. From 
directly observing all the teams during the 
setup day of the competition, it became 
clear that the deployment/pro�ling cost of 
current approaches is prohibitively high. 
All teams were given 7 hours to deploy 
their hardware and/or pro�le a relatively 
small area of 300m². Even though one 
would think that 7 hours should be way 
more than enough time for the teams to 
setup their systems, this wasn’t the case. 
Most teams (with a couple of exceptions) 
required all 7 hours to set up, and for some 
teams 7 hours was not enough to pro�le 
the whole 300m² of the competition space. 
�is is particularly concerning given 
the fact that the teams did not have to 
worry about any practical issues that any 
commercial deployment would impose 
(i.e., aesthetics, properly hiding 
the deployed equipment, etc.).

In addition, the whole process of 
deploying custom hardware and pro�ling 
the space was quite intrusive. We don’t 
believe that any business owner would like 
to perform either of these two tasks while 
real customers are in the business.

When considering the massive size of 
deployment candidate sites (i.e., shopping 
malls) and how intrusive, time consuming 
and labor intensive the processes of 

deploying hardware and pro�ling the space 
are, realistic indoor location deployments 
that can achieve centimeter-level accuracy 
seem infeasible at this point. Reducing the 
overhead and manual labor required by the 
di�erent indoor location technologies is of 
paramount importance for their success.

Custom Hardware Solutions 

Are Not Mature Enough

Most of the competing teams employed 
customized hardware in their systems. 
However, only Bestmann et al. was able to 
achieve better accuracy than the top two 
infrastructure-free approaches (Klepal et al., 
Laoudias et al). Even though solely based 
on commercially available access points 
and sensors, these two approaches were 
able to achieve less than 2 meters location 
error, performing signi�cantly better than 
most infrastructure-based approaches. Even 
worse, the winning system by Bestmann 
et al., achieved a location error of 0.72m,
which is only half of the infrastructure-free 

approaches’ error.
Given that infrastructure-based 

solutions require orders of magnitude 
higher deployment cost (i.e., more time 
consuming, higher �nancial cost, more 
intrusive etc.) compared to infrastructure-

free approaches, the improvement they 
currently o�er in terms of localization 
accuracy does not justify their existence. We 
believe that infrastructure-based approaches 
are promising, but nowhere close to where 
they should be. To become an interesting 

alternative, any approach in this area needs 
to achieve signi�cantly higher localization 
accuracy than traditional WiFi-based 
indoor location techniques.

Changes in the Environment 

Impact Accuracy

Even though previous studies have 
already shown that large objects such as 
furniture and human presence can impact 
localization accuracy, indoor location 
technologies are typically evaluated on 
static environments. By modifying the 
furniture setup in one of the rooms in the 
evaluation area we were able to quantify 
the impact of large objects on di�erent 
indoor location approaches. Infrastructure-

free approaches that rely on WiFi signals 
can experience up to 1 meter of location 
error increase due to furniture setup 
changes (Table 2). �is is particularly high 
considering that the average location error 
of the top infrastructure-free approach 
was 1.6m. However, the increase in 
location error depends heavily on the 
implementation. For instance, the top two 
teams in the infrastructure-free category 
experience less than 0.5m or even no 
increase in error at all when the furniture 
setup is altered.

Redesigning Indoor 

Location Evaluation

�e way indoor location technologies are 
evaluated and compared can be rather 
tricky. Even though various metrics have 
been proposed in the literature (i.e., average 
location error, RMSE, 95th percentile etc.), 
there are variations in the real world that 
are not being properly captured by these 
metrics. For instance, as Figure 4 shows, not 
all evaluation points are equal. �ere are 
easy points that almost any indoor location 
approach can easily handle, and there are 
points that are really hard to accurately 
localize. As a result, the way evaluation 
points are selected and weighted in the 
evaluation metric becomes crucial. We 
believe that a lot of work needs to be done 
in terms of standardizing the evaluation 
process and metrics of indoor location 
technologies to properly capture these 
parameters.

In addition, manually evaluating indoor 
localization technologies proved to be a 
tedious, time-consuming process. �is 

THE WHOLE PROCESS OF DEPLOYING 

CUSTOM HARDWARE AND PROFILING 

THE SPACE [IS] QUITE INTRUSIVE. 

WE DON’T BELIEVE THAT ANY BUSINESS 

OWNER WOULD LIKE TO PERFORM 

EITHER OF THESE TWO TASKS WHILE 

REAL CUSTOMERS ARE IN THE BUSINESS

[(ALMOST) UNPUBLISHABLE RESULTS]
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[(ALMOST) UNPUBLISHABLE RESULTS]

overhead naturally limits the density of 
the measurement points and the number 
of systems that can be evaluated in a 
reasonable time frame. �e initial results 
from using an automated robot-based 
benchmarking platform are encouraging, 
and indicate that such platforms can 
potentially reduce the evaluation overhead 
while increasing the �delity of the 
evaluation process.

CONCLUSIONS
�e 2014 Microso� Indoor Localization 
Competition was an experiment that 
aimed to bring multiple indoor location 
technologies under the same roof and 

directly compare their accuracy and 
overhead requirements. �e overwhelming 
participation clearly demonstrated that 
indoor location remains a hot topic. It also 
demonstrated the need from the research 
and industry community in this area to 
have a venue for demonstrating its latest 
results and comparing its performance to 
other teams in a reliable way. Based on the 
passion the teams demonstrated and the 
fun they had during the competition, we 
believe that more experiments like this one 
need to take place or even be established as 
recurring (i.e., yearly) events.

At a high level, the results of the 
competition helped us draw three 

concrete conclusions. First, the results 
showed that the indoor location problem 
remains unsolved. Both the accuracy 
and deployment overhead imposed by 
current technologies cannot enable the 
indoor location services that the research 
community has been envisioning. Second, 
infrastructure-based approaches cannot, at 
this point, deliver the drastic improvement 
in terms of accuracy that is required to 
justify their high deployment cost. �ird, 
a way to standardize and automate the 
evaluation of indoor location technologies 
in realistic environments is required to 
allow di�erent technologies to be properly 
and easily compared and evaluated. 


