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No man is an island entire of itself; every man 
is a piece of the continent, a part of the main. 

 

John Donne 
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Abbreviations 
AGE   Advanced glycation end products 

AKT   Protein kinase B 

AUC  Area under the curve 
BM    Basal membrane 
BRAF   Rapidly Accelerated Fibrosarcoma; a serine–threonine protein 

kinase in the RAS-RAF-MEK-ERK signaling cascade 
CCND1 Cyclin D1 
CDK   Cyclin-dependent kinase 
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COLIV  Collagen IV 
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ER  Estrogen receptor 
ERK   Extracellular signal-regulated kinase 
FAK  Focal adhesion kinase 
FN   Fibronectin 
GAB1  GRB2-associated-binding protein 1 – adaptor protein 
GRB2   Growth factor receptor-bound protein 2 – adaptor protein 
GTP    Guanosine-5'-triphosphate 
HEK293 Human Embryonic Kidney cells 
HER2   Human Epidermal Growth Factor Receptor2 / ERBB2 / Neu 
HIF-1  Hypoxia inducible factor 1 
HMEC Human mammary epithelial cell 
LAM     Laminin 
LEP  Luminal epithelial cells 
LOX   Lysyl Oxidase  
MAPK   Mitogen-Activated Protein Kinase 
MCF10  Michigan Cancer Foundation-10 human breast cancer cell line 
MEP   Myoepithelial cells 
MMP  Matrix Metalloproteinases 
mTORC1 Mechanistic Target of Rapamycin Complex 1 
OIS   Oncogene-induced senescence 
PI3K   Phosphoinositide-3 kinase 
PIP   Phosphatidylinositol phosphate 
PKC   Protein kinase C 
RB    Retinoblastoma Protein 
pre-stasis Cells in a growing state before stasis 
p16  Cyclin Dependent Kinase Inhibitor 2A, also abbr. CDKN2A   
p21        Cyclin Dependent Kinase Inhibitor p21 
PFA  Paraformaldehyde 
PBS  Phosphate buffered saline 
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Rac  a GTPase of the Rho family 
Ras    Short for Rat Sarcoma – a small G protein which binds to the 

cytoplasmic domain of RTK 
Rho  a small G protein which regulate the formation of stress fibers 
RTK    Receptor Tyrosine Kinase 
RGD motif Arg-Gly-Asp tripeptide 
SASP   Senescence- Associated Secretory Phenotype 
SHP2   non-receptor tyrosine phosphatase containing Src Homology 2 

domains 
Shc  Short for Src homology and collagen (Shc) family of adaptor 

proteins which function as a node for signaling proteins 
Sos  Son of sevenless homolog – adaptor protein 
Src  Short for Sarcoma – a non-receptor tyrosine kinase, a proto 

oncogene 
TERT  Telomerase Reverse transcriptase 
TDLU   Terminal Ductal Lobular Unit 
TGF-β Transforming Growth Factor-b 
TP53   Tumour protein 53 = a tumour suppressor protein 
VN    Vitronectin 
y  years 
 

Glossary 
Agonescence   Senescence caused by telomere shortening 
Agonist A molecule which binds and stimulates the activity of a 

receptor 
Anoikis Cell death due to lack of cell anchorage to the extracellular 

matrix or neighbouring cells. 
Antagonist   A molecule which binds and blocks the activity of a receptor 
Apoptosis   Programmed cell death, as opposed to necrosis 
Cell Strain Finite life cells with have only gone through a limited 

number of population doublings.  
Crisis           Telomer shortening leading to persistent growth arrest and                             

  apoptosis 
Desmosome Junctional protein complex that facilitates adhesion between 

epithelial cells 
Finite life   The opposite of immortal life 
Hemidesmosome Junctional protein complex that facilitates adhesion                                            
.                            between an epithelial cell and the surrounding extracellular                      
..                           matrix 
Lineage A group of cells descending from a common ancestor 
Senescence Living state of cell involving functional metabolism, but no 

cell division 
Slug   Transcription factor known to induce EMT 
Stasis   stress-associated senescence 
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Abstract 
 

Age is the greatest risk factor for developing cancer. Two-thirds of cancer 

diagnoses occur in people over the age of 65. This increased vulnerability to 

tumourigenesis is attributed to intrinsic cellular changes, in particular the age-

related telomere shortening and the accumulation of mutations over time and. 

We propose that extrinsic factors comprising age-related alterations in the 

tissue microenvironment are also important in cancer development. We sought 

to elucidate how the microenvironmental affects cells, and how this is related 

to cancer development. This knowledge can be utilized to improve prevention, 

diagnosis and treatment of cancer in our ageing population.  

 

Cellular function is coordinated by microenvironmental factors such as growth 

factors, cytokines as well as extracellular matrix proteins. Soluble factor-

mediated signal transduction is strongly influenced by microenvironmental 

context. To allow single cell level measurement of the microenvironmental 

contextual effect on cell signaling, we developed a novel flow cytometry 

method: microsphere cytometry. Single normal or neoplastic cells were 

adhered to uniform microspheres that display mimetic-microenvironments 

comprising surface combinations of extracellular matrix (ECM) in the presence 

of soluble agonists or antagonists. Temporal signaling responses were 

measured with fluorophore-conjugated antibodies that recognize response-

dependent epitopes by multiparametric flow cytometry. Using this approach, 

we demonstrated that microenvironment-mimetic combinations of growth 

factors and extracellular matrix proteins generate distinct cellular signaling 

signatures from normal and patient biopsy-derived neoplastic cells. 

 

We asked whether the ageing process affects how human mammary epithelial 

cells (HMEC) respond to microenvironmental signals, and if this altered 

response results in increased susceptibility to oncogenic transformation. Using 

microsphere cytometry we analyzed age-dependent changes in human 
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mammary myoepithelial and luminal epithelial cells exposed to different ECM 

and growth factors. We found that ECM–mediated MAP kinase and PI3K 

pathway activation levels in HMEC are attenuated with age, and that the 

diminished signaling magnitude in HMEC from ageing women correlated with 

reduced probability of activating oncogene-induced senescence.  

 

Our results suggest that attenuated cell signaling response may reduce the 

likelihood of activating oncogene induced senescence, for cells in ageing 

women. We hypothesize this is the result of age-related changes to the 

microenvironment that support age-emergent cellular phenotypes with 

increased cancer susceptibility.  
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1. Introduction 

Humans are subject to increased mortality with age. The main theories of 

cellular ageing state that cell longevity is intrinsically programmed by certain 

genes (Werfel 2015) and is extrinsically determined by extracellular cues that 

determine when these genes are expressed (Kirkwood & Wellcome 2005). 

Hence in order to understand how ageing affects cells we must define  

the nature of these extrinsic factors and how they affect cellular functions. In 

particular, age is strongly correlated with increased cancer risk (White et al. 

2014). Of all diagnosed cancers in Norway, 87% occur in people over the age 

of 50 (Kreftregisteret 2016). Congruently, post-menopausal women are more prone 

to breast cancer than younger women. The increased frequency of breast cancer 

with age is likely due to interactions between acquired gene mutations and age-

dependent changes in the breast tissue microenvironment that affect mammary 

epithelial cells. In this thesis we address how ageing affects human mammary 

epithelial cell responses to microenvironmental signals, and how this corresponds to 

age-related cancer susceptibility.   
 

1.1 Mammary gland 

In this study we have used low passage primary human epithelial mammary 

cells (HMEC). The mammary gland and the ovaries are of particular interest as 

they go through monthly gland involution and apoptosis, followed by 

regeneration which involve a monthly mobilization of stem cells throughout 

fertile years followed by a forced retirement upon menopause (Ingthorsson et 

al. 2016; Rønnov-Jessen et al. 1996). Moreover, breast cancer is the most 

common female cancer worldwide, and healthy tissues are readily attainable 

from women who undergo reduction mammoplasty. We chose to study human 

mammary epithelial cells to address why cells in an older environment are 

more prone to develop into cancer cells.  

 

The milk secreting compartment of the mammary gland – the parenchyme 

consists of myoepithelial and luminal epithelial cells (Fig.1). There is accumu-

lating evidence for a bipotent mammary progenitor that gives rise to the two  
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Fig.1: Tissue 

localisation and cell 

surface markers of the 

two mammary 

epithelial lineages: 

luminal and 

myoepithelial cells. 

Adapted from (LaBarge 

et al. 2007) with 

permission from 

Springer. 

 

mammary epithelial lineages, but a quiescent stem cell subset is yet to be 

found. Only when there is a consensus on optimal subset markers can this be 

resolved (Visvader & Clevers 2016; Santagata & Thakkar 2014; Lim et al. 

2009). The progenitor cells coexpress luminal and myoepithelial markers, 

EpCAM, CD49f, Cytokeratin 19 and 14, while the resulting myoepithelial cells 

are CD49f / CD14 positive, and luminal cells EpCam / CD19 positive (Spike et 

al. 2012; Stingl et al. 2001). The myoepithelial-luminal bilayer forms a hollow 

acinus inside which milk is produced. Luminal cells produce milk and secrete 

this into the 

lumen of the 

acinus. 

Myoepithelial 

cells wrap around 

the acinus, and 

contract to 

squeeze milk out 

through the ducts.  

 

Fig.2 Basal membrane 

construction. Adapted 

from (Dunsmore 2008) 

with permission from 

Dovepress. 



 15 

 

Myoepithelial cells are the main source of laminin α1 which is deposited along 

the apicobasal axis between the cell layers (Gudjonsson et al. 2005). Luminal 

cells attach to each other and to myoepithelial cells via desmosomes, and to 

the extracellular matrix (ECM) by hemidesmosomes.  Maintenance of 

hemidesmosome distribution  in the cell membrane is crucial for cell polarity, 

and consequently to function (Adriance et al. 2005). The laminin binding 

integrin α6β4 regulates hemidesmosome assembly and therefore the polarity of 

both luminal and myoepithelial cells (Gudjonsson et al. 2002). 

 

Epithelial cells in healthy mammary tissue are separated from the stroma by a 

basal membrane. It comprises the ECM proteins laminin and collagen IV 

(Fig.2). Laminin maintains cell differentiation and supresses growth (Spencer 

et al. 2007). Collagen IV keeps cell EGF signaling levels to a minimum (Ertsås 

et al. 2017) by inhibition through phosphatase SHP2 (Mattila et al. 2008; Deb 

et al. 1998). Myoepithelial cells orient one side towards the basal membrane, 

and the opposite side towards the luminal cells. Myoepithelial cells produce 

the ECM proteins and the cytokines 

necessary to instruct luminal differentiation 

and retain the distribution of integrin α6β4 to 

the basolateral sides of luminal cells 

(Runswick et al. 2001; Deugnier et al. 2002). 

Groups of acini forms lobules surrounded by 

stroma (Fig.3). The breast stroma, which 

makes up 80% of the breast, contains matrix 

proteins, immune cells, fibroblasts, 

adipocytes, nerves and blood vessels 

(Rønnov-Jessen et al. 1996). The lobules 

proliferate, differentiate and then go 

through apoptosis with every menstrual 

cycle, and ultimately degenerate post-

menopause (Milanese et al. 2006).  

Fig.3: Illustration of the human breast with ducts 

and lobules consisting of epithelial bilayers. 

Adapted from (Mortazavi et al. 2015) with 

permission from American Society of 

mechanical engineers 



 16 

 

1.2  Mammary Microenvironment  

 The fate of the progenitor mammary cell, whether it turns into a luminal or 

myoepithelial cell, is determined by a combination of soluble signals from other 

cells, as well as the surrounding extracellular matrix which together make up 

the microenvironment (LaBarge et al. 2009; Lui et al. 2012; Lim et al. 2009; 

Miyano et al. 2017). The sensing of the cellular microenvironment comprises 

cell-cell and cell-ECM interactions, as well as interactions with soluble and 

tensile factors (Glukhova & Streuli 2013). The microenvironment has 1) 

chemical properties conveyed through the ligand-receptor transition; 2) 

physical properties including the stiffness and elasticity of the tissue 

transferred through mechanoreceptors being pushed and pulled and 3) 

architectural properties which involve the distribution of cell surface proteins on 

particular sides of the cell, in polar patterns (Fig.4) (Marinkovic et al. 2016; Lee 

et al. 2015). The physical properties of the microenvironment that change with 

age are conveyed through mechanoreceptors such as integrins, they bind 

ECM proteins and translate the signal to the cell nucleus. Gene expression is 

consequently modified by the microenvironment, and the cell in turn modifies 

the microenvironment in a case of dynamic reciprocity (Bissell et al. 1982). 

 

Fig.4: Fibrous extracellular 

matrix proteins (M) stretching 

around cells (Schedin & Keely 

2011). With permission from 

Cold Spring Harbor 

Laboratory Press 
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1.2.1 Extracellular Matrix Proteins (ECM proteins) 

Fig.5: Extracellular matrix located on the outside of the cell membrane. Integrins, the ECM receptors 

are located in the membrane (Wiley 1999).  With permission from John Wiley and Son. 

 

The outer layer of the bilayer comprising myoepithelial and luminal cells, is in 

direct contact with the basal membrane, which consists of the matrix proteins  

laminin and collagen IV (Fig.5) (Fata et al. 2003). Other structural proteins 

include proteoglycans of the type heparan sulfate (Bonnans et al. 2014). 

Fibroblasts deposit collagen I outside of the basal membrane, in the interstitial 

area between the ducts and lobules. The interstitial tissue is also rich in 

collagen III, tenascin and proteoglycans (Bonnans et al. 2014).  

 

Collagen 

The matrix protein collagen is the most abundant protein in the body. There 

are at least 28 types, while the three types I, II and III make up the 80-90% of 

all collagens in the human body, and comprise the major part of bones and 

cartilage (Ricard-Blum 2011; Snedeker & Gautieri 2014). It contributes during 

wound healing, together with fibronectin, to build a rigid matrix that supports 

regrowth of cells (Midwood et al. 2004). When lysyl oxidase form cross links 

between neighbouring collagen I helices it creates a stiffer collagen fibril (Erler 

et al. 2006). Stiffer tissue tensile force in the interlobular stroma exert influence 



 18 

 

on cell fate by activating integrin receptors in the underlying epithelium. 

Persistent high tensile force result in persistent integrin activation. The 

crosslinked collagen cluster together integrin α2β1 among others, and form 

focal adhesions which trigger intracellular adaptors RhoGTPase and ROCK to 

increase intracellular stiffness and transcription of genes involved in 

proliferation, survival and cell motility (Mariotti et al. 2001; Morse, Brahme & D. 

A. Calderwood 2014; Sieg et al. 2000). 

 

Fibronectin 

The matrix protein fibronectin promotes proliferation and invasive behavior, 

while preventing differentiation from progenitor state into a functional cell 

(Roman et al. 2010). Normal interstitial fibronectin turnover in healthy 

mammary tissue is low, as detected by immunohistochemistry (Williams et al. 

2008). The protein is degraded in the final steps of wound healing allowing 

collagen I deposition. The main role of fibronectin is during inflammation, 

embryonic development (Erler & Weaver 2009), and in the proliferative phase 

of the menstrual cycle (Williams et al. 2008),(Huveneers & Danen 2009), while 

fully developed mammary acini lose structure and polarity in the presence of 

persistent amounts of fibronectin (Williams et al. 2008). Proliferative signals, 

combined with the suppression of differentiation coming from persistent 

fibronectin in the tissue, prompt cells into becoming tumourigenic. 

 

Laminin 

The matrix protein laminin, induces cell differentiation into luminal and 

myoepithelial cells, and is responsible for maintaining the phenotypes of 

epithelial cells residing in intact tissue (Fig.6) (Spencer et al. 2010; Streuli et 

al. 1995). Laminin exogenically added to mammary epithelial cells in vitro 

restricts their production of fibronectin (Williams et al. 2008) , as laminin 

opposes the effect of fibronectin. In this manner laminin located in the basal 

membrane has a tumour-suppressive function. Cells remain differentiated and 

retain their function provided that the basal membrane is intact.  
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A major producer of ECM proteins are fibroblasts. Fibroblasts may also be the 

source of myofibroblasts, which appear in metastatic and inflammatory 

circumstances. The proposed theory is that fibroblasts morph into 

myofibroblast in these settings (Ueha et al. 2012). Finally, physical cues from 

the ECM, such as stiffness and topology, are as important as the biochemical 

component of soluble and fibrous ligands (Kass et al. 2007; Pouwels et al. 

2012).  We see potential for great variations in the breast microenvironment 

with increasing age and whenever homeostasis is challenged during the 

monthly hormonal cycles. We question how these variations are translated into 

gene expression in the residing cells of the tissue. 
 

 

Fig.6: 2D growth of mammary fibrotic cell line MCF10 on collagen I, fibronectin and laminin, illustrates 

the proliferating effect of fibronectin and the differentiating (acinus-like structures form) effect of 

laminin. 

 

 

1.3 Integrins  

The cellular microenvironment 

imparts numerous physical 

forces such as stress applied 

parallel to the surface of the 

cell, compression of the cell, 

and pulling leading to 

expansion of the cell (Butcher 

et al. 2009). Cells demonstrate 

mechano-reciprocity to 

these inputs through 

mechanoreceptors such as 

Collagen I              Fibronectin             Laminin 

Fig.7: Integrin dimers are composed of an α and a β subunit which is 
inactive in the folded confirmation Several intracellular modulators 
are recruited to the intracellular moiety when the integrin is in the 
active configuration (Gilcrease 2007). With permission from Elsevier.  
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integrins (Hagios et al. 1998). Cell-cell or cell-ECM interactions are nanoscale 

forces that influence cell function through actomyosin contractility and actin 

dynamics (Butcher et al. 2009). Integrins are dimeric transmembrane proteins 

(α and β subunits) with an extracellular domain that binds ECM proteins, a 

transmembrane domain and an intracellular tail that is phosphorylated at either 

tyrosine (Tyr), serine (Ser) or threonine (Thr) by recruited kinases (Fig.7).  

 

1.3.1 Ligand specificity of integrins 

The level and type of integrins 

expressed, their distribution on 

the cell surface, as well as the 

type of ECM dominating the 

surrounding matrix will determine 

response. Fibronectin has affinity 

to α5β1 and αVβ3 , collagen I bind 

integrins α2β1 and α3β1 (Hynes et 

al. 2011) while laminin binds to  

α6β1, α3β1 and has exclusive 

affinity to α6β4 (Mercurio et al. 

2001) (Fig. 8).           

 

1.3.2 Upstream and downstream of the integrin     

Most receptors enter an active state upon ligand binding (Wegener & 

Campbell 2008; Paszek et al. 2009; Elosegui-Artola et al. 2014). However, 

integrin receptors are allosteric enzymes, and ligand affinity is influenced                              

by the intracellular environment, to the extent that integrin activation can be 

initiated from both outside-in and inside-out, in a feed forward loop (Fig.9). 

Fig.8: Integrin subunits (Hynes et al. 2011). With 
permission from Cold Spring Harbor Laboratory Press 
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The inactivating 

clasp interaction 

between subunit 

α and can be 

released from 

the inside by 

Talin and Kindlin 

located on the 

inside leaflet of 

the plasma 

membrane. The 

release of subunit β from the 

clasp of subunit α make space 

around the extracellular domain for a ligand to bind (Pouwels et al. 2012; 

Legate et al. 2009).  

 

Actin contraction on the inside increases affinity of the integrins on the outside 

and thereby increase stiffness around the cell (Trusolino et al. 2000). 

Independent of whether the integrin is activated by ligand binding or by the 

recruitment of intracellular adaptor talin or kindlin, the resulting adhesome 

complex comprise kinases, phosphatases, scaffold proteins, and signaling 

proteins such as Src, FAK, paxillin, Shc, Syk, Shr and Fyn among others (Fig. 

9, Fig.12). All are involved in migration and motility (Roberts et al. 2002; 

Huveneers & Danen 2009; Legate et al. 2009) (Fig.12). The intracellular 

integrin binding proteins secondly activate nearby integrins and the 

intracellular moiety of nearby growth factor receptors.  Vacant binding domains 

on the fibrous ECM adhere, and sequentially immobilize additional integrins 

into a cluster (Legate et al. 2009; Geiger & Yamada 2011; Morse, Brahme & 

D. A. Calderwood 2014). The cascade of assembled integrins and signaling 

proteins eventually mature into focal adhesions that integrate the cytoskeleton 

into the equation (Welf et al. 2012; Bonnans et al. 2014). FAK phosphorylated 

Fig.9: Integrin clusters (Miranti & Brugge 2002). With 
permission from Nature Publishing Group 
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at Tyr397 initiates cytoskeletal contraction and link focal adhesions to actin 

fibres of the cytoskeleton via paxillin and tensin (Morse, Brahme & D. A. 

Calderwood 2014) (Fig.12). Focal adhesions regulate cell shape and fate 

through interactions between the ECM on the outside and actin linker proteins 

on the inside, using RhoGTPases to remodel of the cytoskeleton (Riento & 

Ridley 2003; Kass et al. 2007). The Rho/Rock pathway triggers Cdc42 and 

Rac1 responsible for forming actin rich protrusions such as filopodia that 

induce random migration of cells in different directions, or lamellipodia which 

induce persistent cell migration of all cells in a sheet. The cell moves forward 

by the help of actin contractions, releasing integrin attachments at the rear end 

(Sieg et al. 2000). The result is cell motility and migration (Fig.12). 

 

1.3.3 Integrin Interaction with growth factor (GF) receptors  

Integrin induced signals provide an influential context for growth factor 

receptor- and G protein coupled receptor-induced signaling to occur within 

(Harburger & Calderwood 2009; Levental et al. 2009). Integrins fine-tune 

ongoing signaling (Morse, Brahme & D. A. Calderwood 2014), in part by 

increasing the plasma membrane proximity of signaling proteins. The 

intracellular moieties of integrins do not have their own kinase activity, but 

recruit kinases to sites that can be phosporylated. The recruited kinases 

phosphorylate residues on the integrins themselves, as well as nearby 

intracellular moieties of growth factor receptors.  The kinase of the growth 

factor receptor autophosphorylate and activate downstream signaling, in 

particular the MAPK and PI3K pathways. Interestingly, integrin recruited 

kinases target other residues than the intrinsic kinase activity of the growth 

receptor,  and therefore induce different downstream signaling compared to 

the growth factor alone (Kumar 1998; Balanis et al. 2011; Cabodi et al. 2004; 

Streuli & Akhtar 2009).  

 

The growth factor receptor-integrin interaction is demonstrated by EGF 

stimulation of adherent versus suspension HEK293 (human embryonic kidney) 
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cells. Cells in suspension 

do not show changes in 

EGFR phosphorylation 

upon EGF stimulation. In 

contrast, cells adhered to 

a surface coated with 

fibronectin or laminin give 

a strong pEGFR response  

(Yarwood & Woodgett 

2001) (Fig.10). This way 

ECM enhances growth 

factor signaling and 

modifies the requirement of 

cytokine binding to achieve 

receptor activation (Erler & 

Weaver 2009; Levental et al. 

2009). The threshold to trigger receptor activation is lower when certain sites 

are already phosphorylated by help of adjacent integrins, allowing the 

recruitment of necessary kinases to phosphorylate remaining residues on the 

receptor. 

 

Fig.10 Phospho-levels of EGFR in HEK293 cells 

cultured on plastic (poly-Lysine), on fibronectin and 

on laminin, with or without EGF stimulation 

(Yarwood & Woodgett 2001). With permission from 

National Academy of Sciences 
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1.3.4 Integrins can trigger GF Receptors independent of GF 

Integrins can activate growth factor receptors in a ligand independent fashion 

(Fig.11). Balanis et al. demonstrated in murine mammary cells that EGFR was 

not activated through its ligand EGF, but rather through the activation of 

fibronectin-binding integrins αVβ3, or α5β1 that lead to phosphorylation of 

Tyr992, Tyr1068, Tyr1173 and Tyr845 on the intracellular moiety of EGFR 

(Balanis et al. 2011). Adding EGF to the EGFR did not affect EGFR phospho-

level, but affected the phospho-level of the intracellular moiety of β4 (Mariotti et 

al. 2001) (Fig.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11: Integrin-Growth factor interaction (Ivaska & Heino 2011). With permission from Annual 

Reviews.  

 

 

1.3.5 Crosstalk between MAPK and PI3K pathways  

Crosstalk between the MAPK and PI3K pathways downstream of receptor 

tyrosin kinase (RTK) can alter the outcome of receptor activation. There are 

both positive and negative feedback interactions between signaling proteins in 

these pathways (Ref. 7 & 16 in Fig.12) that fine tune signal transduction in 

response to signal intensity or contextual factors (Ref. 12 & 17 in Fig.12). An 

example is recruitment of Shc–GRB2–SOS complexes that activate the RAS/ 

MAPK pathway. This attenuate PI3K pathway activation when EGFR 
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stimulation increases. In fact, EGFR is found to be a potent activator of ERK, 

but a weak activator of the PI3K pathway (Kolch et al. 2015). EGFR has 

various ligands that generate different signals. When HGF binds to EGFR it 

triggers a different crosstalk pattern down-stream compared to when EGF 

binds. This is because HGF stimulation of EGFR does not initiate the tyrosine 

phosphatase SHP2 (Fig.12). SHP2 

recruitment represents a negative 

feedback on the GAB1-PI3K pathway, and 

a positive feedback on the Ras-MAPK 

pathway (Yu et al. 2002). The MAPK 

substrate ERK5 is suggested to be 

responsible for SHP2 recruitment to GAB1 

(Yu et al. 2002; Wöhrle et al. 2009). AKT 

activation is therefore retained low, while 

ERK remains high (Fig.12). Variations in 

signaling as a function of time may 

however not involve feedback at all, but 

rather diverging downstream pathways, 

acting on substrates in a series of different 

time points.  

 

An example is ERK which is phosphorylated after 5 minutes of growth factor 

stimulation, while AKT is not phosphorylated for another 45 to 90 minutes 

(Mendoza, Emrah Er, and Blenis 2011a). Crosstalk between MAPK and PI3K 

pathways is regulated by which and how many residues  on RTK are 

phosphorylated upon stimulation (Fig.13). Signaling thresholds dictate whether 

feedback is positive, negative or diverging.  pERK is involved in more negative 

feedback loops -back on itself and from other effectors - than pAKT (Birtwistle 

et al. 2007; Kumar et al. 2007). If distribution, rigidity and composition of the 

ECM changes due to age or pathology as described in section 1.2 will this 

 
MAP Kinase           PI3 Kinase 
   pathway                 pathway 
 

Proliferative         Anti-apoptotic 
   signaling             signaling  

Crosstalk  

Fig.13: Crosstalk between pathways 
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affect mechano- and growth factor signalling in cells residing in the tissue, and 

secondly will this effect be sufficiently long term to influence cell phenotype? 

 

1.4 Ageing in the mammary gland 

Ageing at the physiological level is a gradual reduction of  tissue homeostatic 

function (Snedeker & Gautieri 2014). This is the result of changes in cellular 

function that affect the fidelity of cellular hierarchies and constitution of the ECM 

(Fig.14)  

 

 

 

 

 

 

 

 

 

 

 

 

1.4.1 Extrinsic factors that promote ageing   

The altered microenvironment potentiates the ageing process by supporting 

altered cellular phenotypes. The outcome is a reduction of cancer protective 

mechanisms including tumour-suppressive functions of the microenvironment 

(Mina J Bissell et al. 2002). How does these systemic changes of hormonal 

and structural nature (Table 1) trickle down to the microenvironment and into 

individual cells, to induce such long-term effects as cancer susceptibility? 

Fig.14: Hallmarks of ageing. A summary of reasons for ageing, physiological and cellular (López-
Otín et al. 2013). With permission from Elsevier.  
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Fibrosis 

Fibrosis is an excess of fibrous connective tissue in an organ previously populated 

with cells (Zeisberg & Kalluri 2013).  

Fibrosis is considered an initiating stage of cancer development (Cox & Erler 

2014). Mammography measures tissue density in the breast, and indicates the 

level of fibrosis.  

There is increased collagen I deposition and increased rigidity of the tissue.  

A stiffer microenvironment transforms interstitial fibroblasts into myofibroblasts 

(Bogatkevich 2015), and promote further secretion of collagen I in a feed forward 

loop  (López-Nouoa & Nieto 2009). 

Adipocytes replace epithelial cells 

Invading adipocytes take over the space previously filled with epithelial cells 

(Machida & Nakadate 2015). 

Reactive oxygen species (ROS) 

Mitochondrial deterioration lead to reactive oxygen species ROS, which attack both 

DNA and proteins. Aberrant function of enzymes that deal with carcinogens in older 

people make them more sensitive to carcinogens (Hoffe 2012). 

 

Collagen cross linking 

Despite the resulting general decrease in breast density with age, individual loci 

have increased stiffness where collagen I is increasingly crosslinked.  

Lysyl oxidase (LOX) activity introduces crosslinks within collagen I fibrils, which 

increase rigidity and linearization (Egeblad et al. 2010).  

Accumulation of linearized collagen I with age allows more efficient cell migration, 

involving intensified integrin activation (Condeelis & Segall 2003)  

Loss of immune function 

Immune surveillance is less efficient in detecting and removing neoplastic cells. 

Simultaneously, inflammation is more frequent and more likely to become chronic 

giving rise to “the wound that never heals” (Dvorak 2016). 
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Disintegration of the Basal Membrane 

Basal membrane experiences proteolytic degradation due to MMPs and 

inflammatory factors derived from fibroblasts and macrophages (Nguyen-Ngoc et 

al. 2012; Benz 2008; Milanese et al. 2006; Ueha et al. 2012). It becomes thinner 

and discontinuous. 

Epithelial cells are exposed to collagen I in the interstitium. This is interpreted by 

the epithelia as a wound, and wound healing is initialized (Xue & Jackson 2015; 

Midwood et al. 2004).  

Luminal cells cannot maintain differentiation when laminin is lacking in their 

microenvironment. 

Signaling from integrin receptors is initiated by the clustering of receptors, which 

explains why the epitopes need to occur in solid state, close to each other. This 

requirement is only fulfilled when ECM fibres are present in a matrix. Disintegration 

of the basal membrane result in fewer solid state ligands present to keep the 

integrin expression and localization in check (Sager 1993).  
 

Table 1: tissue homeostatic function deteriorates with age 

 

1.4.2 Intrinsic factors that promote ageing 

Intrinsically determined ageing is genetically programmed, occurring 

independent of microenvironmental changes. It is exemplified by senescence 

which is the current prevailing theory of ageing (Childs et al. 2015). Senescent 

cells are in proliferative arrest, but remain metabolically active. They may 

infrequently revert to a proliferative state, apoptose or persist as a phenotype 

which creates an inflammatory microenvironment around themselves by 

secreting given cytokines (Kolch et al. 2015).  Senescence links hyperplastic 

pathologies and ageing (Campisi 2013). The tumour suppressor TP53 protects 

the cells of young individuals against cancer, but will restrict life expectancy 

post-reproduction.  
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1.4.2.1   Senescence  

Senescence occurs in 

response to excessive 

extracellular or 

intracellular stress 

(Coppé et al. 2010). 

Senescence-inducing 

stress includes 

telomere shortening 

following multiple cell 

divisions, exposure to 

oxidants, mitochondrial                                              

deterioration or disruption of 

chromatin organization. 

Alternatively senescence may be due to extrinsic exposures such as: DNA 

damaging chemotherapies, γ-irradiation and UVB light (Campisi & d’Adda di 

Fagagna 2007; van Deursen 2014; Hayflick & Moorhead 1961; Hornsby 2011).  

 

Oncogenes causing inappropriate mitogen signaling can also lead to 

senescence. The fraction of senescent fibroblasts in humans have been found 

to increase with age (Faragher et al. 2017). A higher number of senescent 

cells can be due to chronic inflammation, a higher fraction of persistent non-

acute senescent cells or less efficient elimination of senescent cells by an age 

ageing immune system (Shaw et al. 2010; Childs et al. 2014; Nikolich-Žugich 

2014) (Fig.15). Senescence is a cancer-protective and tumour-suppressive 

mechanism but can in some cases have the opposite effect and promote 

cancer through senescence-associated secretory phenotype (SASP) which 

maintain inflammation (Campisi 2013; Hoare & Narita 2013) (Fig.16). The 

results of SASP are the reverse differentiation of epithelial into mesenchymal-

like cells (epithelial to mesenchymal transition), microenvironmental changes 

and angiogenesis (Bavik et al. 2006; Parrinello 2005) (Fig.16).                                            

Fig.15: Impact of senescence in young and old tissue (López-
Otín et al. 2013). With permission from Elsevier. 
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 1.4.2.2   Senescence in human epithelial cells 

The senescence 

program is activated 

when a critical level of 

DNA damage is 

surpassed, and is 

implemented by TP53 

or CDKN2A/p16 

preventing entry into 

S-phase through the 

activation of 

transcriptional 

regulator 

Retinoblastoma (Rb) (Benz 2008). 

This inhibition is reversible upon 

DNA damage repair and is the dominant mechanism of senescence in human 

fibroblasts, astrocytes, keratinocytes and all murine cells. In general, 

mesenchymal-like cells demonstrate more DNA damage at stress-associated 

senescence (stasis) than do human epithelial cells. Stasis is the first of two 

steps that needs to be bypassed in order for cells to become immortal, which 

means they can divide an indefinite number of times (Olsen et al. 2002; Garbe 

et al. 2014). It is telomere independent, but is in similarity to agonescence 

characterized by vacuoled cells and β-galactosidase expression. Stasis is 

induced by DNA damage, oxidative stress etc. in contrast to agonescence, a 

type of senescence specifically induced by critically short telomeres. Human 

epithelial cells show evidence of a TP53 independent induction of stasis. In 

fact, neither TP53 nor CDKN2A/p16 Ink4A is required to induce stasis in human 

mammary epithelial cells (Olsen et al. 2002). Congruently, most mammary 

cancers still express wild type TP53 (Shachney & Silverman 2003). 

Could the changes listed above can explain why ageing cells are more likely to 

develop into tumour cells.  

Fig.16 SASPs have both tumour-suppressive and tumour- 

promoting consequences (Fumagalli & d’Adda di Fagagna 
2009). With permission from Nature Publishing Group.               
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1.5  Microenvironmental link between Ageing and Cancer   

The common explanation 

for the increased 

incidence of cancer with 

increased age has been 

accumulation of sporadic 

mutations with time, the 

assumption being that 

when the number of 

oncogenes in the cell 

reaches a threshold, 

tumours will develop 

(Campbell et al. 2015; 

Vogelstein & Kinzler 1993). Vogelstein argues further that human organs 

demonstrating high numbers of stem cell divisions, are more likely to 

accumulate mutations, and therefore more prone to develop tumours 

compared to other organs (Tomasetti & Vogelstein 2015).  However, several 

cancer types do not increase in direct correlation to age (Armitage, P;Doll 

1954). Breast cancer incidence peaks at age 50 and then again around age 

70, after which it decreases (Anderson et al. 2014). Most pre-malignant 

mutations occur before the age of twenty, and increase only slightly from then 

on (Degregori 2013) (Fig.17). Indeed, many of these mutations do not result in 

clinical cancer: 36% of people between the age of 50 and 70 years that died of 

non-cancer causes had detectable carcinomas in 2.5mm autopsy cross 

sections (Harach et al. 1985). In sum, the above imply that there is most likely 

a contextual parameter involved in age-related cancer in addition to the 

presence of mutations. Can this parameter, or the consequences of it, be 

detected through functional studies? 

 

1.5.1 Tumour microenvironment versus ageing microenvironment               

The tumour microenvironment shows similarity to the ageing 

Fig.17: Cancer incidence and mutations as a function of age 

(Degregori 2013). With permission from Nature Publishing 

Group   
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microenvironment, indicating that the ageing microenvironment may have 

similar influence as a tumour microenvironment - on its residing cells. Here are 

some characteristics to recognize a tumour microenvironment.  A metastatic 

niche and a tumour microenvironment induce malignancy in the residing cells. 

 

1.5.1.1  Extracellular matrix composition and  stiffness promote malignancy 

A stiffer, cross-linked ECM is detected by cells through mechanosensing, 

increased numbers of focal adhesions and reorganization of the cortical actin 

cytoskeleton. This promotes cell migration and is implicated as a “highway” for 

metastatic cells to migrate along (Erler et al. 2006; Snedeker & Gautieri 2014). 

Cells respond to increased local tensile force by assembling focal adhesions, 

and to the relaxation of force by disassembling focal adhesions (Bershadsky et 

al. 2006; Paszek et al. 2009). The composition of the ECM changes during 

tumour development. Collagen I and fibronectin are produced in abundance by 

tumour cells and tumour associated cells (Kaplan et al. 2005; Ioachim et al. 

2002). Tumours have been called: “the wound that never heals”,  as they 

deposit fibronectin in the absence of actual injury (Polyak & Kalluri 2010). 

Hypoxia in the metastatic niche induces lysyl 

oxidase activity via hypoxia-inducible factor-1 

(HIF-1), to form cross-links in collagen I (Erler et 

al. 2006). The deposition of collagen and 

fibronectin, and the crosslinks formed between 

collagen fibrils result in high stiffness in the tumour 

and surrounding stroma (Fig.18). Conversely, 

laminin tends to lack in tumourigenic tissue (Natali 

et al. 1992). These are all phenomena that we 

recognize in the ageing microenvironment, which 

prompts us to ask if the ageing ECM can have 

similar impact. Furthermore, could an ECM of 

lower stiffness rejuvenate old cells placed in it? 

The stiffness and ECM composition of the 

Fig.18 Cell morphology and 

phenotype is instructed by the 

surrounding ECM and its 

rigidity. Adapted from 

(Provenzano et al. 2008) with 

permission from BioMed Central 

Ltd.. 
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mammary gland stroma 

is calibrated to maintain 

lobule conformation  

allowing lactation 

(Schedin & Keely 2011). 

Tumour development is 

prevented by physically 

forcing the cells into a 

native 3D orientation 

(Bissell et al. 2002; 

Nelson & Bissell 2005) 

(Fig.19). Normal 

mammary 

morphogenesis is 

associated with ECM 

turnover, processing 

and orientation. These 

changes occur at 

strictly regulated 

timepoints in tissue development and within the menstrual cycle. However, 

with ageing and during tumour development the ECM rearrangement becomes 

extensive and persistent (Schedin 2006).The ECM is no longer fulfilling its 

tumour-suppressive role.  

 

1.5.1.2    Oncogene potential released by the microenvironment 

Dolberg and Bissell demonstrated more than 30 years ago that tumours 

developed when Rous Sarcoma Virus (RSV) was injected into the wing web of 

a hatched chicken, due to the presence of inflammation in the puncture 

wound, while no tumours developed when the virus was put inside a 

developing embryo (Dolberg & Bissell 1984). Even if the genotype for  

 

Fig.19: A malignant phenotype require a malignant microenvironment to 

manifest itself (Nelson & Bissell 2005). With permission from Elsevier. 
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malignant behavior is present in the cell, we only see the phenotype 

manifested when promoted by changes in the microenvironment (Fig.20). 

Could mutations be suppressed in cells in young tissue, but be promoted by 

the inflammatory microenvironment in the ageing tissue?  Cancer cell lines 

demonstrate malignant phenotype - protrusions, invasion and dissemination -  

in a stromal-like context (collagen I), but not in a context of basement 

membrane-like (laminin and collagen IV) ECM (Egeblad et al. 2010). Further, 

neoplastic cells can revert to a normal phenotype when placed back in stroma 

with stiffness equal to normal healthy breast tissue (Ingber 2008). Chronic 

inflammation in the tissue supplies a series of tumourigenic factors that 

promote cancer-related cellular phenotypes. In addition, inflammatory 

cytokines heavily remodel the non-cellular content of the stroma (López-Nouoa 

& Nieto 2009). Up to 90% of a pancreatic tumour may in fact be non-tumour 

stroma cells, recruited and mobilized in the context of proliferating tumour cells 

(Kong et al. 2012). Signals of tumour origin selectively recruit Th2 CD4 helper 

cells which facilitate tissue repair including angiogenesis, proliferation and anti-

apoptosis (Denardo et al. 2009). Those are all pro-metastatic mechanisms. 

Th1 CD4 helper cells that promote neutralization and killing of tumour cells, on 

the other hand, are suppressed. Cancer is more than a collection of tumour 

cells: the surrounding context can both contribute and initiate the neoplasia. 

Fig.20: The 

tumour micro-

environment 

informs the 

residing tumour 

cells into 

malignancy 

(Glukhova & 

Streuli 2013). With 

permission from 

Elsevier.      
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Does the ageing microenvironment demonstrate enough of these tumour-

initiating characteristics to produce tumour cells? 

 

1.5.2  Oncogene induced senescence (OIS)   

Finally, we propose a potential phenotype to be affected by the altered 

microenvironment in the ageing body. Oncogene induced senescence (OIS) is 

the first line of defense against cancer (Serrano M, Lin AW, McCurrach ME, 

Beach D 1997). This intrinsic mechanism serves to remove potentially 

oncogenic cells before they develop into tumours (Fig. 21). When an 

oncogene such as mutated Ras, Raf1 or EGFR is introduced into primary cells 

they do not become immortalized or tumourigenic. Most likely they go into 

senescence, followed by removal by NK cells (Childs et al. 2014). Could a loss 

of this mechanism make cells more prone to develop into tumour cells, and if 

so how does a cell lose this defence?  An oncogene that introduces sustained 

mitogenic stimulation (MAPKinase signaling) triggers senescence, which is 

known as OIS. OIS involves overexcretion of GM-CSF, IL-6,-7.-8, -1β, G-CSF 

and INFγ;  inflammatory factors that are less prominent in senescence induced 

by replicative exhaustion, γ-radiation, oxidative stress or extensive changes in 

chromatin structure (Nelson et al. 2014; Coppé et al. 2010).  Moreover, 

CDKN2A/p16 induces OIS without SASP 

(Fig. 16), due to other signaling pathways 

being involved compared to replicative 

senescence (Adams 2009; Coppé et al. 

2010). Where in the process of 

senescence may the microenvironment 

exert influence?  Is the microenvironment 

necessary and sufficient for tumour cell 

initiation, or does it act in combination 

with other parameters? 

 
Fig.21: Oncogene induced senescence 

(Mallette & Ferbeyre 2007). With permission 

from Taylor & Francis. 
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2. Aims of study 
 

Cancer incidence correlates with age. Post-menopausal women are more prone 

to breast cancer than younger women. The increased frequency of breast 

cancer with age is likely due to interactions between acquired mutations and 

age-dependent changes in the breast tissue microenvironment that affect 

mammary epithelial cells. The central hypothesis of this thesis is that ageing 

affects how human mammary epithelial cells respond to microenvironmental 

signals. To test this hypothesis, we developed a novel microsphere cytometry 

approach to measure microenvironment-contextual cell signaling at the single 

cell level. The overall aim of this project is to better understand the underlying 

mechanisms of age-related breast cancer.  

The specific aims were to: 

• Establish a flow cytometry method (microsphere cytometry) to 

measure ECM-contextual cell signaling in single adherent cells. 

• Employ microsphere cytometry to investigate age-dependent changes 

in signaling responses to the microenvironment. 

• Characterize age-related changes in mammary epithelial cells and 

how these contribute to cancer development.  
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3. Methodological considerations 

3.1 Cell lines versus low passage primary cells 

Our studies were performed on low passage primary human mammary 

epithelial cells (HMEC). Long term in vitro proliferation results in stress-

associated senescence (stasis). Further, critically short telomeres result in 

telomere dysfunction-associated senescence (agonescence) (Stampfer et al. 

2013). In contrast, cell lines are immortal:  they have successfully bypassed 

both senescence and agonescence (Fig.22).  

 

 

 

 

 

Fig.22: Immortalization is a two-step process (Garbe et al. 2014). With permission from Taylor & 

Francis. 

3.1.1  MCF10A cell line does not represent primary human HMEC  

The mammary cell line MCF10A, derived from fibrocystic mammary tissue, is 

frequently used by researchers to represent a normal epithelial cell (Qu 2015, 

Soule 1990). We found culturing of MCF10A cells to be EGF dependent. 

Acinus-like cell aggregates formed in the presence of laminin and the absence 

of EGF (Fig.23a). MCF10A are not known to be tumourigenic in mice. It is of 

luminal descent and forms milk-producing acini in 3D cultures with 

extracellular matrix proteins from the basal membrane (Matrigel) (Fig.23 a). 

However, they simultaneously express basal markers (Qu 2015), and 

demonstrate proliferation as predominant response to laminin, as opposed to 

differentiation (Petersen et al. 1992) (Fig.23a,b). When we employed 

microsphere cytometry to map the signaling signature of MCF10A cells 

compared to HMEC, MCF10A response to stimulation greatly varied from that 
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Fig.23: The MCF10A cell line does not represent primary HMEC (A) Phase contrast photos of cell 

growth in 2D cultures on different extracellular matrix (ECM) proteins revealed that cell morphology, 

but not cell proliferation, was dependent on EGF, on laminin in particular. In the absence of EGF, cells 

distributed themselves into structures similar to acini. Real acini may only form in a 3D substrate. 

Scale bar is 100 µm. (B) Cell proliferation was detected by the conversion of Resazurin into pink 

coloured Resarufin indicating the number of metabolizing cells present as a function of time. Among 

the ECM proteins tested, laminin mobilized the strongest growth, contrary to expectation. Laminin is 

known to direct differentiation at the expense of proliferation. In conclusion, MCF10A cells do not 

behave like primary HMEC. (C) AUC values of graph in (B). (D) Microenvironment-dependent cell 

signaling response patterns in MCF10A cells differs from those in HMEC. pERK and pAKT levels were 

measured longitudinally in HMEC and MCF10A, adhered to collagen, fibronectin or laminin-coated 

microspheres in growth factor supplemented culture medium. MFI (median fluorescence intensity) 

values for pERK (solid lines) and pAKT (dotted lines) plotted as a function of time (0-9 h). MCF10A 

signaling levels did not become normalized within the 9-hour period in comparison to HMEC, but 

remained high throughout. The graph is representative of three independent experiments. 
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of the HMEC (Fig.23d). Consequently, we chose to perform our experiments 

on HMEC rather than on MCF10A cells. 

3.1.2 In vitro culture of Human Mammary Epithelial Cells (HMEC) 

HMEC grow and disperse in cell culture dish from organoids which are 

microscopic tissue pieces - the products of enzymatic and mechanic 

processing of breast tissue following reduction mammoplasties. Samples can 

also be derived from non-tumour mastectomies or suspended cells from 

mother’s milk. Cells are allowed to grow out of individual organoids placed in 

cell culture dishes. Contaminating fibroblasts are removed by partial 

trypsination as described in Paper I (Ertsås et al. 2017). Optimal HMEC growth 

is supported by culture medium M87A (insulin, EGF, estradiol, prolactin, 

somatotropin, thyroid stimulating hormone, adrenocorticotrophic hormone and 

vasopressin) combined with a low concentration of serum, and oxytocin with 

life extending effect (Stampfer 1985; Labarge et al. 2013; Garbe et al. 2009). 

Culture in M87A with oxytocin can support HMEC growth for 16 passages, 

which is equal to 50 population doublings. The biobank at Lawrence Berkeley 

National Laboratory contains HMEC derived from organoids isolated from 50 

women ranging in age from 14 to 91 (hmec.lbl.gov). HMEC used in our studies 

were maximum 4th passage.  

 

Tissue culture of dissociated primary epithelial cells causes a number of 

adaptations, of which the most distorting is the tendency of cells to lose their 

luminal phenotype and become increasingly basal with prolonged in vitro 

culturing (Pechoux 1999). It is particularly important to confirm that the 

phenotypic changes detected in older HMEC are not technical artifacts, but 

indeed of biological nature. Therefore, we measured integrin expression on 

dissociated uncultured epithelial organoids from 9 women and compared these 

to 6th passage HMEC. We found similar integrin expression with age in both 

uncultured and passage 6 HMEC (Paper 2, Suppl. Fig. 5c,d).  
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3.1.3 Selection of EGFR Del19 transformed cells  

Human mammary epithelial cells (HMEC) were 

transformed with vector coupled EGFR with a 

constitutive active kinase activity due to a 

deletion in exon 19 of the EGFR gene. In order 

to select EGFRDel19 transformed cells we 

performed selection by both antibiotics 

(Pyromycin) and by FACS flow. We found that 

either method gave cell populations with equally 

high EGFR expression levels. In conclusion, the 

method of selection is not critical to outcome, 

and HMEC selected by either method can be 

compared interchangeably (Fig.24) 

 

 

 

 

 

 

 

3.2 Isogenic series                                                                                  

In order to investigate changes in signalling response and integrin expression   

during malignant progression, we developed an isogenic transformation series. 

These are cell lines that range from normal to non-malignant immortal and 

finally tumourigenic. Tumourigenic cells are defined as cells capable of 

anchorage-independent growth in a gel like material. Malignant cells do not 

undergo anoikis even when lacking ECM anchorage. Pre-stasis normal cells  

Fig.24 EGFR selection methods.        
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Fig.25: Two types of senescence that need to be overcome in order for cells to become immortalized 

(Garbe et al. 2014). With permission from Taylor & Francis. 

(passage 3) were transduced with shRNA against CDKN2A/ p16, or 

overexpression of CCND1/CyclinD1 to allow them to bypass stasis by 

preventing Rb activation. CyclinD1 is necessary for self-renewal in mammary 

tissues, and more importantly luminal differentiation into functional lobules and 

ducts (Jeselsohn et al. 2010). 

CyclinD1 overexpression 

promotes transformation into a 

luminal phenotype, and increases 

tolerance to Neu/ERBB2 . 

Suppression of CDKN2A/p16 is 

less likely to give this result (Lee 

et al. 2015). Telomere shortening 

is overcome by ectopic MYC 

expression that induces 

transcription of the telomerase 

reverse transcriptase gene (TERT) (Kyo et 

al. 2008). Flow cytometric measurements 

revealed that myoepithelial or luminal cells 

were transduced with similar efficiency (Fig.26). 

GFP expression level FL1-H 

Fig.26: GFP transduction of luminal and        

myoepithelial cells. Subpopulations present 

immediately after transduction. 

GFP positivity – FLH1 
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Hence, the low fraction of transformed luminal cells found in cell lines after 

prolonged passaging may be related to a myoepithelial-like phenotype, 

acquired post transformation. The isogenic series comprises pre-stasis, 

immortal and malignant human mammary epithelial cells. The genetic 

alterations from one step to the next are known as they were introduced by us  

3.3  Flow cytometry  

Flow Cytometry measures characteristics 

of cell populations at the single cell level, 

such as number, size, DNA content and 

immune phenotype. Cells are stained with 

fluorophore-conjugated antibodies, enter a 

laminar flow and are passed by a laser 

and fluorescence detector (Fig.27). Flow 

cytometry allows analysis of various 

cellular subpopulations within a sample. 

Fluorescence is proportional to the 

number of antibodies bound per cell. The 

median fluorescence of the cell population 

indicates the average number of epitopes 

in each cell. This can be used to calculate the 

percentage of cells demonstrating a change in 

fluorescence in response to a defined treatment. Phospho Flow Cytometry 

measures intracellular phospho-epitopes on signal transduction proteins. 

Microsphere cytometry described in Paper I (Ertsås et al. 2017) allows ECM 

contextual signaling measurement of subpopulations in the sample. 

Microspheres contribute a surface where a microenvironment can be 

mimicked (Fig.28). Each particle comprises both cell and context, and 

signaling is captured as the particles pass by the laser, (Fig.29). Flow 

cytometry is limited by available fluorescence wavelengths and their tendency 

 Fig.27: Abcam.com   
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to bleed into multiple detection channels. Compensation is conducted to 

account for spectral overlap. 

 

 

3.3.1 Challenges of microsphere cytometry 

A particular challenge in microsphere cytometry is avoiding aggregates in the 

sample. Aggregation is promoted by the ECM coating; collagen I-coated 

microspheres tended to clump more than laminin-coated particles . 

Aggregates do not enter the laminar flow and reduce the number of detectable 

events. It was therefore necessary to vortex the sample during analysis, every 

30 seconds. Hence, the microsphere cytometry method requires more cells 

per sample compared to normal flow cytometry without microspheres, due to 

loss of particles during the running step    

Microsphere           cell 

20 μm 

Fig.28: Electronmicroscopy images of a cell binding to a microsphere.                                      

Flowchart of Microsphere Cytometry method (Ertsås et al. 2017). With permission from Royal 

Society of Chemistry. 
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Fig.29: Microsphere cytometry: Microspheres (in 

blue) offer a surface where the microenvironment 

(black threads) can be mimicked. The cell (in 

yellow) wraps itself around the microenvironment. 

 

 

 

 

 

 

 

3.4 Statistical considerations 

Flow cytometry data analysis was performed in Cytobank 

or Flow Jo (Tree Star Inc.), and is presented either as 

colour coded histograms or plotted as sample fluorescence 

as a function of age or time. Fluorescence is presented as 

the log2 ratio of fluorescence post manipulation over pre-

manipulation. Where “pre” is a control sample stained with 

a secondary antibody only (Paper 1 Fig. 2 and 5), or a 

sample were phosphorylation is inhibited (Paper 1 Fig. 3). 

A positive ratio in the histogram is illustrated in yellow and a 

negative ratio in blue (Fig.30).           Fig.30: Histogram                                     

.                                                                                                                 
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  Table 2. Definition of the Y axes unit 
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Table 3. Choice of statistical tests 
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4.Summary of papers  
 

Paper I  

Microsphere cytometry to interrogate microenvironment-dependent cell 

signaling 

Henriette Christie Ertsås, Garry P. Nolan, Mark A. LaBarge and James B. Lorens 

Integr.Biol., 2017, 9 (2), pp. 123-134  

 

Microenvironmental cues comprising surface-mediated and soluble factors 

control cellular signaling mechanisms underlying normal cellular responses 

that define homeostatic and diseased cell states. In order to measure cell 

signaling in single adherent cells, we developed a novel microsphere-based 

flow cytometry approach. Single normal or neoplastic cells were adhered to 

uniform microspheres that display mimetic-microenvironments comprising 

surface combinations of extracellular matrix (ECM) proteins in the presence of 

soluble agonists/antagonists. Temporal signaling responses were measured 

with fluorophore-conjugated antibodies that recognize response-dependent 

epitopes by multiparametric flow cytometry. Using this approach, we 

demonstrated that microenvironment-mimetic combinations of growth factors 

and extracellular matrix proteins generate distinct cellular signal networks that 

reveal unique cell signatures in normal and patient biopsy-derived neoplastic 

cells. 

 

Paper II  

Microenvironment-contextual cell signaling is attenuated with age. 

Henriette C. Ertsås, Mark A. LaBarge and James B Lorens  [Manuscript] 

  

Post-menopausal women are more prone to breast cancer than younger women. The 

increased frequency of age-related breast cancers is likely due to interactions 

between mutations and age-dependent epigenetic changes that affect mammary 

epithelial lineage fidelity. We hypothesized that the ageing process fundamentally 

affects how human mammary epithelial cells (HMEC) respond to microenvironmental 
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signals, resulting in increased susceptibility to oncogenic transformation. In order to 

measure microenvironmental cell signaling in normal finite lifespan HMEC, we 

applied a novel microsphere-based flow cytometry technology. Microsphere 

cytometry allows multiparametric single cell quantification of signaling pathway 

activity and lineage-specific marker expression in cells adhered to surface-

functionalized microspheres that mimic specific microenvironments. Using this 

approach, we analyzed age-dependent changes in human mammary myoepithelial 

and luminal epithelial cells exposed to various ECM and growth factors. We found 

that ECM–mediated MAP kinase and PI3 kinase activation levels in HMEC were 

attenuated with age. Older luminal cells displayed higher surface integrin levels 

consistent with acquired basal identity, albeit with decreased integrin phosphorylation 

and increased Src-phosphorylation relative to myoepithelial cells. We show that the 

diminished signaling magnitude in HMEC from older women correlated with reduced 

probability of activating oncogene-induced senescence. We propose that age-related 

alterations in ECM-mediated epithelial cell-regulation may impair protective tumor-

suppression mechanisms and increase breast cancer susceptibility.  
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5. Discussion 

Increased tumour incidence with age has been suggested to involve an 

attenuation of protective tumour-suppressive functions in the tissue (Fata et al. 

2003; Bissel & Radisky 2001). Researchers propose that the post-reproductive 

microenvironment may select for cells with genetic or epigenetic changes. 

Transformed cells have higher fitness than healthy cells in the ageing body 

(Degregori 2013). These cells may be more efficiently removed during the 

reproductive period of life, but experience a selective advantage during 

ageing. Age-related alterations in immune surveillance facilitate emergent 

cellular phenotypes with altered senescence triggers that tolerate 

inflammation, tissue stiffness and a degraded basal membrane integrity  

(Rozhok et al. 2014)(Paper 2). Luminal mammary epithelial cells with acquired 

basal characteristics that facilitate interaction with different ECM proteins can 

derive a selective advantage in a non-native microenvironment that forms 

following basal membrane degradation. This new landscape favours 

transformed cells over healthy cells, and malignant phenotypes over benign 

(Rozhok et al. 2014). 

Ageing phenotypes are thus the result of both intrinsic factors and extrinsic 

factors in the microenvironment (Hornsby 2002). Hence, we hypothesize that 

age-related microenvironmental changes in the human breast induce 

phenotypic modifications in epithelial cells (Paper 2).  

5.1 Microsphere cytometry to interrogate microenvironment-

dependent cell signaling.    

In order to detect age-dependent phenotypic variations in mammary epithelial 

cells, manifested as cell signaling, we developed the microsphere cytometry 

approach. Microsphere cytometry permits quantification of cell signaling in 

single cells adhered to different ECM proteins. Commonly used methods, such 

as Western blot, can be used to measure protein expression changes in cells 

cultured on tissue culture plates coated with ECM proteins. However, these 

methods represent an average value for the cell population, masking 
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heterogeneity present in the sample (Jensen 2012) and variation in cell 

signaling in cellular subpopulations. Immunofluorescence-approaches can 

reveal subcellular locations of phosphorylated mediators, but throughput is 

low. The use of microspheres to conduct flow cytometry analysis of adherent 

cells was proposed by Bloch et al. more than 30 years ago (Bloch et al. 1983). 

We applied microspheres to quantify cell signaling in different ECM contexts 

that mimic the in vivo microenvironment (Fig.31).  

 

Fig.31: Illustration of ECM coating (in purple) on plastic microspheres. A mimicked microenvironment 

for cells to bind to, Paper I (Ertsås et al. 2017). With permission from Royal Society of Chemistry 

 

Phospho-flow cytometry as a quantitative single-cell methodology offers high 

throughput, but requires that cells are in a suspension (Irish et al. 

2006)(Fig.27).  Single cells bound to 20 µm diameter microspheres coated 

with ECM, are amenable to flow cytometry analysis and treatment with soluble 

factors (Fig.29). Currently we are limited by the physio-chemical attributes of 
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the microspheres. Plastic microspheres are far stiffer than tissues. above 

physiological levels. It is feasible to derive microspheres of uniform diameter 

with varying stiffness using alternative chemistries such as hydrogel based 

microdroplets. Physiologically relevant stiffness in microdroplets can be 

achieved by adjusting the concentration and increasing the crosslinking of 

PEG (poly ethylene glycol) or agarose (Allazetta et al. 2013). Further it is 

feasible to encapsulate cells within agarose to provide a 3D environment for 

individual cells (Hammill et al. 2000). 

 

 

Microdroplets can be made with a diameter between 10 to 100 µm (Fig.32). 

The cell is encapsulated inside the agarose gel droplet of a given stiffness and 

supplemented with different ECM. One Cell Systems™ have the equipment to 

make gel-encapsulated gel droplets in the lab to run on the flow cytometer. A 

microdroplet with ECM embedded in the gel may be less sticky than an ECM 

coated microsphere. Microdroplets could therefore be convenient for use in a 

mass cytometer, with lower risk of clogging the internal capillary of the 

nebulizer.  

5.2. Contextual response of cells in an ageing micro-

environment is attenuated with age    

Our data indicate that human mammary epithelial cells (HMEC) from older 

women have reduced MAPK signaling responses to different ECM (Paper 2 

Fig.1, Suppl. Fig.1). The increase in p(Thr202/Tyr204) ERK level following 

growth factor stimulation was delayed in older HMEC bound to collagen I or 

Fig.32    Scanning Electron Microscopy                 Phase Contrast Microscopy  
               Cell Microsphere (uncoated)                 Gel Microdrop (GMD)  
               (Bloch et al. 1983)                      One Cell Systems 
   With permission from Wiley and Sons 
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laminin compared to HMEC derived from younger women (Paper 2 Fig.2). We 

found a significant reduction in p(Tyr1510) levels of the integrin β4 subunit in 

luminal cells (Paper 2 Fig.3c). Integrin β4 influences laminin signal 

transduction, supporting the notion that the laminin-mediated signaling 

associated with HMEC differentiation is diminished with age (Glukhova & 

Streuli 2013; Streuli & Akhtar 2009; Li et al. 2003). Proliferative and migratory 

behaviours supported by fibronectin and collagen I (Carey et al. 2017) are 

similarly downregulated in older HMEC. Notably, the breast basal membrane 

becomes discontinuous with age in part due to hormonal changes during 

menopause (LaBarge et al. 2015; Sympson 1994). Concurrently, collagen I 

and fibronectin deposition increases with age (Schedin & Keely 2011). We did 

not detect significant differences in PI3K-AKT pathway activation in HMEC 

from older versus younger women (Paper 2 Fig.1d). This could relate to the 

observation that adhesion-activated PI3K is largely ECM independent (S. J. 

Yarwood & Woodgett 2001). Other researchers have found greater variation in 

the ECM-induced transcriptome of HMEC within a group of ageing women 

compared to the variation found among a group of young women. This 

suggests a deregulation of gene expression with age (Miyano et al. 2017; Yau 

et al. 2007). Our data confirm a loss of regulation manifested by the lack in 

response to ECM in HMEC derived from ageing women.   

5.3 Attenuated cell signalling responses with age 

5.3.1 Integrin expression and cell adhesion 

Extrinsic factors mediate cell signalling that determine cellular behaviours. 

Contextual ECM information is largely mediated through integrin receptors. We 

therefore asked whether the age-dependent, attenuated, cell signaling was 

correlated with a change in surface expression of integrin, as measured by 

flow cytometry. Surface integrin expression levels were higher on 

myoepithelial than on luminal cells, a ratio that did not differ with age. Luminal 

cells from older women showed increased expression of integrin α6, β4, α2 and 

β1, while α5 and αV remained unchanged (Paper 2 Suppl. Fig.5). These 
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findings correspond to previous immunohistochemistry analysis of cartilage 

cells (Shakibaei et al. 1993). The results were consistent for both uncultured 

primary, and HMEC up to passage 5, and showed that integrin expression 

levels were not affected by short term in vitro culturing under our conditions.  

 

We confirmed that the older luminal cells adhered to fibronectin, both 

measured as the absolute number of cells adhered within a 2.5-hour period, 

and as the percentage of adhering cells per minute (Paper 2 Suppl. Fig.4a,b, 

Suppl. Data Fig.1c). This corresponded with higher surface integrin β1 levels 

on older cells (Paper 2 Suppl. Figure 5). Tissue stiffness is likely an age-

dependent factor that influences integrin expression and/or distribution. 

Epithelial cells grown in vitro in a rigid 2D cell culture dish have previously 

demonstrated higher integrin expression compared to cells grown in a 

compliant 3D matrix (Delcommenne & Streulis 1995). Cell invasiveness is 

known to be promoted by higher levels of integrin β1 receptors (Ganguly et al. 

2013; Berry et al. 2003). Increased α6β4 expression found in certain 

carcinomas also correlates with invasive properties (Gordon et al. 2003). 60% 

of primary breast carcinomas show persistent β4 expression (Davis et al. 

2001), and α6 levels are high in several tumours (Ding et al. 2013; Natali et al. 

1992). This contrasts with our findings using isogenic progression series, 

where in fact surface expression of all measured integrins (β1, β4, α6, α2, α5 and 

αV) decreased with increasing malignancy (Suppl. Data Fig.2).  

 

It is paradoxical that HMEC from older women adhere more efficiently to 

fibronectin (through their β1, α5 and αV subunits), but show lower levels of 

adhesion-induced phosphorylated ERK compared to HMEC from younger 

women (Paper 2, Fig.1d right side). This was consistent for all ECM proteins 

tested (Paper 2 Suppl. Fig.1). One explanation may be that integrin dimers can 

be redistributed without altering expression.  During ageing and fibrosis α6β4, 

α5β1 and αvβ3 on luminal cells tend to relocate from the basolateral surface to 

spread into the luminal, lateral and basal surface of the cell (Fig.33) (Ding et 
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al. 2013). For example, when hemidesmosomes disassemble following 

chemotactic stimuli, integrins redistribute to more diffuse F-actin interaction in 

the plasma membrane (Mercurio et al. 2001). Increased tissue stiffness is 

associated with reduced integrin β4 polarity (Paszek et al. 2005; Ding et al. 

2013). The depolarisation and spread of α6β4 throughout the membrane 

facilitates detachment from the substrate and subsequent migration (Natali et 

al. 1992; Stewart & O’Connor 2015). Interestingly, integrin α6 is reported to be 

tumour-suppressive when polarized, but to promote a malignant phenotype 

when delocalized (Natali et al. 1992). Flow cytometry analysis of integrin 

expression does not distinguish integrin localization. In conclusion, HMEC 

integrin surface expression levels and cellular adhesion did not correlate with 

MAPK signalling responses in our analysis. 

 

 

Fig.33: Integrin depolarization on 

epithelial cells induces loss of 

architecture and change in 

morphology 

 

 

5.3.2 Reduced integrin activation with age 

We asked whether the altered ECM-mediated MAPK signaling response in the 

ageing phenotype could be related to changes in integrin activation. Our data 

demonstrate that activated Src pTyr418 and integrin β4 pTyr1510, as well as 

the activated conformation of integrin β1 in myoepithelial cells decreases with 

age (Paper 2 Fig.3bi)). The fraction of integrin β4 pY1510 versus total integrin 

β4 is reduced in luminal cells from older women (Paper 2 Fig.3c), indicating 

reduced integrin β4 activation, in spite of overall higher surface integrin levels. 

Tyrosine residues on β4 are thought to be substrates for the Scr family kinase, 

Fyn (Mariotti et al. 2001). Thus, the observed attenuated ECM-induced MAPK 
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signaling in older human mammary epithelial cells is likely not due to lower 

integrin levels or reduced adhesion, but rather to integrin redistribution and 

reduced phosphorylation by Scr family kinases.   

5.4 Extracellular matrix and Integrins play a role in oncogene 

induced senescence  

5.4.1 Mechanotransduction is affected by age 

Integrin-mediated cell signalling is suggested to fine-tune growth factor 

receptor signal transduction (Morse, Brahme & D. a. Calderwood 2014). This 

ensures that ECM context in the microenvironment can influence growth factor 

cell signaling characteristics (Giancotti & Tarone 2003; Legate et al. 2009), 

such as survival through the PI3K pathway, proliferation through the MAP 

kinase pathways or cytoskeletal tension via ERK – Rho pathway (Kass et al. 

2007; Levental et al. 2009). The MAP kinase pathway can drive cell 

senescence when mitogenic overload induces a DNA damage response and 

mobilization of tumour suppressors P53 and CDKN2A/p16 (Childs et al. 2015; 

Lin et al. 1998; Di Micco et al. 2006) (OIS see section 1.5.2). Previous studies 

have found an age-dependent effect on the ability of cells to respond to 

stiffness by influencing lineage determination into either myoepithelial or 

luminal phenotype (Pelissier et al. 2014), while we quantified age-dependent 

MAPK pathway activity as the number of phospho-epitopes on ERK. Our 

results indicate that the amplitude and duration of pERK activation in response 

to ectopic expression of a constitutively-active EGFRDel19 is reduced (fig.34 

and fig.35 [orange dotted line]) in older HMEC. This appears to influence cell 

division. HMEC derived from older women grew more slowly in vitro than 

HMEC from younger women. Studies show that it is the cumulative time, 

rather than the frequency of the pERK activation that determines entry into S-

phase (Kolch et al. 2015). 
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Fig.34. Schematic model of age-dependent attenuated signaling.  

 

Birtwistle et al 2007 suggested the pre-peak response curve of pERK results 

primarily from EGFR-Ras Raf MEK activity, while the post-peak period is 

maintained via PI3K-PIP3-Gab1-Grb2-SOS-Ras activity (Birtwistle et al. 2007). 

However, pERK is involved in many negative feedback loops; this is consistent 

with our data showing normalized pERK levels within 2 hours after stimulation 

in younger HMEC (Paper 2, Suppl. Fig. 3b). Sustained pERK stimulation is 

required to trigger OIS (Lin et al. 1998). This might be due to the integration of 

several signaling inputs or a single constitutively active input such as mutant 

EGFR  

 

Combined integrin and growth factor signaling form a sigmoidal response 

through an “AND” gate. An example of a response through an “AND” gate is a 

feed forward reaction comprising two or more pathways that converge on a 

node. They may have different kinetics, but both must be activated for the 

converging node to be triggered. Output varies depending on whether it is one, 

the other, or both branches that are activated (Alon 2007; Dueber et al. 2007). 
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For example, different phosphorylated tyrosines on receptor tyrosine kinase 

domains that recruit cognate SH2-signaling proteins signal can converge on a 

downstream signalling node; thus a phosphorylation threshold must be 

surmounted to trigger a downstream signalling event (Giancotti & Tarone 

2003). Integrins also contribute to downstream signalling that could trigger or 

inhibit alternative signaling pathways (Moro et al. 1998; Balanis et al. 2011; 

Danen et al. 2005; Huveneers & Danen 2009). The converging nodes include 

Src, Shc, RhoA, FAK and Rac (section 1.3.4 Fig.12). The attenuated ECM 

response found in older HMEC can consequently be due to attenuated integrin 

signaling as we did not observe a significant effect on growth factor signaling 

(Paper 2 Suppl. Fig.2b)  

 

 5.4.2  The tumour-suppressive function of senescence is lost with age 

Senescence is a hallmark of ageing. The fraction of senescent cells is higher 

in the ageing body (Dimri 1995, Faragher 2017). Paradoxically, our data 

suggest that older HMEC are resistant to oncogene induced senescence 

introduced by EGFRDel19 with constitutive active kinase activity. (Paper 2 

Fig.4). The mitogenic overload following the introduction of the Ras oncogene 

will in most cases lead to cell cycle arrest (A. Kilbey*, A. Terry, E.R. Cameron 

2008). In our study, HMEC derived from postmenopausal women 

demonstrated tolerance to constitutive active EGFR, proliferating for several 

passages in vitro (Paper 2 Fig.4c, Suppl. Data Fig.3a). In contrast, younger 

HMEC expressing EGFRDel19 became enlarged, displayed vacuoles, 

expressed β-galactosidase and stopped proliferating (Paper 2 Fig. 4, Suppl. 

Data Fig. 3b). In vivo they would eventually be removed by the innate immune 

system (Shaw et al. 2010). This suggests that HMEC from postmenopausal 

may be less likely to activate senescence in response to oncogenic EGFR due 

to attenuated signal transduction comprising slower kinetics and a lower 

overall amplitude. EGFR Del19 induced pERK and pAKT levels were different in 

older and younger HMEC, in spite of similar EGFR expression levels (Paper 2 
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Suppl. Fig.6). HMEC selected by antibiotics expressed similar high EGFR 

levels as flow cytometry sorted HMEC (Fig.24). 

 Fig.35:  Schematic model of the signaling intensity level necessary to induce OIS                             

 

It has been shown that MAPK pathway activation must transcend a threshold 

for a certain amount of time in order to induce senescence via TP53 (Olsen et 

al. 2002). We suggest that mitogenic overactivation in older HMEC does not 

transcend this threshold and therefore do not mobilize TP53 (Fig.35 [orange 

line]). The cell continues to live (Suppl. Data Fig.3a). The ageing 

microenvironment may limit MAPK and PI3K activity, and hence reduce OIS 

triggering (Paper 2 Fig.1, Fig.2, Suppl. Fig.3).  A similar correlation between 

loss of mTOR activity and increased lifespan of the nematode C. Elegans was 

previously reported (Vellai et al. 2003; Lamming et al. 2013). Resistance to 

OIS could increase the likelihood of accumulating oncogenic and epigenetic 

changes, which explains how an ageing microenvironment increases cancer 

susceptibility. 
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5.5 Ageing luminal cells exhibit basal-like traits  

It is previously shown 

that the proportion of 

luminal cells increases 

in ageing mammary 

tissue, while 

myoepithelial cells 

decrease (Garbe et al. 

2012) (Fig.36). 

Normally, luminal cells 

undergo frequent cell 

division during the 

menstrual cycle and pregnancy, 

while myoepithelial cells have a 

lower turnover (Clarke et al. 

2005). However, luminal cells 

from older breast tissue differ. In vivo samples from ageing women 

demonstrate that luminal MUC-1 (CD227+) cells express lower levels of 

cytokeratin 19, another common luminal marker. Certain MUC-1 cells are 

entirely negative for K19 (Garbe et al. 2012).  

 

We found increased basal characteristics in luminal cells from older women. 

Normally, luminal cells express less than half the level of integrins compared 

to myoepithelial cells (Paper 2, Suppl. Fig.5b). Longitudinal monitoring of cell 

adhesion to laminin showed that myoepithelial cells generally adhere faster 

and at higher percentages than luminal cells (Suppl. Data Fig.1b). Secondly, 

luminal cells generally proved to be more responsive to fibronectin - measured 

as the level of phospho-epitopes of AKT-  than myoepithelial cells (Suppl. Data 

Fig.4). In contrast, myoepithelial cells were more responsive to EGF 

stimulation, as measured by pAKT levels (Suppl. Data Fig.4), consistent with a 

higher level of EGF receptors (Colemann et al. 1988). This finding is congruent 

Fig.36: Myoepithelial and luminal epithelial cell fraction as a 

function of age  (Garbe et al. 2012)     

P= peripheral non-tumour mastectomy tissue  

RM= reduction mammoplasty tissue. With permission from 

American Association for Cancer Research.  
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with myoepithelial cells interfacing the basement membrane, while luminal 

cells reside in a microenvironment created entirely by homo- and heterotypic 

cell-cell interactions with myoepithelial cells (Adriance et al. 2005; Deugnier et 

al. 2002). Myoepithelial cells are hence responsible for conveying information 

from the matrix to the luminal cells (Gudjonsson et al. 2005).  

 

Our data shows that only luminal cells from older women demonstrated a 

significant increase in integrin expression of subunit α2, α6, β1 and β4, which 

could reflect exposure to new extracellular matrix contexts (Paper 2 Suppl. 

Fig.5b,d). As a woman ages, basement membrane integrity is degraded and 

the number of myoepithelial cells is reduced (Fig.36), increasing the likelihood 

for luminal cells to be exposed to new matrix proteins (Deugnier et al. 2002). 

The loss in total myoepithelial cells and structural alterations in the basement 

membrane favour luminal cells with basal traits that can benefit from ECM 

interactions (Warburton et al. 1981; Gudjonsson et al. 2005).  

 

Congruent with Garbe et al. we further discovered an age-dependent increase 

in luminal progenitor cells among the human mammary epithelial cells (Suppl. 

Data Fig.5). LaBarge et al. reported that fate decisions of epithelial progenitors 

are regulated by specific microenvironmental features, in particular laminin that 

induces quiescence and impairs differentiation (LaBarge et al. 2009).  As the 

laminin and collagen IV rich mammary basement membrane disintegrates with 

age  (Amano 2009; Sympson 1994), progenitor differentiation into luminal or 

myoepithelial lineage is affected. Age-dependent gene silencing is found to 

particularly target those promoters which maintain stem cell differentiation. 

Thus, the residing cells in ageing tissue might therefore not be able to become 

differentiated (Teschendorff et al. 2010). cKit+ mammary progenitors from 

postmenopausal women fail to differentiate into either luminal or myoepithelial 

lineage, instead retaining expression of both K14 and K19 (Garbe et al. 2012). 

Mammary epithelial progenitors have demonstrated an age-dependent loss of 

response to stiffness variations, where the progenitor cells of the ageing 
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phenotype differentiate into luminal cells regardless of substratum stiffness 

(Pelissier et al. 2014). This is in line with our findings of older luminal cells with 

increased basal characteristics including increased adhesive properties 

(Suppl. Data Fig.1b-e), increased integrin expression (Paper 2, Suppl. 

Fig.5b,d) and lower response to ECM (Paper 2 Fig.1d, Suppl. Data Fig.4) as 

mentioned above. Our data and that of Garbe et al. 2012 show an increasing 

fraction of cells in the ageing mammary gland retaining both luminal and basal 

characteristics. The altered nature of ageing mammary cells promote 

involution (Milanese et al. 2006); the ageing mammary gland is no longer able 

to produce milk nor facilitate contraction of the lobule. The older HMEC does 

not become fully differentiated or undergo epigenetic changes related to 

epithelial to mesenchymal transition (EMT) (Teschendorff et al. 2010). Indeed, 

the ageing microenvironment is associated with inflammation, fibrosis, 

increased stiffness, oxidative stress and loss of immune function (see section 

1.4.1) - all factors known to promote EMT (Cox & Erler 2014; Nieto 2013; 

Thiery et al. 2009).  

Thus, luminal cells may acquire basal-like traits via different mechanisms such 

as skewed differentiation or EMT. This is supported by the fact that HMEC 

from older women demonstrate methylation patterns associated with retained 

stem cell characteristics (Widschwendter et al. 2007). Different lines of 

evidence suggest that luminal progenitor cells are the cell-of-origin for breast 

cancer. BRCA1 mutants have been found to give rise to immature epithelial 

cells with basal differentiation characteristics and basal tumours assumed to 

be of basal origin. However, emerging data assert that they originate from 

luminal progenitors, and that these luminal progenitors are prone to survive 

oncogenic transformation due to their basal-like traits (Choudhury et al., 2013; 

Lim et al., 2009; Molyneux et al., 2010; Proia et al., 2011). It might be a similar 

mechanism acting in progenitors residing in ageing tissue, that cause them to 

develop into luminal cells with basal traits. We ask whether the undifferentiated 

state unveiled in mammary luminal cells in post-menopausal women is the 

feature that makes them more prone to develop into cancer cells. 
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5.6 Ageing and immortalization: Shared traits? 

In considering how ageing HMEC avoid OIS, it is useful to consider cells 

immortalized in vitro which appear to share the trait. Previous studies suggest 

that low-level oncogene expression is the reason that immortalized HMEC do 

not undergo OIS following oncogenic transformation, while finite lifespan 

HMEC become senescent (Olsen et al. 2002). Olsen et al. found no β-

galactosidase activity, and TP53 or CDKN2A/p16 did not need to be 

inactivated in order for benzo(a)pyrene immortalized cells to survive in the 

presence of the Raf-1 oncogene. The immortalized HMEC evaded growth 

arrest by maintaining Raf-1 expression, and the downstream pERK levels, low 

(Olsen et al. 2002). We found an attenuated cell response in immortalized 

HMEC (overexpressing constitutive CCND1/Cyclin D1 and MYC) compared to 

isogenic cells with a finite lifespan (Suppl. Data Fig.7). The mitogenic signal 

resulting from transformation of the Cyclin D1/ MYC immortalized cells with the 

oncogene Neu/ERBB2 was insufficient to trigger OIS. The cells survived 

(Section 3.2 Fig.25) in spite of CDKN2A/p16, TP53 or other tumour-

suppressive mechanisms (Stampfer et al. 2013; Lin et al. 1998). It has been 

suggested that immortalization suppresses mitogenic activation (Stampfer et 

al. 2013), our data suggest that the process of ageing has similar effect on 

HMEC. 

Interestingly, immortalization by overexpression of CCND1/Cyclin D1 rather 

than CDKN2A/p16  inhibition gave rise to a subpopulation of luminal cells, 

which was not found among CDKN2A/p16 inhibited cells (Suppl. Data Fig.6). 

Moreover, Lee et. al. 2015 demonstrated a larger population of luminal cells in 

CCND1/Cyclin D1 immortalized cells from postmenopausal cells, compared to 

premenopausal cells. Postmenopausal CCND1/Cyclin D1 immortalized cells 

comprised cells expressing a mix of both luminal and basal markers, while 

premenopausal CCND1/Cyclin D1 immortalized cells formed cells which were 

mainly negative for the luminal marker CD227 and positive for the basal 

marker CD10 (Lee et al. 2015). This could indicate that alterations in signaling 
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in older HMEC may give different results upon oncogene expression. We can 

only speculate whether suppression of the cell cycle regulators CCND1/Cyclin 

D1 is linked to the higher prevalence of luminal breast cancers in ageing 

women.  

 

5.7 Do OIS resistant cells eventually succumb to agonescence? 

Overcoming stress-associated-arrest (stasis) and agonescence by 

CDKN2A/p16 silencing, CCND1/Cyclin D1 overexpression and telomerase 

reactivation leads to immortalization (Section 3.2 Fig.25). Stasis is the type of 

senescence related to stress, including mitogenic overload, while 

agonescence is the type of senescence related to telomere shortening 

(Stampfer et al. 2013). Agonescence comprises certain viable cells, and is 

reversible in contrast to crisis that entails full blown cell death (Garbe et al. 

2007). p53 suppression is not required for HMEC to bypass stasis, 

agonescence, or to evade OIS. This is in contrast to human keratinocytes and 

fibroblasts, as well as murine cells in general, which are comparably more 

vulnerable to DNA damage and stress mediated by TP53 - they transform 

more easily than human epithelial cells (Stampfer et al. 2013; Adams 2009). 

Fibroblasts with repressed tumour suppressor gene TP53 allow senescent 

cells to re-enter the cell cycle, but this does not occur in HMEC once 

CDKN2A/p16 is activated (Beauséjour et al. 2003). The CDKN2A/p16 

promoter is methylated in spontaneously immortalized cell lines leading to 

lower transcription levels. CDKN2A/p16 promoter methylation is also 

detectable in human breast tissues (Novak et al. 2009). If CDKN2A/p16 

expression is impaired in older HMEC, senescence, but not agonescence, will 

be affected. Senescence appeared reversible in older HMEC compared to 

young HMEC (Suppl. Data Fig.3b). This could account for the lesser degree of 

immediate OIS in older HMEC. Neither cell type displayed anchorage-

independent growth (data not shown). However, when telomeres eventually 

become critically short, even OIS-tolerant older HMEC will undergo 
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agonescence. Our data demonstrate that HMEC from young women senesced 

upon EGFR Del19 overexpression, while HMEC from ageing women continue 

proliferating (Suppl. Data Fig.3a). In other words, EGFRDel19 transformed older 

cells were not immortalized, as they did eventually go into agonescence, with 

the exception of two cases. EGFRDel19 expression in HMEC derived from an 

80-year-old woman were cultured more than 19 passages; cryopreservered 

cells further re-established cell growth.  Supplemental functional studies are 

needed to confirm whether the HMEC have become immortalized.  

In conclusion, a majority of the HMEC from postmenopausal women analysed 

demonstrated prolonged growth upon ectopic expression of the EGFR Del19 

oncogene, but they remain sensitive to telomere shortening. Hence full 

transformation can be, at least theoretically, accomplished with additional 

genetic changes. 

 

6.  Concluding remarks 

60% of all cancer cases in US are diagnosed in people over the age of 65 

(Berger et al. 2006), but there is no consensus to how ageing increases 

cancer susceptibility beyond a simple accumulation of genetic changes. We 

found that HMEC derived from older women show increased basal traits, 

altered signal transduction in response to extracellular matrix proteins and 

evidence of reduced senescence following oncogene expression.  We suggest 

that this is the result of epigenetic changes imposed on HMEC by an age-

related attenuation of the tissue microenvironment (Hashizume et al. 2015).  

This may lead to increased susceptibility to breast cancer with age.  

 

7. Future perspectives  

7.1 Epigenetic modulations as targets for cancer treatment 

Age-dependent deregulation of gene expression and signaling can be a result 

of the increased DNA methylation in regions containing CpG islands combined 
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with a decrease in overall DNA methylation (Weidner et al. 2014; Christensen 

et al. 2009). Methylation of CpG islands in promoters silence gene expression 

(Jones et al. 2015; Lam et al. 2012). The notion that cancer susceptibility 

increases with age due to these epigenetic changes suggests that drugs 

targeting epigenetic mechanisms can be used as cancer chemoprotective 

agents. 

The cancer-preventive effect of demethylating drugs has been demonstrated 

in mouse models and individuals with higher cancer risk due to lifestyle or age 

(Issa 2008). Considering that age-dependent gene silencing is skewed 

towards genes that govern development and maintain differentiation (Boland 

et al. 2014; Teschendorff et al. 2013), could epigenetic targeted therapy block 

tumourigenesis by reviving silenced tumour-suppressor genes such as 

CDKN2A/p16, p21Cip1/Waf1/Sdi1 and TP53? As stated by Azad et al: “Reverting 

the software package of epigenetic abnormalities should be easier than 

repairing the hard drive that harbours the upstream mutations” (Azad 2013). In 

addition to being a target for treatment, age-related epigenetic signatures can 

be useful biomarkers of increased cancer susceptibility, exemplified by 

hypermethylation of CpG islands in promoters predicting future tumour risk 

(Teshcendorff 2013). 

 

7.2 Adjustments to experimental set-up  

Anderson et al. demonstrated in 2014 that breast cancer risk does not 

increase with age in a linear manner (Fig.37)(Anderson et al. 2014). There is a 

peak at 50 and 70 years, after which cancer risk declines. A similar peak is 

found around the age of 80 for all cancers in general, among both genders 

(Pavlidis et al. 2012). These peaks in cancer risk are reflected in our data and 

might have contributed to the observed lack of significant correlation between 

age and response to growth factor stimulation, in particular. Two out of 10 

individuals in our study were older than 70, and may have confounded our 

results. We did indeed see that cell signaling was higher in these 2 individuals 

compared to the other older women (Paper 2 Fig.1d).  Including these 
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individuals in our measurements of growth factor stimulation response as a 

function of age made the calculated correlations non-significant (Paper 2 

Suppl. Fig.2b). In follow-up studies we would like to include more women in 

their sixties rather than in their seventies. 

 

 

 

 

 

 

 

 

 

 

Fig.37: Incidence of breast cancer subtypes by age (Anderson et al. 2014). With permission from Oxford 

University Press.  

 

 

 

 

 

 

 

 

 

 

 



 68 

 

8.References 
A. Kilbey*, A. Terry, E.R. Cameron,  and J.C.N., 2008. Oncogene-induced senescence. Cell 

Cycle, 7(15), pp.2333–2340. 
Adams, P.D., 2009. Healing and Hurting: Molecular Mechanisms, Functions, and Pathologies 

of Cellular Senescence. Molecular Cell, 36(1), pp.2–14. Available at: 
http://dx.doi.org/10.1016/j.molcel.2009.09.021. 

Adriance, M.C. et al., 2005. Myoepithelial cells: good fences make good neighbors. Breast 
cancer research : BCR, 7(5), pp.190–197. 

Agazie, Y.M. & Hayman, M.J., 2003. Molecular mechanism for a role of SHP2 in epidermal 
growth factor receptor signaling. Molecular and cellular biology, 23(21), pp.7875–86. 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=207628&tool=pmcentrez&ren
dertype=abstract. 

Allazetta, S., Hausherr, T.C. & Lutolf, M.P., 2013. Micro fl uidic Synthesis of Cell-Type-Speci 
fi c Arti fi cial Extracellular Matrix Hydrogels. Biomacromolecules, 14, pp.1122–1131. 

Alon, U., 2007. Network motifs: Theory and experimental approaches. Nature Reviews 
Genetics, 8(6), pp.450–461. 

Amano, S., 2009. Possible involvement of basement membrane damage in skin photoaging. 
Journal of Investigative Dermatology Symposium Proceedings, 14(1), pp.2–7. Available 
at: http://dx.doi.org/10.1038/jidsymp.2009.5. 

Anderson, W.F. et al., 2014. How many etiological subtypes of breast cancer: Two, three, 
four, or more? Journal of the National Cancer Institute, 106(8), pp.1–11. 

Armitage, P;Doll, R., 1954. The age distribution of cancer and multi-stage theory of 
carcinogenesis. British Journal of Cancer, 8, pp.1–12. 

Balanis, N. et al., 2011.  3 Integrin-EGF receptor cross-talk activates p190RhoGAP in mouse 
mammary gland epithelial cells. Molecular Biology of the Cell, 22(22), pp.4288–4301. 
Available at: http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E10-08-0700. 

Bavik, C. et al., 2006. The gene expression program of prostate fibroblast senescence 
modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer 
Research, 66(2), pp.794–802. 

Beauséjour, C.M. et al., 2003. Reversal of human cellular senescence: Roles of the p53 and 
p16 pathways. EMBO Journal, 22(16), pp.4212–4222. 

Benz, C.C., 2008. Impact of aging on the biology of breast cancer. Crit Rev Oncol Hematol, 
April(66 (1)), pp.65–74. 

Berger, N.A. et al., 2006. Cancer in the elderly. Transactions of the American Clinical and 
Climatological Association, 117, pp.147-55–6. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/18528470%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC1500929. 

Berry, M. et al., 2003. Integrin beta1-mediated invasion of human breast cancer cells: an ex 
vivo assay for invasiveness. Breast Cancer, 10(3), pp.214–223. 

Bershadsky, A., Kozlov, M. & Geiger, B., 2006. Adhesion-mediated mechanosensitivity: a 
time to experiment, and a time to theorize. Current Opinion in Cell Biology, 18(5), 
pp.472–481. 

Birtwistle, M.R. et al., 2007. Ligand-dependent responses of the ErbB signaling network: 
experimental and modeling analyses. Molecular systems biology, 3(144), p.144. 

Bissel, M.J. & Radisky, D., 2001. Putting tumors in context. Nature Reviews Cancer, 1(1), 
pp.46–54. 

Bissell, M.J. et al., 2002. The organizing principle: Microenvironmental influences in the 
normal and malignant breast. Differentiation, 70(9–10), pp.537–546. Available at: 
http://dx.doi.org/10.1046/j.1432-0436.2002.700907.x. 

Bissell, M.J., Hall, H.G. & Parry, G., 1982. How does the extracellular matrix direct gene 
expression? Journal of Theoretical Biology, 99(1), pp.31–68. 

Bloch, D.B., Smith, B.R. & Ault, K.A., 1983. Cells on microspheres: A new technique for flow 
cytometric analysis of adherent cells. Cytometry, 3(6), pp.449–452. 



 69 

 

Bogatkevich, G.S., 2015. Editorial: Fate of fat tissue adipocytes: Do they transform into 
myofibroblasts in scleroderma? Arthritis and Rheumatology, 67(4), pp.860–861. 

Boland, M.J., Nazor, K.L. & Loring, J.F., 2014. Epigenetic regulation of pluripotency and 
differentiation Michael. Circ Res, 115(2), p.311.324. 

Bonnans, C., Chou, J. & Werb, Z., 2014. Remodelling the extracellular matrix in development 
and disease. Nat rev mol cell biol, 15(12), pp.786–801. 

Butcher, D.T., Alliston, T. & Weaver, V.M., 2009. A tense situation: forcing tumour 
progression. Nature reviews. Cancer, 9(2), pp.108–22. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/19165226. 

Cabodi, S. et al., 2004. Integrin regulation of epidermal growth factor (EGF) receptor and of 
EGF-dependent responses. Biochemical Society transactions, 32(Pt3), pp.438–442. 

Campbell, P.J., Martinocorena, I. & Campbell, P.J., 2015. Somatic mutation in cancer and 
normal cells. Science, 349(6255), pp.1483–148. 

Campisi, J., 2013. Aging, Cellular Senescence, and Canc. Annu Rev Physiol, 75, pp.685–
705. 

Campisi, J. & d’Adda di Fagagna, F., 2007. Cellular senescence: when bad things happen to 
good cells. Nature Reviews Molecular Cell Biology, 8(9), pp.729–740. Available at: 
http://www.nature.com/doifinder/10.1038/nrm2233. 

Carey, S.P., Martin, K.E. & Reinhart-King, C.A., 2017. Three-dimensional collagen matrix 
induces a mechanosensitive invasive epithelial phenotype. Scientific Reports, 
7(January), pp.1–14. Available at: http://dx.doi.org/10.1038/srep42088. 

Castellano, E. & Downward, J., 2011. RAS Interaction with PI3K: More Than Just Another 
Effector Pathway. Genes & Cancer, 2(3), pp.261–274. Available at: 
http://gan.sagepub.com/lookup/doi/10.1177/1947601911408079. 

Childs, B.G. et al., 2015. Cellular senescence in aging and age-related disease: from 
mechanisms to therapy. Nature Medicine, 21(12), pp.1424–1435. Available at: 
http://www.nature.com/doifinder/10.1038/nm.4000. 

Childs, B.G. et al., 2014. Senescence and apoptosis: dueling or complementary cell fates? 
EMBO reports, 15(11), pp.1139–53. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4253488&tool=pmcentrez&re
ndertype=abstract. 

Christensen, B.C. et al., 2009. Aging and environmental exposures alter tissue-specific DNA 
methylation dependent upon CPG island context. PLoS Genetics, 5(8). 

Chuderland, D. & Seger, R., 2005. Protein-protein interactions in the regulation of the 
extracellular signal-regulated kinase. Mol Biotechnol, 29(1), pp.57–74. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/15668520%5Cnhttp://download.springer.com/static
/pdf/724/art%3A10.1385%2FMB%3A29%3A1%3A57.pdf?auth66=1386241959_925fd0
7c613b80c67297be9357451b14&ext=.pdf. 

Clarke, R.B. et al., 2005. A putative human breast stem cell population is enriched for steroid 
receptor-positive cells. Dev Biol, 277, pp.443–456. 

Colemann, S., Silberstein, G. & Daniel, C., 1988. Ductal morphogenesis in the mouse 
mammary gland: Evidence supporting a role for epidermal growth factor. Dev Biol, 
127(2), pp.304–315. 

Condeelis, J. & Segall, J.E., 2003. Intravital imaging of cell movement in tumours. Nature 
reviews. Cancer, 3, pp.921–930. 

Coppé, J.-P. et al., 2010. The Senescence-Associated Secretory Phenotype: The Dark Side 
of Tumor Suppression Jean-Philippe. Annu Rev Pathol, 5, pp.99–118. 

Cox, T.R. & Erler, J.T., 2014. Molecular pathways: Connecting fibrosis and solid tumor 
metastasis. Clinical Cancer Research, 20(14), pp.3637–3643. 

Danen, E.H.J. et al., 2005. Integrins control motile strategy through a Rho-cofilin pathway. 
Journal of Cell Biology, 169(3), pp.515–526. 

Danen, E.H.J. et al., 2002. The fibronectin-binding integrins α5β1 and αvβ3 differentially 
modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin 
fibrillogenesis. Journal of Cell Biology, 159(6), pp.1071–1086. 

 



 70 

 

Danilkovitch-Miagkova, A. et al., 2000. Integrin-mediated RON growth factor receptor 
phosphorylation requires tyrosine kinase activity of both the receptor and c-Src. Journal 
of Biological Chemistry, 275(20), pp.14783–14786. 

Davis, T.L. et al., 2001. Unique expression pattern of the α6β4 integrin and laminin-5 in 
human prostate carcinoma. Prostate, 46(3), pp.240–248. 

Deb, T.B. et al., 1998. A common requirement for the catalytic activity and both SH2 domains 
of SHP-2 in mitogen-activated protein (MAP) kinase activation by the ErbB family of 
receptors: A specific role for SHP-2 in MAP, but not c-Jun amino-terminal kinase 
activation. Journal of Biological Chemistry, 273(27), pp.16643–16646. 

Degregori, J., 2013. Challenging the axiom: Does the occurence of oncogenic mutations truly 
limit cancer development with age? Oncogene, April 11(32 (15)), pp.1869–1875. 

Delcommenne, M. & Streulis, C.H., 1995. Control of Integrin Expression by Extracellular 
Matrix. The Journal of biological chemistry, 270(45), pp.26794–26801. 

Denardo, D.G. et al., 2009. CD4+ T Cells Regulate Pulmonary Metastasis of Mammary 
Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell, 16(2), 
pp.91–102. 

Deugnier, M.-A. et al., 2002. The importance of being a myoepithelial cell. Breast Cancer 
Research, 4(6), pp.224–230. 

van Deursen, J.M., 2014. The role of senescent cells in ageing. Nature, 509(7501), pp.439–
446. Available at: http://www.nature.com/doifinder/10.1038/nature13193. 

Ding, Y. et al., 2013. A High Level of Integrin α6 Expression in Human Intrahepatic 
Cholangiocarcinoma Cells Is Associated with a Migratory and Invasive Phenotype. 
Digestive Diseases and Sciences, 58(6), pp.1627–1635. Available at: 
http://link.springer.com/10.1007/s10620-012-2524-6. 

Dolberg, D.S. & Bissell, M.J., 1984. Inability of Rous sarcoma virus to cause sarcomas in the 
avian embryo. Nature, 13(309), pp.552–556. 

Dueber, J.E., Mirsky, E.A. & Lim, W.A., 2007. Engineering synthetic signaling proteins with 
ultrasensitive input/output control. Nature Biotechnology, 25(6), pp.660–662. 

Dunsmore, S.E., 2008. Treatment of COPD: A matrix perspective. International Journal of 
COPD, 3(1), pp.113–122. 

Egeblad, M., Rasch, M.G. & Weaver, V.M., 2010. Dynamic interplay between the collagen 
scaffold and tumor evolution. Current Opinion in Cell Biology, 22(5), pp.697–706. 
Available at: http://dx.doi.org/10.1016/j.ceb.2010.08.015. 

Elosegui-Artola, A. et al., 2014. Rigidity sensing and adaptation through regulation of integrin 
types. Nature Materials, 13(6), pp.631–637. Available at: 
http://www.nature.com/doifinder/10.1038/nmat3960. 

Erler, J.T. et al., 2006. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 
440(7088), pp.1222–1226. Available at: 
http://www.nature.com/doifinder/10.1038/nature04695. 

Erler, J.T. & Weaver, V.M., 2009. Three-dimensional context regulation of metastasis. 
Clinical and Experimental Metastasis, 26(1), pp.35–49. 

Ertsås, H.C. et al., 2017. Microsphere cytometry to interrogate microenvironment-dependent 
cell signaling. Integr. Biol., 9(2), pp.123–134. Available at: 
http://pubs.rsc.org/en/Content/ArticleLanding/2017/IB/C6IB00207B. 

Faragher, R.G. et al., 2017. Senescence in the aging process. F1000Research, 6(0), p.1219. 
Available at: https://f1000research.com/articles/6-1219/v1. 

Fata, J.E., Werb, Z. & Bissell, M.J., 2003. Regulation of mammary gland branching 
morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer 
Research, 6(1), p.1. Available at: http://breast-cancer-
research.biomedcentral.com/articles/10.1186/bcr634. 

Fumagalli, M. & d’Adda di Fagagna, F., 2009. SASPense and DDRama in cancer and 
ageing. Nature Cell Biology, 11(8), pp.921–923. Available at: 
http://www.nature.com/doifinder/10.1038/ncb0809-921. 

Ganguly, K.K. et al., 2013. Integrins and metastasis. Cell Adhesion and Migration, 7(3), 
pp.251–261. 



 71 

 

Garbe, J.C. et al., 2012. Accumulation of multipotent progenitors with a basal differentiation 
bias during aging of human mammary epithelia. Cancer Research, 72(14), pp.3687–
3701. 

Garbe, J.C. et al., 2014. Immortalization of normal human mammary epithelial cells in two 
steps by direct targeting of senescence barriers does not require gross genomic 
alterations. Cell Cycle, 13(21), pp.3423–3435. 

Garbe, J.C. et al., 2007. Inactivation of p53 function in cultured human mammary epithelial 
cells turns the telomere-length dependent senescence barrier from agonescence into 
crisis. Cell Cycle, 6(15), pp.1927–1936. 

Garbe, J.C. et al., 2009. Molecular Distinctions between Stasis and Telomere Attrition 
Senescence Barriers Shown by Long-term Culture of Normal Human Mammary 
Epithelial Cells. Cancer Research, 69(19), pp.7557–7568. 

Geiger, B. & Yamada, K.M., 2011. Molecular architecture and function of matrix adhesions. 
Cold Spring Harbor Perspectives in Biology, 3(5), pp.1–21. 

Giancotti, F.G. & Tarone, G., 2003. Positional Control of Cell Fate Through Joint 
Integrin/Receptor Protein Kinase Signaling. Annual Review of Cell and Developmental 
Biology, 19(1), pp.173–206. Available at: 
http://www.annualreviews.org/doi/10.1146/annurev.cellbio.19.031103.133334. 

Gilcrease, M.Z., 2007. Integrin signaling in epithelial cells. Cancer Letters, 247(1–2), pp.1–
25. 

Ginnan, R. & Guikema, B., 2006. PKC-δ mediates activation of ERK1/2 and induction of 
iNOS by IL-1β in vascular smooth muscle cells. American Journal of …, 12208, 
pp.1583–1591. Available at: http://ajpcell.physiology.org/content/290/6/C1583.short. 

Glukhova, M.A. & Streuli, C.H., 2013. How integrins control breast biology. Current Opinion 
in Cell Biology, 25(5), pp.633–641. Available at: 
http://dx.doi.org/10.1016/j.ceb.2013.06.010. 

Gordon, L.A. et al., 2003. Breast cell invasive potential relates to the myoepithelial 
phenotype. International Journal of Cancer, 106(1), pp.8–16. 

Gudjonsson, T. et al., 2005. Myoepithelial Cells: Their Origin and Function in Breast 
Morphogenesis and Neoplasia. Journal of Mammary Gland Biology and Neoplasia, 
10(3), pp.261–272. 

Gudjonsson, T. et al., 2002. Normal and tumor-derived myoepithelial cells differ in their ability 
to interact with luminal breast epithelial cells for polarity and basement membrane 
deposition. Journal of cell science, 115(Pt 1), pp.39–50. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11801722%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC2933194. 

Hagios, C., Lochter, A. & Bissell, M.J., 1998. Tissue architecture: the ultimate regulator of 
epithelial function? Philosophical transactions of the Royal Society of London. Series B, 
Biological sciences, 353(1370), pp.857–70. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/9684283%0Ahttp://www.pubmedcentral.nih.gov/art
iclerender.fcgi?artid=PMC1692274. 

Hammill, L., Welles, J. & Carson, G.R., 2000. The gel microdrop secretion assay: 
Identification of a low productivity subpopulation arising during the production of human 
antibody in CHO cells. Cytotechnology, 34(1–2), pp.27–37. 

Harach, H.R., Franssila, K.O. & Wasenius, V.M., 1985. Occult papillary carcinoma of the 
thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer, 56(3), 
pp.531–538. 

Harburger, D.S. & Calderwood, D.A., 2009. Integrin signalling at a glance. Journal of Cell 
Science, 122(9), pp.1472–1472. Available at: 
http://jcs.biologists.org/cgi/doi/10.1242/jcs.052910. 

Hashizume, O. et al., 2015. Epigenetic regulation of the nuclear-coded GCAT and SHMT2 
genes confers human age-associated mitochondrial respiration defects. Scientific 
Reports, 5(1), p.10434. Available at: http://www.nature.com/articles/srep10434. 

Hayflick, L. & Moorhead, P., 1961. The serial cultivation of human diploid cell strains. Exp 
Cell Res, Dec(25), pp.585–621. 



 72 

 

Hoare, M. & Narita, M., 2013. Transmitting senescence to the cell neighbourhood. Nature 
Cell Biology, 15(8), pp.887–889. Available at: 
http://www.nature.com/doifinder/10.1038/ncb2811. 

Hong, C.., Kume, T. & Peterson, R.., 2008. Role of Cross Talk between PI3-Kinase and 
ERK/MAP Kinase Pathways in Artery-Vein Specification. Circ Res, 104(6), pp.573–579. 

Hornsby, P.J., 2002. Cellular senescence and tissue aging in vivo. The journals of 
gerontology. Series A, Biological sciences and medical sciences, 57(7), pp.B251-6. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/12084795. 

Hornsby, P.J., 2011. Cellular aging and cancer. Critical Reviews in Oncology/Hematology, 
79(2), pp.189–195. 

Huveneers, S. & Danen, E.H.J., 2009. Adhesion signaling - crosstalk between integrins, Src 
and Rho. Journal of cell science, 122, pp.1059–1069. 

Hynes, R.O. et al., 2011. Overview of the Matrisome — An Inventory of Extracellular Matrix 
Constituents and Functions. Cold Spring Harb Perspect Biol, September, pp.1–16. 

Ingber, D., 2008. Can cancer be reversed by engioneering the tumor microenvironment? 
Semin Cancer Biol, 18(5), pp.1–18. 

Ingthorsson, S. et al., 2016. Epithelial Plasticity During Human Breast Morphogenesis and 
Cancer Progression. Journal of Mammary Gland Biology and Neoplasia, pp.139–148. 
Available at: http://dx.doi.org/10.1007/s10911-016-9366-3. 

Ioachim, E. et al., 2002. Immunohistochemical expression of extracellular matrix components 
tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic 
value and role in tumour invasion and progression. Eur J Cancer, 38(18), pp.2362–70. 

Irish, J., Kotecha, N. & Nolan, G.P., 2006. Mapping normal and cancer cell signalling 
networks: towards single-cell proteomics. Nature reviews, 6, p.9. 

Issa, J.P., 2008. Cancer prevention: Epigenetics steps up to the plate. Cancer Prevention 
Research, 1(4), pp.219–222. 

Ivaska, J. & Heino, J., 2011. Cooperation Between Integrins and Growth Factor Receptors in 
Signaling and Endocytosis. Annual Review of Cell and Developmental Biology, 27(1), 
pp.291–320. 

Jensen, E.C., 2012. The basics of Western blotting. Anatomical Record, 295(3), pp.369–71. 
Available at: http://www.ncbi.nlm.nih.gov/pubmed/22302360. 

Jeselsohn, R. et al., 2010. Cyclin D1 kinase activity is required for the self-renewal of 
mammary stem and progenitor cells that are targets of MMTV- ErbB2 tumorigenesis. 
Cancer Cell, 17(1), pp.65–90. 

Jones, M.J., Goodman, S.J. & Kobor, M.S., 2015. DNA methylation and healthy human 
aging. Aging Cell, 14(6), pp.924–932. 

Kaplan, R.N. et al., 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate 
the pre-metastatic niche. Nature, 438(7069), pp.820–827. 

Kass, L. et al., 2007. Mammary epithelial cell: influence of extracellular matrix composition 
and organization during development and tumorigenesis. The International Journal of 
Biochemistry & Cell Biology, 39(11), pp.1987–1994. Available at: 
https://www.ncbi.nlm.nih.gov/pubmed/17719831 

Kikkawa, Y. et al., 2000. Integrin binding specificity of laminin-10/11: laminin-10/11 are 
recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. J Cell Sci, 
113 ( Pt 5, pp.869–876. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/10671376%5Cnhttp://jcs.biologists.org/content/joc
es/113/5/869.full.pdf. 

Kirkwood, T.B.L. & Wellcome, H., 2005. Understanding the Odd Science of Aging Because 
aging occurs for nonintuitive reasons and. , 120, pp.437–447. 

Kolch, W. et al., 2015. The dynamic control of signal transduction networks in cancer cells. 
Nature Publishing Group, 15(9), pp.515–527. Available at: 
http://dx.doi.org/10.1038/nrc3983. 

Kong, X. et al., 2012. Targeted destruction of the orchestration of the pancreatic stroma and 
tumor cells in pancreatic cancer cases: Molecular basis for therapeutic implications. 
Cytokine and Growth Factor Reviews, 23(6), pp.343–356. 



 73 

 

Kostic, A. & Sheetz, M.P., 2006. Fibronectin Rigidity Response through Fyn and p130Cas 
recruitment to the Leading Edge. Molecular biology of the cell, 17, pp.2684–2695. 

Kreftregisteret, 2016. https://www.kreftregisteret.no/globalassets/cancer-in-
norway/2015/cin2015-special_issue-web.pdf. Cancer in Norway 2015. 

Kumar, C.C., 1998. Signaling by integrin receptors. Oncogene, 17(11 Reviews), pp.1365–
1373. 

Kumar, N. et al., 2007. Modeling HER2 effects on cell behavior from mass spectrometry 
phosphotyrosine data. PLoS Computational Biology, 3(1), pp.0035–0048. 

Kuriyama, M. et al., 2004. Activation and translocation of PKCδ is necessary for VEGF-
induced ERK activation through KDR in HEK293T cells. Biochemical and biophysical 
Research Communications, 325(3), pp.843–851. 

Kyo, S. et al., 2008. Understanding and exploiting hTERT promoter regulation for diagnosis 
and treatment of human cancers. Cancer Science, 99(8), pp.1528–1538. 

LaBarge, M. et al., 2009. Human mammary progenitor cell fate decisions are products of 
interactions with combinatorial microenvironments. Integrative biology : quantitative 
biosciences from nano to macro, 1(1), pp.70–79. 

LaBarge, M.A. et al., 2015. Breast Cancer beyond the Age of Mutation. Gerontology. 
Labarge, M., Garbe, J.C. & Stampfer, M.R., 2013. Processing of human reduction 

mammoplasty and mastectomy tissues for cell culture. Journal of visualized 
experiments : JoVE, (71), pp.1–7. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3582686&tool=pmcentrez&re
ndertype=abstract. 

LaBarge, M. a., Petersen, O.W. & Bissell, M.J., 2007. Of microenvironments and mammary 
stem cells. Stem Cell Reviews, 3(2), pp.137–146. 

Lam, L.L. et al., 2012. Factors underlying variable DNA methylation in a human community 
cohort. Proceedings of the National Academy of Sciences, 109(Supplement_2), 
pp.17253–17260. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1121249109. 

Lamming, D.W. et al., 2013. Rapalogs and mTOR inhibitors as anti-aging therapeutics. 
Journal of Clinical Investigation, 123(3), pp.980–989. 

Lee, J.K. et al., 2015. Age and the means of bypassing stasis influence the intrinsic subtype 
of immortalized human mammary epithelial cells. Frontiers in Cell and Developmental 
Biology, 3(March), pp.1–9. Available at: 
http://journal.frontiersin.org/article/10.3389/fcell.2015.00013. 

Legate, K.R., Wickström, S.A. & Fässler, R., 2009. Genetic and cell biological analysis of 
integrin outside-in signaling. Genes and Development, 23(4), pp.397–418. 

Levental, K.R. et al., 2009. Matrix Crosslinking Forces Tumor Progression by Enhancing 
Integrin Signaling. Cell, 139(5), pp.891–906. Available at: 
http://dx.doi.org/10.1016/j.cell.2009.10.027. 

Li, S. et al., 2003. The role of laminin in embryonic cell polarization and tissue organization. 
Developmental Cell, 4(5), pp.613–624. 

Lim, E. et al., 2009. Aberrant luminal progenitors as the candidate target population for basal 
tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), pp.907–913. 
Available at: http://www.nature.com/doifinder/10.1038/nm.2000. 

Lin, A.W. et al., 1998. Premature senescence involving p53 and p16 is activated in response 
to constitutive MEK/MAPK mitogenic signaling. Genes and Development, 12(19), 
pp.3008–3019. 

Liu, P. et al., 2009. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat. 
Rev. Drug. Discov., 8(8), pp.627–644. 

López-Nouoa, J.M. & Nieto, M.A., 2009. Inflammation and EMT: An alliance towards organ 
fibrosis and cancer progression. EMBO Molecular Medicine, 1(6–7), pp.303–314. 

López-Otín, C. et al., 2013. The hallmarks of aging. Cell, 153(6). 
Lui, C., Lee, K. & Nelson, C.M., 2012. Matrix compliance and RhoA direct the differentiation 

of mammary progenitor cells. Biomechanics and Modeling in Mechanobiology, 11(8), 
pp.1241–1249. 

 



 74 

 

Machida, Y. & Nakadate, M., 2015. Breast Shape Change Associated with Aging. Plastic and 
Reconstructive Surgery - Global Open, 3(6), p.e413. Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01720096
-201506000-00006. 

Mallette, F.A. & Ferbeyre, G., 2007. The DNA damage signaling pathway connects 
oncogenic stress to cellular senescence. Cell Cycle, 6(15), pp.1831–1836. 

Marinkovic, M. et al., 2016. One size does not fit all: Developing a cell-specific niche for in 
vitro study of cell behavior. Matrix Biology, 52–54(2015), pp.426–441. 

Mariotti, A. et al., 2001. EGF-R signaling through Fyn kinase disrupts the function of integrin 
apha6beta4 at hemidesmosomes: Role in epithelial cell migration and carcinoma 
invasion. Journal of Cell Biology, 155(4), pp.447–457. 

Mattila, E. et al., 2008. The protein tyrosine phosphatase TCPTP controls VEGFR2 
signalling. Journal of cell science, 121(Pt 21), pp.3570–3580. 

Mendoza, M.C., Emrah Er, E. & Blenis, J., 2011a. The Ras-ERK and PI3K-mTor Pathways: 
Cross-talk and compensation. Trends Biochem, 36(6), pp.320–328. 

Mendoza, M.C., Emrah Er, E. & Blenis, J., 2011b. The Ras-ERK and PI3K-mTOR Pathways: 
Cross-talk and compensation. Trends Biochem, 36(6), pp.320–328. 

Mercurio, A.M., Rabinovitz, I. & Shaw, L.M., 2001. The alpha 6 beta 4 integrin and epithelial 
cell migration. Current opinion in cell biology, 13(5), pp.541–5. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/11544021. 

Di Micco, R. et al., 2006. Oncogene-induced senescence is a DNA damage response 
triggered by DNA hyper-replication. Nature, 444, pp.638–642. 

Midwood, K.S., Williams, L.V. & Schwarzbauer, J.E., 2004. Tissue repair and the dynamics 
of the extracellular matrix, Title. The International Journal of Biochemistry & Cell 
Biology, 36(6), pp.1031–1037. 

Milanese, T.R. et al., 2006. Age-related lobular involution and risk of breast cancer. Journal 
of the National Cancer Institute, 98(22), pp.1600–1607. 

Miranti, C.K. & Brugge, J.S., 2002. Sensing the environment: a historical perspective on 
integrin signal transduction. Nature cell biology, 4(4), pp.E83–E90. 

Miyano, M. et al., 2017. Age-related gene expression in luminal epithelial cells is driven by a 
microenvironment made from myoepithelial cells. Aging, 9(10), pp.2025–2050. 

Moro, L. et al., 2002. Integrin-induced epidermal growth factor (EGF) receptor activation 
requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor 
tyrosines. Journal of Biological Chemistry, 277(11), pp.9405–9414. 

Moro, L. et al., 1998. Integrins induce activation of EGF receptor: role in MAP kinase 
induction and adhesion-dependent cell survival. The EMBO journal, 17(22), pp.6622–
6632. 

Morse, E.M., Brahme, N.N. & Calderwood, D.A., 2014. Integrin cytoplasmic tail interactions. 
Biochemistry, 53(5), pp.810–820. 

Mortazavi, S.N. et al., 2015. Mathematical Modeling of Mammary Ducts in Lactating Human 
Females. Journal of Biomechanical Engineeering, 137(7). 

Murillo, M.M. et al., 2014. RAS interaction with PI3K p110?? is required for tumor-induced 
angiogenesis. Journal of Clinical Investigation, 124(8), pp.3601–3611. 

Natali, P.. et al., 1992. Changes in expression of alpha6/beta4 integrin heterodimer in 
primary and metastatic breast cancer. , 66, pp.318–322. Available at: 
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003086
-200310001-00018. 

Nelson, C.M. & Bissell, M.J., 2005. Modeling dynamic reciprocity: Engineering three-
dimensional culture models of breast architecture, function, and neoplastic 
transformation. Seminars in Cancer Biology, 15(5 SPEC. ISS.), pp.342–352. 

Nelson, D.M. et al., 2014. A comparison of oncogene-induced senescence and replicative 
senescence: implications for tumor suppression and aging. Age (Dordrecht, 
Netherlands), 36(3), p.9637. 

Newton, A.C., 2001. Protein kinase C: Structural and spatial regulation by phosphorylation, 
cofactors, and macromolecular interactions. Chemical Reviews, 101(8), pp.2353–2364. 



 75 

 

Nguyen-Ngoc, K.-V. et al., 2012. PNAS Plus: ECM microenvironment regulates collective 
migration and local dissemination in normal and malignant mammary epithelium. 
Proceedings of the National Academy of Sciences, 109(39), pp.E2595–E2604. 

Nieto, M.A., 2013. Epithelial Plasticity: A Common Theme in Embryonic and Cancer Cells. 
Science, 342(6159), pp.1234850–1234850. Available at: 
http://www.sciencemag.org/cgi/doi/10.1126/science.1234850. 

Nikolich-Žugich, J., 2014. Aging of the T Cell Compartment in Mice and Humans: From No 
Naive Expectations to Foggy Memories. The Journal of Immunology, 193(6), pp.2622–
2629. Available at: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1401174. 

Novak, P. et al., 2009. Step-wise DNA methylation changes are linked to escape from 
defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res, 
69(12), pp.5251–5258. 

O’Reilly, K.E. et al., 2006. mTOR inhibition induces upstream receptor tyrosine kinase 
signaling and activates Akt. Cancer Research, 66(3), pp.1500–1508. 

Olsen, C.L. et al., 2002. Raf-1-induced growth arrest in human mammary epithelial cells is 
p16-independent and is overcome in immortal cells during conversion. Oncogene, 
21(41), pp.6328–6339. 

Parrinello, S., 2005. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts 
alter epithelial cell differentiation. Journal of Cell Science, 118(3), pp.485–496. Available 
at: http://jcs.biologists.org/cgi/doi/10.1242/jcs.01635. 

Paszek, M.J. et al., 2009. Integrin clustering is driven by mechanical resistance from the 
glycocalyx and the substrate. PLoS Computational Biology, 5(12). 

Paszek, M.J. et al., 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell, 
8(3), pp.241–254. 

Pavlidis, N., Stanta, G. & Audisio, R.A., 2012. Cancer prevalence and mortality in 
centenarians: A systematic review. Critical Reviews in Oncology/Hematology, 83(1), 
pp.145–152. 

Pelissier, F.A. et al., 2014. Age-Related Dysfunction in Mechanotransduction Impairs 
Differentiation of Human Mammary Epithelial Progenitors. Cell Reports, 7(6), pp.1926–
1939. Available at: http://dx.doi.org/10.1016/j.celrep.2014.05.021. 

Petersen, O.W. et al., 1992. Interaction with basement membrane serves to rapidly 
distinguish growth and differentiation pattern of normal and malignant human breast 
epithelial cells. Proceedings of the National Academy of Sciences, 89(19), pp.9064–
9068. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.89.19.9064. 

Polyak, K. & Kalluri, R., 2010. The role of the microenvironment in mammary gland 
development and cancer. Cold Spring Harb Perspect Biol, 2(11), p.a003244. Available 
at: http://dx.doi.org/10.1101/cshperspect.a003244. 

Pouwels, J. et al., 2012. Negative regulators of integrin activity. Journal of Cell Science, 
125(14), pp.3271–3280. Available at: http://jcs.biologists.org/cgi/doi/10.1242/jcs.093641. 

Provenzano, P.P. et al., 2008. Collagen density promotes mammary tumor initiation and 
progression. BMC Medicine, 6, pp.1–15. 

Puente, L.G., He, J.S. & Ostergaard, H.L., 2006. A novel PKC regulates ERK activation and 
degranulation of cytotoxic T lymphocytes: Plasticity in PKC regulation of ERK. European 
Journal of Immunology, 36(4), pp.1009–1018. 

Riaz, A., Zeller, K.S. & Johansson, S., 2012. Receptor-specific mechanisms regulate 
phosphorylation of AKT at ser473: Role of RICTOR in β1 integrin-mediated cell survival. 
PLoS ONE, 7(2). 

Ricard-Blum, S., 2011. The Collagen Family. Cold Spring Harbor Perspectives in Biology, 
3(1), pp.1–19. 

Riento, K. & Ridley, A.J., 2003. ROCKs: multifunctional kinases in cell behaviour. Nature 
reviews Molecular Cell Biology, 4(june), pp.446–456. 

Roberts, M.S. et al., 2002. ERK1 Associates with αvβ3 Integrin and Regulates Cell 
Spreading on Vitronectin. Journal of Biological Chemistry, 278(3), pp.1975–1985. 

 
 



 76 

 

Roman, J. et al., 2010. ??5??1-Integrin Expression Is Essential for Tumor Progression in 
Experimental Lung Cancer. American Journal of Respiratory Cell and Molecular 
Biology, 43(6), pp.684–691. 

Rozhok, A.I., Salstrom, J.L. & DeGregori, J., 2014. Stochastic modeling indicates that aging 
and somatic evolution in the hematopoietic system are driven by non-cell-autonomous 
processes. Aging, 6(12), pp.1033–1048. 

Runswick, S.K. et al., 2001. Desmosomal adhesion regulates epithelial morphogenesis and 
cell positioning. Nature Cell Biology, 3(9), pp.823–830. Available at: 
http://www.nature.com/doifinder/10.1038/ncb0901-823. 

Rønnov-Jessen, L., Petersen, O.W. & Bissell, M.J., 1996. Cellular Changes Involved in 
Conversion of Normal to Malignant Breast : Importance of the Stromal Reaction. 
Physiological reviews, 76(1), pp.69–125. 

Santagata, S. & Thakkar, A., 2014. Taxonomy of breast cancer based on normal cell 
phenotype predicts outcome. The Journal of clinical investigation, 124(2), pp.859–870. 
Available at: http://www.jci.org/articles/view/70941?key=19aa6c8206b37ab99f37. 

Schedin, P., 2006. Pregnancy-associated breast cancer and metastasis. Nature reviews. 
Cancer, 6(4), pp.281–91. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16557280. 

Schedin, P. & Keely, P.J., 2011. Mammary gland ECM remodeling, stiffness, and 
mechanosignaling in normal development and tumor progression. Cold Spring Harbor 
Perspectives in Biology, 3(1), pp.1–22. 

Serrano M, Lin AW, McCurrach ME, Beach D, L.S., 1997. Oncogenic ras provokes 
premature cell senescence associ. Cell, 88(5), pp.593–602. 

Shachney, S. & Silverman, J., 2003. Molecular evolutionary patterns in breast cancer. Adv 
Anat Pathol, 10(5), pp.278–90. 

Shakibaei, M., Abou-Rebyeh, H. & Merker, H., 1993. Integrins in ageing cartilage tissue in 
vitro. Histol Histopathol, 8(4), pp.715–23. 

Shaw, A. et al., 2010. Aging of the Innate Immune System. Curr opin Immunol, 22(4), 
pp.507–513. 

Sieg, D.J. et al., 2000. FAK integrates growth-factor and integrin signals to promote cell 
migration. Nature cell biology, 2(5), pp.249–256. 

Snedeker, J.G. & Gautieri, A., 2014. the role of collagen crosslinks in ageing and diabetes - 
the good, the bad, and the ugly. Muscles, Ligaments and Tendons Journal, 4((3)), 
pp.303–308. 

Spencer, V.A., Xu, R. & Bissell, M.J., 2007. Extracellular Matrix, Nuclear and Chromatin 
Structure, and Gene Expression in Normal Tissues and Malignant Tumors: A Work in 
Progress. Adv. Cancer Res., 97(6), pp.275–294. 

Spencer, V.A., Xu, R. & Bissell, M.J., 2010. Gene expression in the third dimension: The 
ECM-nucleus connection. Journal of Mammary Gland Biology and Neoplasia, 15(1), 
pp.65–71. 

Spike, B.T. et al., 2012. A mammary stem cell population identified and characterized in late 
embryogenesis reveals similarities to human breast cancer. Cell Stem Cell, 10(2), 
pp.183–197. Available at: http://dx.doi.org/10.1016/j.stem.2011.12.018. 

Stampfer, M.R., 1985. Isolation and growth of human mammary epithelial cells. Journal of 
tissue culture methods, 9(2), pp.107–115. 

Stampfer, M.R., Labarge, M.A. & Garbe, J.C., 2013. An Integrated Human Mammary 
Epithelial Cell Culture System for Studying Carcinogenesis and Aging Cell and M. H. 
Schatten (ed.), ed., Springer. Available at: http://link.springer.com/10.1007/978-1-
62703-634-4. 

Stewart, R.L. & O’Connor, K.L., 2015. Clinical significance of the integrin α6β4 in human 
malignancies. Laboratory investigation; a journal of technical methods and pathology, 
95(9), pp.976–86. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/26121317%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC4554527. 

 
 



 77 

 

Stingl, J. et al., 2001. Characterization of bipotent mammary epithelial progenitor cells in 
normal adult human breast tissue. Breast Cancer Research and Treatment, 67(2), 
pp.93–109. 

Streuli, C.H. et al., 1995. Laminin Mediates Tissue-specific Gene Expression. The Journal of 
Cell Biology, 129(3), pp.591–603. 

Streuli, C.H. & Akhtar, N., 2009. Signal co-operation between integrins and other receptor 
systems. The Biochemical journal, 418(3), pp.491–506. 

Sundberg-Smith, L.J. et al., 2005. Adhesion stimulates direct PAK1/ERK2 association and 
leads to ERK-dependent PAK1 Thr212 phosphorylation. Journal of Biological 
Chemistry, 280(3), pp.2055–2064. 

Sympson, C.J., 1994. Targeted expression of stromelysin-1 in mammary gland provides 
evidence for a role of proteinases in branching morphogenesis and the requirement for 
an intact basement membrane for tissue-specific gene expression [published erratum 
appears in J Cell Biol . The Journal of Cell Biology, 125(3), pp.681–693. Available at: 
http://www.jcb.org/cgi/doi/10.1083/jcb.125.3.681. 

Tang, Y., Yu, J. & Field, J., 1999. Signals from the Ras, Rac, and Rho GTPases converge on 
the Pak protein kinase in Rat-1 fibroblasts. Molecular and cellular biology, 19(3), 
pp.1881–91. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=83981&tool=pmcentrez&rend
ertype=abstract. 

Teschendorff, A.E. et al., 2010. Age-dependent DNA methylation of genes that are 
suppressed in stem cells is a hallmark of cancer. Genome Research, 20(4), pp.440–
446. 

Teschendorff, A.E., West, J. & Beck, S., 2013. Age-associated epigenetic drift: Implications, 
and a case of epigenetic thrift? Human Molecular Genetics, 22(R1), pp.7–15. 

Thiery, J.P. et al., 2009. Epithelial-Mesenchymal Transitions in Development and Disease. 
Cell, 139(5), pp.871–890. 

Tiganis, T., Kemp, B.E. & Tonks, N.K., 1999. The protein-tyrosine phosphatase TCPTP 
regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-
dependent signaling. Journal of Biological Chemistry, 274(39), pp.27768–27775. 

Tomasetti, C. & Vogelstein, B., 2015. Variation in cancer risk among tissues can be 
explained by the number of stem cell divisions. Science (New York, N.Y.), 347(6217), 
pp.78–81. 

Trusolino, L. et al., 2000. HGF/scatter factor selectively promotes cell invasion by increasing 
integrin avidity. FASEB journal : official publication of the Federation of American 
Societies for Experimental Biology, 14(11), pp.1629–1640. Available at: 
http://www.ncbi.nlm.nih.gov/pubmed/10928998. 

Ueha, S., Shand, F.H.W. & Matsushima, K., 2012. Cellular and molecular mechanisms of 
chronic inflammation-associated organ fibrosis. Frontiers in Immunology, 3(APR), pp.1–
6. 

Vellai, T. et al., 2003. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature, 
426(December), p.620. 

Visvader, J.E. & Clevers, H., 2016. Tissue-specific designs of stem cell hierarchies. Nat Cell 
Biol, 18(4), pp.349–355. Available at: 
http://dx.doi.org/10.1038/ncb3332%5Cnhttp://10.1038/ncb3332. 

Vogelstein, B. & Kinzler, K.W., 1993. The multistep nature of cancer. Trends in Genetics, 
9(4), pp.138–141. 

Warburton, M.J. et al., 1981. Characterization of a Myoepithelial Cell Line Derived from a 
Neonatal Rat Mammary Gland Isolation and Growth of Mammary Cells 
Immunoprecipitation of Extracellular Matrix Components. 

Wary, K.K. et al., 1996. The adaptor protein Shc couples a class of integrins to the control of 
cell cycle progression. Cell, 87(4), pp.733–743. 

Wegener, K. & Campbell, I.D., 2008. Transmembrane and cytoplasmic domains in integrin 
activation and protein-protein interactions (review). Mol Membr Biol, 25(5), pp.376–387. 

 



 78 

 

Weidner, C. et al., 2014. Aging of blood can be tracked by DNA methylation changes at just 
three CpG sites. Genome Biology, 15(2), p.R24. Available at: 
http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r24. 

Welf, E.S., Naik, U.P. & Ogunnaike, B.A., 2012. A spatial model for integrin clustering as a 
result of feedback between integrin activation and integrin binding. Biophysical Journal, 
103(6), pp.1379–1389. Available at: http://dx.doi.org/10.1016/j.bpj.2012.08.021. 

Werfel, J., 2015. Programed Death is Favored by Natural Selection in Spatial Systems. 
Physical review letters, 238103(June), pp.1–5. 

White, M.C. et al., 2014. Age and Cancer Risk. , 46, pp.7–15. 
Widschwendter, M. et al., 2007. Epigenetic stem cell signature in cancer. Nat Genet, 39(2), 

pp.157–8. 
Wiley, J., 1999. http://www.wiley.com/WileyCDA/. 
Williams, C.M. et al., 2008. Fibronectin expression modulates mammary epithelial cell 

proliferation during acinar differentiation. Cancer Research, 68(9), pp.3185–3192. 
Wöhrle, F.U., Daly, R.J. & Brummer, T., 2009. Function, regulation and pathological roles of 

the Gab/DOS docking proteins. Cell Communication and Signaling, 7(1), p.22. Available 
at: http://biosignaling.biomedcentral.com/articles/10.1186/1478-811X-7-22. 

Xue, M. & Jackson, C.J., 2015. Extracellular Matrix Reorganization During Wound Healing 
and Its Impact on Abnormal Scarring. Advances in Wound Care, 4(3), pp.119–136. 
Available at: http://online.liebertpub.com/doi/10.1089/wound.2013.0485. 

Yarwood, S.J. & Woodgett, J.R., 2001. Extracellular matrix composition determines the 
transcriptional response to epidermal growth factor receptor activation. Proceedings of 
the National Academy of Sciences of the United States of America, 98(8), pp.4472–7. 
Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=31859&tool=pmcentrez&rend
ertype=abstract. 

Yau, C. et al., 2007. Aging impacts transcriptomes but not genomes of hormone-dependent 
breast cancers. Breast cancer research : BCR, 9(5), p.R59. 

Yu, C.F., Liu, Z.X. & Cantley, L.G., 2002. ERK negatively regulates the epidermal growth 
factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. Journal of 
Biological Chemistry, 277(22), pp.19382–19388. 

Zeisberg, M. & Kalluri, R., 2013. Cellular mechanisms of tissue fibrosis. 1. Common and 
organ-specific mechanisms associated with tissue fibrosis. American journal of 
physiology. Cell physiology, 304(3), pp.C216-25. Available at: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3566435&tool=pmcentrez&re
ndertype=abstract. 

Zhang, S.Q. et al., 2002. Receptor-Specific Regulation of by the Protein Tyrosine 
Phosphatase Shp2 Receptor-Specific Regulation of Phosphatidylinositol 3Ј-Kinase 
Activation by the Protein Tyrosine Phosphatase Shp2. Society, 22(12), pp.4062–4072. 

 

 

 

 



III





121 

 

10. Supplementary data  

  

 

 

 

 

 

 

 

 

 

 

 

 



122 

 

Fig.1 Cell adhesion efficiency distinguish human mammary cells according to lineage, 

age and immortalization. (A) The percentage of cells adhered to different ECM-coated 

microspheres by 2,5 hours of incubation was plotted as a function of age. HMEC from 10 

women 19-91 y were included. i) Illustration of gating scheme to obtain luminal cells (LEP) 

(CD227+/CD10-) and myoepithelial cells (MEP) (CD227-/CD10+). Side scatter values combined 

with DNA staining distinguish cells from naked microspheres. ii) LEP, iii) MEP and iv) 

progenitor (c-Kit+ /CD227+) cells are presented separately. Significant linear regression 

correlations are marked as solid lines. A significant linear regression correlation between age 

and cell adhesion abilities was found for LEP bound to FN. (B) Cell adhesion kinetics of LEP 

and MEP to FN-coated microspheres was monitored for a period of 9 hours i) Data were fitted 

into a Hill’s curve. Comparison of AUC values of the Hill’s curves demonstrates significant 

difference in cell adhesion between LEP and MEP of ii) all ECM in total iii) and on individual 

ECM. (C) Cell adhesion kinetics of young and old LEP  (19 y, 240L / 72y, 353P) on FN coated 

microspheres. i) Hill’s curve of cell adhesion ii) Comparison of Hill’s coefficients demonstrates 

significant difference in cell adhesion between young and old LEP. (D) Cell adhesion kinetics 

of young and old MEP (19 y, 240L / 72y, 353P) on LAM coated microspheres. i) Hill’s curve of 

cell adhesion.  ii) Comparison of Hill’s coefficients of cell adhesion between young and old 

MEP iii) Comparison of AUC values of the Hill’s curves. We demonstrated significant difference 

in cell adhesion between young and old MEP. (E) Phase-contrast images of young and old 

HMEC illustrating adhesion intensity to different ECM proteins. (F) Cell adhesion kinetics of an 

isogenic HMEC progression series (240L). The series comprised normal i) HMEC (240L), ii) 

immortalized (240LD1MY) and iii) oncogene-transformed (240LD1MYNeu) cells. iv) 

Comparison of AUC values of the Hill’s curves on LAM. The data demonstrate a significant 

decrease in cell adhesion to LAM-coated microspheres with increasing tumourigenicity 

Tukey’s multiple comparisons test confirms significant difference in adhesion between the 

three graphs, p=0,008. (G) Phase-contrast images of the isogenic HMEC progression series 

illustrating adhesion intensity to different ECM, after 24 hours of growth.  (n=3 for each cell 

type). Error bars are ±SD. Scale bars are 100 µm.  Remaining p -values were calculated by 

Student’s two tailed t-test comparing AUC-values * P<0,05  ** = P<0,01. **** p< 0,0001 . 
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Fig.2  Integrin expression during cell transformation 

Linear regression analysis of integrin expression on an isogenic human mammary epithelial 
cell progression series (n=3 for each cell line). Significant correlations (P<0.05) are 
demarcated by solid lines; non-significant correlations are represented by dotted lines. 
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Fig.3 Cell population growth of oncogene transformed cells (EGFR Del19).  

Overexpression of EGFR with a deletion in exon 19, making it constitutively active, leads to 

oncogene induced senescence in cells derived from a younger microenvironment (28, 29 

and 30 y). A) The cells barely survive a couple of population doublings, while cells derived 

from older microenvironments (80, 72, 65 and 58 y) tend to survive a longer period of time. 

Growth is detected from the timepoint that selection of EGFR positive cells is initiated, either 

by flow cytometry sorting or antibiotic selection. B) β-Galactosidase activity in young and old 

cells upon EGFR transduction as they go into senescence. The young cells go into 

senescence within 5 population doubling after EGFR is introduced, ageing cells survive at 

least 18 population doublings before showing signs of growth arrest. Scale bar is 100 µm. 
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Fig.4   Cell activity levels differ between luminal (LEP) and myoepithelial (MEP) cells. 

Comparison of pAKT levels between LEP and MEP. A student t test of grouped data shows 

lower ECM induced signaling in MEP compared to LEP, but higher response to growth factors 

in MEP compared to LEP. This is likely because the low FN- induced signaling level in MEP 

allow for a stronger shift in phospho-level upon growth factor stimulation. LEP are more 

responsive to FN, while MEP save their response until GF stimulated. GMFI = geometric mean 

fluorescent intensity.  * p < 0,05   ** p < 0,01     
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Fig.5  Luminal progenitor (c-Kit+)  population increases with age 

Linear regression analysis of c-Kit positive population among HMEC from 10 women 19-91 
years,  p<0.05.             
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Fig.6 Immortalization by 

overexpressing CCND1/CyclinD1 

results in a luminal subpopulation not obtained when immortalizing through the 

suppression of CDKN2A/p16. Telomer dysfunction was circumvented by overexpressing 

MYC which reactivates telomerase and recuperate telomere length (Kyo 2008).  A control 

population was transduced with a retroviral vector that contained neither shRNA against 

CDKN2A/p16, nor overexpressed CCND1/CyclinD1 or MYC (Kolch 2015). Transduced cells 

that grew beyond the control population were defined as having obtained immortality.  

 

Fig.7 Immortalized cells demonstrate reduced response to ECM and growth factor 

stimulation. Response to solid ECM and soluble growth factors demonstrated as shift in 

phospho-protein levels (pERK and pAKT) upon stimulation. We compared finite life HMEC 

(240L) to immortalized (240LD1MY) cells. Student t-test two tailed unpaired ** p<0,01 MFI = 

mean fluorescent intensity.  
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