Microstrip phased-array antennas : a finite-array approach

Citation for published version (APA):

Smolders, A. B. (1994). Microstrip phased-array antennas : a finite-array approach. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR423038

DOI:

10.6100/IR423038

Document status and date:

Published: 01/01/1994

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Microstrip Phased-Array Antennas:
 A Finite-Array Approach

PROEFSCHRIFT

ter verkniging van de graad van doctor aan de
Technsche Universiteit Eindhoven, op gezag van de Rector Magnticus prof dr J. H. van Lint, voor een commissie aangewezen door het College van Dekanen in het openbaar te verdedigen op woensdag 5 oktober 1994 te 1600 uur
door

Adrianus Bernardus Smolders
geboren te Hilvarenbeek

Dit procfichrift is goedgekeurd door de promotoren
prof.dr. A.G. Tijhuis
eп
prof.drir. G. Brussaard
copromotor:
dr. M.E.J. Jeuken.

CIP-DATA KONINKLIJKE BIBLIOTIUEKK, DEN HAAG

Smoldera, Adrianus Bernardu

Microstrip phased-arrily antennas a linite-aray approach $/$
Adrianus Bernardus Smoldcis - Eindhoven
Universty of lechnotogy. - IIl., fig., photos, tab.
Thess Eindhoven - With ref - With summary in Dutch.
ISBN 90-386-0010.0
NUGI 832
Subject headings: mincowtip antemas / mecrostrip arrays / phesed arrays
(©) 1994 by AB Smolder, Endhoven

All rights fecerved No part of thes publication may be reproduced or transmited in any form or by any means, electronc, mechancal, meluding photowpy, recording, or any information torage and retrieval sybtenn, without the prom witten permision of the copy right owner.

To study to finish to publish
Benjamin Franklin (1706-1790)

This atudy was performed ds part of the research program of the Electromagnetice Division, Department of Electrical Engmeering, Eindhoven Universty of Technology. PO Box 513, 5600 MB Endhoven, The Netherlands This work thas supperted by the Technology Fotndation (STW)

Abstract

In this thesis, the results are presented of a theoretical and cxperimental investigation of isolated microstrip antennas and of finite microstrip phased-array antennas. Microstnp antennas have several features, including light weight, conformability and low production costs, which make them interesting candidatcs for scveral applications where a phased-array antenna is required The theoretical analysis of finite arrays of microstrip antennas is based on a rigorous spectraldoman method-of-moments procedure The electromagnetic field is expressed in terms of the cxact spectral-domain dyadic Green's function. Mutual coupling and surface wave effects are automatically included in the analysis. Small arrays and array elements near the edge of an array can also be analysed with this fintc-array approach. In addition, a sophisticated model for the feeding coaxial cables is developed In this way, electrically thick and thus broadband microstrep configurations can be analysed. An analytical extraction technique is proposed to reduce the required CPU time. The theoretical model is validated by comparing the calculated results with measured data from several cxpcriments Generally, a good agreement between theory and experiment is obtained. Some techmques to improve the available bandwidth of microstrip antennas are discussed. Bandwidths ranging from 20% to 50% have been obtained for isolated microstrip antennas When such broadband elements are used in an artay of microstrip antennas, the bandwidth is reduced significantly due to mutual coupling.

Contents

1 Introduction 1
11 General introduction 1
12 Modelling approach 8
13 Organisation of the thesis 9
2 Green's functions of a grounded two-layer dielectric structure 11
2.1 Introduction 11
22 Boundary-value problem 14
23 Spectral-domain solution 19
2.4 Electric and magnetic fields in the spatial domain 28
3 Isolated microstrip antennas 33
31 Introduction 33
32 Model description 33
32.1 Two-layer stacked microstrip antenna 33
32.2 Thin-substrate model 34
32.3 Thick-substrate model 35
33 Method-of-moments formulation 37
34 Basis functions 44
3.41 Basis functions on the patches 45
342 Basis functions on the coaxial probe 50
343 Attachment mode 51
35 Calculation of the method-of-moment matrix $[Z]$ and $\mid V=\mathrm{V}]$ 53
36 Input impedance 54
3.7 Radiation pattern 57
3.8 Computational and numerical details 63
38.1 Introduction 63
3.82 Surface waves and other singularities 64
3.8 .3 Asymptotic-form extraction technique 68
39 Results 94
3.9 I Valdation of the model 94
3.92 Single-layer merostrip antentas 98
393 Stacked microstrip antennas 99
39.4 Broadband muitilayer structures 104
3.9.5 Dual-frequencyidual-polarisation merostrip ententas 106
39.6 Broadband EMC microstrip antennas. 107
4 Finite arrays of microstrip antennas 111
4.1 Introduction 111
4.2 Configuration 114
4.3 Method-of-moments formulation 115
4.4 Port admittance matrix and scattering matrix 120
45 Racliation characternstics 121
46 Circulay polarisation 123
47 Computational and numencal details $\{24$
48 Results 131
4.8. 1 Introduction 131
482 Single-layer merostrip axays 132
483 Stacked microstrip arrays 140
4.8.4 Multulayer microstrip arrays 143
48.5 Array of broadband EMC microstrip antennas 146
48.6 Far-field patem of a finite microstrip array 149
4.87 Circular polarisation 151
4.88 Dual-frequency circularly polartsed microstrip subarray 154
4.9) Finite aray of monopoles cmbedded in a grounded dielectric slab 158
5 Summary and conclusions 163
A Expressions for the elements of $|Z|$ 167
B Expressions for the elements of $\left|V^{n}\right|$ 177
Bibliography 181
Samenvatting 191
Curriculam Vitae 193
Dankwoord 195

List of abbreviations

AR	Axial Ratio,
BW	Bandwidth,
CPU	Central Processing Unit,
EMC	ElectroMagnetically Coupled,
EUT	Eindhoven Univcrsity of Technology,
GaAs	Galium Arsende,
INMARSAT	INternational MARitime SATellite organisation,
MMIC	Monolythic Microwave Integrated Circuit,
SAR	Synthetic Aperture Radar,
TE	Transverse Electric,
TEM	Transverse ElectroMagnetc,
TM	Transverse Magnetic.
T/R module	Transmiter/Receiver module,,
VSWR	Voltage Standing Wave Ratio

Chapter 1

Introduction

1.1 General introduction

History

One of the principal charactenstics of human bemgs is that they almost contunually send and receive signals to and from one another. The exchange of meaningful signals is the heart of what is called communication. In its smplest form, communication involves two pcople, namely the signal transmitter and the signal receiver. These signaks can take many forms. Words are the most common form. They can be cither written or spoken. Before the invention of technical resources such as radio commumication or telephone, long-distance communication was very difficult and ustally took a lot of time Proper long-distance communication was at that tume only possible by exchange of wntten words. Courners were used to tratisport the message from the sender to the receiver Since the invention of radio and telephone, far-distance communication or telecommuncation is possible, not only of written words, but also of spoken words and abmost without any time delay between the transmission and the reception of the signal. Antennas have played an important part it the development of our present telecommunicatorn services. Antennas have made it possble to communicate at far distances, without the need of a physical connection between the sender and receiver. Apart from the sender and receiver, there is a third important element in a communication system, namely the propagation chamel. The transmitted sigoals may detenorate when they propagate through this channel. In this thesis only the antenna part of a comirnumication systen will be investigated.

In 1886 Heinroh Hertz, who was a professor of physics at the Technical Institutc in Karlisuhe, was the first person who made a complete radio system [33] When he produced sparks at a gap of the transmitting antenna, sparking also occurred at the gap of the recerving antenna. Hertz in fact visualised the theoretical postulations of James Clerk Maxwell. Hertz's first experments used
wavelengths of about 8 meters. Atter Hert an Itafian called Gugliclmo Marcon became the motor behond the development of practical radoo sy utems [46]. He was not a famous scientist like Hertz, but he was obsessed with the idea of sending messages with a wireless commundion system. He was the first who pertomed wireless communcations across the Allantic. The anternas that Marcon used were very large wire antennas mounted onto two 60 -meter wooden poles These antennas had a very poor efficiency, so a lot of mput power had to be used. Sometimes the antenna wires even glowed at night In the 93 years after Marconi's firct transatlantic wireless communication in I901, a huge amount of rescarch and development hats been performed concerning antennats and complete communication systems. In later years antennat were also used for other purposes such as radar systems and radio astronomy. In 1953 Deschamps [18] reported for the first time about planar morostrip antennas, also known as patch antennats It was only in the carly eightics that morostrip antennas became an interesting topic among seicntists and antenna manufacturers. It will probably take another 5 to 10 years before mocrostrip antennas will be used on a large scale in a variety of telecommunication products.

Antenna concepts

Figure 11 thows some well-known antenna configurations which are nowadays in use in a vancty of applications Both reflector antennas and wire antennas have become mass products Reflector

Figure 11 Some conventional antenns come epts
antennas are for example used for the reception of satellite television, whereas wire anlenras are often used to receive radio signals with a car or portable radio receiver Reflector ard hom
antenmas usually have a high gan, but have the disadvantage that the main lobe of the antenna has to be steered in the desired direction by means of a highly accurate mechanical steering mechanism. This means that simultaneous communication with several points in space is not possible. Wire antennas are omni-drrectional, but have a very poor antenna gain. There are certan applications where these conventional antemas cannot be used. These applications often require a phased-array antenna. A phased-array antenna has the capability to communicate with several targets which may be anywhere in space, simultaneously and continuously, because the main beam of the antenna can be directed electronically into a certain direction. Another advantage of phased-array antennas is the fact that they are relatively flat. Figure 12 shows the general phased-aray antenna concept. Thrce essential layers can be distinguished 1) an antenna layer.

Figure 1.2: Phased-artay antenta
2) a layer with transmiter and receiver modules (T/R modulcs) and 3) a signal-processing and control layer that controls the direction of the main beam of the array. The antenna layer consists of several individual antenna elements which are placed on a rectangular or on a triangular grid. Open-ended waveguide radiators are often used as array elements, but also merostrip antennas sem to become interesting candidates [61. 65]. The total gain of a phased-atray antenna depends on the number of array elements and on the gain of a single array element. With M denoting the number of array elements, the theoretical gan at broadside of a phased-array antenna is given by

$$
\begin{equation*}
G_{i}=10 \log _{10} M+G_{r} \quad(\mathrm{~dB}) \tag{1.1}
\end{equation*}
$$

where G_{a} is the element gain in $d B$ Note that the antema gain in a real phased-aray antena is reduced due to losses in the feeding network [43] Each array element or a small cluster of elements (subarray) is connected with one T/R module Array, can be as large as 5000 clements, so it is essential to keep the production costs of a single array element or subaray as low as possible. The price of one T/R module can be minimsed if most of its functions are integrated into only a few low-cost MMIC's (Monolithic Microwave Integrated Circults) [26].

Microstrip antenthas and microstrip phased-array antennas

Microstrip antennas or patch antennas have several interesting features, wuch as low production costs, light weight and conformability, which make them very interesting candidates for use in a phased-array coniguration Figure 1 ? shows an example of a single-layer isolated microstrip antenca The patch is made of coper and is situated on top of a dielectric substrate. The substrate

Side new
Top wew

Figure 13 Isolated single-layer micmostrip antenna
is mounted on a metal ground plane. A rectangutar patch shape is shown in this figure Other patch shapes are possible as well, but seem to have no significant advantages over the rectangular form. Sometimes the antenna is covered with a second diclectro layer This dielectnc cover could serve as a protection layer for the antenna. Sometumes a second patch is placed on top of this delectric cover. Such a seructure is called a two-layer stacked macrostrip antennal [60]. Stacked microstrip antennas have two closely spaced resonant frequences, which may be useful in obtaining a larger bandwidth or dual-frequency operation The (lower) patch ss fed with one or two coaxial cables in order to establich a linearly or circularly polarised lar field. The mer conductor of the coaxial cable is usually connected with the patch, whic the outcr conductor of the
coaxial cable is attached to the backside of the metal ground plane. Other feeding configurations, for example with microstrip lines, can be used as well Figure 1.4 shows the geometry of a finite array of rectangular microstrip antennas placed on a rectangular grid. The array elements can have a stacked configuration of the patches and the substrate can be built up of several layers (multilayer structure) Each array element is fed with one or two coaxial cables, depending on the polansation requirements of the antenna

Top view

Figure 14: Finite array of (stacked) microstrip antennar embedded in a grounded two-layer dielectruc slab with $i=1,2, \ldots, K$ and $l=1,2,, L$

Applecations of micmstrip antennas and microstrip phased arrays

Some typical (future) applications where mocostrip antennas or microstrip phased-array antennas can be used are land-mobile communications and mobile satellite communications [41], active phased-array radars, Synthetic Aperture Radar (SAR) [24] and medical systems [48] Especially mobile communcation is becoming a huge and important market where low-cost microstrip antennas can be used. At the present time, INMARSAT (INternational MARitime SATelite organisation) has four operational systems for mobile satclite communication at L-band frequencies $(\approx 15 \mathrm{GHz}$), i.e. INMARSAT system A, B, C and $\mathrm{M}[14,77]$ The antenna of a mobile user of the INMARSAT M system can be mounted on top of a car, truck, train, aeroplane or in an attache
case. In the near future, it 19 expected that the need for individual world-coverng telecommunication devices will grow. These devices should have the same ease of use and transport as our own mears of communication, ice our mouths, ears and eyes. Ideally, where the person goes, the communication device should accompany her/hm. Telecommunication devices should therefore be minaturized as much as possible to improve their transportability. This imples that future communication systems need the use of hgher frequencies, which results in a smaller antenna size In the United States, a study has been performed on a mobile satellite conmuncation 4ystem at a frequency of 20 GHz (receive) and 30 GHz (transmit) [22]. These high drequencies make it possible to use real personat-access communcation systems, because the antenta soze is small Figure 15 shows an example of such a personal access system Microstrip antennas

Figure 15: Itutare mobile sateilte communucatom with microstrip antentas [21]
are expected to be used in these future communication systems, because they can be integrated with the T/R modules, if, for cxample, MMIC fabrication techniques on GaAs substrates are used [40]. This would reduce the toral production costs dramatically Table 1.1 shows some typical antenta requirements for some (future) apphcations of mictostrip (artay) antennats The most important observation from table 1.1 is probably that the required bandwidth of these appluations varies from a minimum of 3 percent to approximatcly 50 percent for certain radat applications, The bandwidth is defined as the frequency band for whoch the inpul rellection coetficient of the antenna is lower than a certain value a max. $^{\text {. Usually } r_{m a x}=1 / 3 \text { is used, which corresponds to a }}$ Voltage Standing Watve Ratio (VSWR) of 2

Application	Bandwidth	Antenna Gain	Polarisation
INMARSAT data	7%	1 dB	circular
INMARSAT voice	7%	12 dB	circular
SAR	3%	21 dB	linear
radar	$10-50 \%$	$20-40 \mathrm{~dB}$	lincarfcircular

Table 11 Some typical antenna requirements.

Bandwidth of microstrip antennas,

When the present rcscarch was started in 1991, most microstrip antennas that had been described in the literature had a bandwidth of only a few percent. The rescarch activities since 1991 have therefore concentrated on the development of a theoretical model for the design of large-bandwidth microstrip antennas and microstrip phased-array antennas. The bandwidth of a microstrip antenna can be improved if electrically thick substrates are being used. Figure 1.6 shows the bandwidth of several microstrip antennas as a function or the electrical thickness of the substrate h / λ_{e}, where h is the thickness of the substrate and where $\lambda_{\text {a }}$ is the wavelength in the substrate. Four antennas have been designed and measured at the antenna laboratory of the Eindhoven University of Technology. More details about these four antennas can be found in section 39 . From figure 16 it is obvious that the bandwrdth of a microstrip antenna increases with increasing thickness of the substrate on which the patch is mounted. However, electrically thick substrates often give rise to an inductive shift in the input impedance, which mcans that a good impedance match can only be achieved if a complicated and expensive input network is used There are some techniques to avord this problem One of the configurations with an enhanched bandwidth is a stacked microstrip antenna. A stacked microstrip antenna has two closely-spaced resonant frequencies, which results in an improved bandwidth. The two antennas specified in figure 1.6 with a bandwidth between 20% and 30% have such a stacked configuration of the patches. Another technique to improve the bandwidth will be presented in chapter 3 of this thesis. The antenna in figure 1.6 with $h / \lambda_{r}=0.22$ is made with this new technique and has a bandwidth of approximately 50%.

The enlargement of the bandwidth of a microstrip antenna usually has a negative effect on the radiation pattern and the radiation efficiency [36]. This is mataly due to surface wave generation and radiation from the coaxial feed

Гigure 16: Bondwath of microstrip antemas (VSWR<2), $Z_{41}-502$.

1.2 Modelling approach

Several theoretical models for the analysis of morostrip antennus have been moroduced durng the past two decades Among the first models were the transmission-line model [17,9] and the cavity model [45]. Both approches are relatively easy to implement mato a computer program and require relatively short computation tomes. However, the predicted antenna charactenstics are not very accurate and are usually limited to the case of isolated, narow-hand, mocrostrup antennas Later, more ngorous methodh have been proposed [56, 49] The current distribution on the antenna is determined by colving an integral equation The integral-cquation methods are not restricted to the case of solated microstrip antemas, but can ako be appied to miccostrup aray ard to cmultayer configurations However, a major drawback of these methods s the long computation tume and the relatively large computer memory requrements. This seems to become less important nowadays since the computing power of even the cheapest computer syatem is growng more and more
In this the the, the current distribution on the electuc conductors (patches and coaxael probes) of each array element 14 found by solving the integral equation for the unknown currents with the method of moments [31] Fibe method of moments reduces an megral equation mona matrix
 the equation with a bet of festing functions. The resulting matrix equation con be solved with sandard numerical techniques in the analysh the electromagnetie lield is written in torms of
the dyadic Green's function The Grecn's function is the response due to a point current source embedded in the layered medium. Because the current distribution on the patches as wcll as on the coaxial probes needs to be determined, the Green's function of a horizontal point current source and the Green's function of a vertical point curent source have to be known Once the current distribution on the antenna is known, the input impedance or scattering matrix and the radiation characteristics can be determined. Most publications in the hiterature concern narrow-band and thus electrically thin microstrip antennas. Because of this thin substrate, the current distribution along the coaxial probe will be almost constant and therefore a simple feed model can be used. In case of an electrically thick substrate, however, a more sophisticated model for the feeding coaxial cables must be used which accounts for the variation of current along the probes and which ensures continuity of current along the patch-probe transitions An accurate feed model was developed that includes all these effects.
In general, one could say that there are two ways to analyse microstrip arrays with a method-of-moment procedure [3] (1) element-by-element approach (finite-array approach) and (2) infinite-array approach. In the case of a very large array, the infinite-array approach will be more efficient, while small atrays and elements near the edge of an array can only be properly analysed with an element-by-element approach. The best and probably most efficient design strategy for microstrip arrays is a combination of both approaches. In this thesis finite arrays of microstrip antennas are investigated. Much effort has been put into the development of special analytical and numencal techniques to reduce the computation time and to improve the accuracy of the method-of-moments formulation The theoretical model has been implemented in a software package.

1.3 Organisation of the thesis

As stated earlier, the current distrbution on a microstrip antenna or on an array of microstrip antennas is calculated by solving the integral equation for the currents with the method of moments The electromagnetic field which appears in the integral equation is witten in terms of the dyadic Green's function. The dyadic Green's function needs therefore to be determined before the currents on the antenna can be calculated. In chapter 2 the point-source problem for a grounded three-layer medium is solved. The exact spectral-domain dyadic Green's function is determined for a borizontal as well as for a vertical point current source cmbedded in this three-layer medium In chapter 3 a method is presented for an efficient and rigorous analysis of it single, linearly polarised, microstrip antenna. Calculated results are compared with measured data from several experments. In addition, the bandwidth of several microstrip configurations, will be investigated in chapter 3 It $1 s$ shown that microstrip antennas with a bandwidh varying from 20% to 50% can be constructed. In chapter 4 the method of chapter 3 is extended to the
case of a finte array of lincarly or circularly polansed mocostrip antennas Some numencal and analyual techniques are modroduced in order to reduce the regured CPU tome Several designs of microstrip arrays are dwsussed and compared with experments. Special attention es devoted to the influence of mutual coupling on the input reflection coefficient of each array clement and on the radiation pattern of the total array.

Chapter 2

Green's functions of a grounded two-layer dielectric structure

2.1 Introduction

In this chapter, we will start the analysis of microstrip antennas and microstnp arrays by developing an essential mathenatical tool that will be used in chapter 3 and chapter 4 , where the characteristics of matcostrip antennas and microstrip arays are determined with the method of moments The Green's function will there be used to calculate the electromagnctic fields caused by a certaita current distribution. Figure 2.1 shows the coordinate system that will be used throughout this thesis

We are interested in finding the electromagnetic fields due to a certain electric current distribution $\vec{f}(\vec{r})$ and a magnctic current distribution $\vec{M}(\vec{r})$ The electric ficld $\vec{\xi}(\vec{r})$ and magnetic ficld $\vec{H}(\vec{r})$ satusfy Maxwell's equations

$$
\begin{align*}
& \nabla \times \vec{G}(\vec{r})=-j+i i \vec{H}(\vec{r})-\vec{M}(\vec{r}), \tag{21}\\
& \nabla \times \vec{H}(\vec{r})=\vec{\omega} \vec{C}(\vec{r})+\vec{T}(\vec{r}),
\end{align*}
$$

where an $e^{j u t}$ dependence of the ficlds is assumed (time-harmonic solution). E denotes the permittivity of the medium and !: denote the permeability of the medium. The medium $1 s$ assumed to be isotropic, linearly reacting and homogeneous. In this chapter only electric source currents are considered, so $\bar{M}(\vec{v})=\overrightarrow{0}$ in equation (2.1) la chapter 3 both electrec and magnetic sources will be investigated
For most problems, meludung our microstnp antenta problem, it is not possible to obtain a closed-form solution of equation (2.1) Thercfore Green's functions will be introduced. A

Figure 2. 1 Coordinate system.

Grecn's function is the response due to a point source Sometimes the Green's furctions are directly related to the electnc and magnetic field. However, we will make use of the matgnetic vector potential. With $\vec{M}-0$ m equation (2.1), the divergence of the magnetic field equeds cero, 1e. $\nabla \vec{H}-0$ This implies that the magnetre ficld \vec{H} can be represented as the curl of another vector

$$
\begin{equation*}
\mathscr{H}(\vec{r})=\nabla \times \vec{A}(\vec{r}) \tag{22}
\end{equation*}
$$

in which $\vec{A}(\vec{r})$ is the magnetic vector potential Substituting this relation into the first equation of (21) with $\vec{M}-\overrightarrow{0}$ yrelds

$$
\begin{equation*}
\nabla \times \mid \vec{E}(\overrightarrow{0})+i \omega j: \vec{A}(\vec{v})-\overrightarrow{0} \tag{2.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\vec{E}(\vec{r})+\vec{\omega} \| \vec{A}(\vec{r})=-\vec{\nabla} \Phi(\vec{r}), \tag{2.4}
\end{equation*}
$$

where Φ is a scalar potentiall. The scalar potential Φ satisties the Lorent/ gauge $[32, p 77]$

$$
\begin{equation*}
\nabla \cdot A(\vec{r})=-\omega \varepsilon \mathrm{Q} i) \tag{2.5}
\end{equation*}
$$

Substituting the Lorentz gauge into equations (2.2) and (2.4) yields

$$
\begin{align*}
& \vec{H}(\vec{r})=\nabla \times \vec{A}(\vec{r}) \tag{26}\\
& \vec{\varepsilon}(\vec{r})=-\jmath \omega \mu \vec{A}(\vec{r})-\nabla\left[\frac{j \omega / i}{k^{2}} \nabla \cdot \overrightarrow{\mathcal{A}}(\vec{r})\right]
\end{align*}
$$

where $k=,{ }_{v} \sqrt{\epsilon_{\mu}}$ denotes the wave number in the medium. With $\vec{A}=\mathcal{A}_{x} \vec{E}_{x}+\mathcal{A}_{y} \vec{\epsilon}_{y}+\mathcal{A}_{z} \vec{e}_{x}+$ (2.6) takes the following form

$$
\overrightarrow{\mathcal{H}}(r, y, z)=\left[\begin{array}{l}
\partial_{y} \mathcal{A}_{z}-\partial_{z} \mathcal{A}_{y} \tag{2.7}\\
\partial_{x} \mathcal{A}_{x}-\partial_{\mathrm{y}} \mathcal{A}_{x} \\
\partial_{r} \mathcal{A}_{y}-\partial_{y} \mathcal{A}_{z}
\end{array}\right]
$$

and

$$
\overline{\mathcal{E}}(\mathrm{r}, y, 2)=\frac{-j \mu \mu}{k^{2}}\left[\begin{array}{c}
\left(k^{2}+\partial_{x}^{2}\right) \mathcal{A}_{y}+\partial_{x} \partial_{y} \mathcal{A}_{y}+\partial_{x} \partial_{\psi} \mathcal{A}_{4} \tag{2.8}\\
\left(k^{2}+\partial_{y}^{2}\right) \mathcal{A}_{y}+\partial_{y} \partial_{y}, \mathcal{A}_{x}+\partial_{y} \partial_{z} \mathcal{A}_{z} \\
\left(k^{2}+\partial_{z}^{2}\right), \mathcal{A}_{z}+\partial_{z} \partial_{z}, \mathcal{A}_{x}+\partial_{y} \partial_{z} \mathcal{A}_{y}
\end{array}\right]
$$

The Green's function is now defined as the magnetic vector potential created by a unit clcctriccurrent source or electnc dipole The magnetic vector potential tesulting from a certain current distribution $\overrightarrow{\mathcal{J}}\left(\vec{r}_{0}\right)$ can then be found by divideng this current distribution into an infinite number of elementary unit sources, and integrating the contributions of all these elementary sources. The vector potential at $\vec{r}=(x, y, z)$ can be expressed in terms of the dyadic Green's function $\overline{\overline{\mathcal{C}}}\left(\vec{r}, \vec{r}_{0}\right)$

$$
\begin{equation*}
\overrightarrow{\mathcal{A}}(\eta)=\iiint \overline{\overline{\mathcal{S}}}\left(\vec{r}, \vec{r}_{0}\right) \cdot \overrightarrow{\mathcal{J}}\left(\vec{r}_{0}\right) d V_{0} \tag{29}
\end{equation*}
$$

where V_{0} is a volume that encloses the source currents. The dyadic Green's function can be represented by a square 3×3 matrix of which the general form is given by

$$
\overline{\bar{G}}\left(\overrightarrow{r_{i}}, \overrightarrow{T_{0}}\right)=\left(\begin{array}{ccc}
G_{r x} & \mathcal{G}_{x y} & \mathcal{G}_{r z} \tag{2.10}\\
\mathcal{G}_{y \tau} & \mathcal{G}_{y y} & \mathcal{G}_{y z} \\
\underline{G}_{z x} & \bar{G}_{z y} & \mathcal{G}_{z}
\end{array}\right)
$$

Figure 2 2. Geometry of the grounded two-layer contigutation (sude vev.
The matrix element $G_{r, i}$ is the r-component of the Green's function at - (r, i, z due to a
 now be expressed an terms of the current distrbution $\vec{F}(T)$ and the dyadic Green's tunction by substituting (2 10) and (29) in (28) and (27)

2.2 Boundary-value problem

In this section, we wall formulate the boundary-value problem for the magnete vector potential \mathcal{A} in a grounded two-layer diclectric structure due to the exitation by an electric unit current nource The geometry of the layered structure is shown in figure 22 It consists of two dielectric layers (regons 1 and 2) with thicknest d_{1} and d_{2}, respectively, mounted on a perfectly conducting mifrute ground plane. Regron 3 consists of free apace The ground plane is located at $e-0$ In the Irequency domaun, the electromagnetic properties in each region of figure 22 can be represented by the permeability $;$, and the permittivity ε_{4}, with ${ }_{2}=1,2,3$ The permottivity is complex and is given by

$$
\begin{equation*}
\varepsilon_{1}-\varepsilon_{2}+\frac{\sigma_{1}}{\omega}-\varepsilon_{1}^{\prime}\left(1-i \operatorname{ldn} b_{1}\right)-\varepsilon_{1} \varepsilon_{3}, \tag{2.11}
\end{equation*}
$$

 E, denotes the refative permitivity in region. The permituvily in free apace as reperented by $E_{0} \approx 1 /\left(36 \pi 10^{\circ}\right) \mathrm{Fm}^{-1}$ The permeability in each region, is taken as the iree-space permedbrity $\because=m=4 \pi 10^{\circ} \mathrm{Hm}^{\prime}$

Let $\overrightarrow{\mathcal{A}_{1}}$ be the magnetic vector potential in region ? Thent $\overrightarrow{\mathcal{A}_{2}}$, can be found by substituting relation (2.6) into Maxwell's cquations (2.1) Note that $E_{r y}$ is constant within each region \& This results in the well-known Helmholtz equation for the magnetic vector potential that has to be satisfied in each region

$$
\begin{equation*}
\nabla^{2} \overrightarrow{\mathcal{A}}_{2}(\vec{r}): \epsilon_{i} k_{0}^{2} \overrightarrow{\mathcal{A}}_{x}(\vec{r})=-\vec{J}_{i}(\vec{r}), \quad \text { with } 2=1,2,3 \tag{212}
\end{equation*}
$$

where $\overrightarrow{\mathcal{F}}_{8}$ is the clectric current distribution in region \imath and $k_{\mathrm{D}}=\omega \sqrt{\varepsilon_{N} b_{0}}$ is the wave number in free spacc. At the interfaces of the three regrons and at the ground plane, the tangentral components of the fields arc subject to the following boundary conditions.
in which $\overrightarrow{c_{z}}$ is the unit vector in the \approx-direction. In addition, we will also have to define a boundary condition as $s \rightarrow \infty$ According to the causality condition [38] the fields must represent waves that propagate away from the sources and/or waves that decay with distance from these sources. In chapters 3 and 4 , we will only investigate merostrip antennas and merostrip arrays for whech the patches are located inside regron 2 and for which the inner conductor of the coaxial cables may be located inside region I and region 2 " We therefore only need to consider the situation of horizontally directed sheet currents inside region 2 and vertical currents inside region 1 or region 2. The analysis in this chapter is restricted to the determination of the Green's function in region 1 and regton 2, duc to an x-or y-directed electric dipole in region 2 and the Green's lunction in region 1 and 2 , duc to a z-directed electric dipole in region 1 or region 2

Horizontal dipole pa region 2

The electric dipole is located at $\vec{r}_{0}-\left(0,0, t_{0}\right)$ inside regron 2 and has only a component in the $a-$ direction (see figure 23). Later in this section, the location of the electric dipole will be extended to the general case with $\vec{r}_{0}=\left(x_{0} ; y_{0}, z_{0}\right)$. The Green's function of a y-directed dipoic can be

Figure 2.3 An I -drected dipole in layer 2 at $r_{0}=\left(0,0, z_{0}\right)$
found from the Gresn's function of an f-drected dipole by interchanging: and y in the resulting expresmons. The volume current density associated with an x-directed dpole at $\pi_{11}-\left(0,0, z_{0}\right)$ it given by

$$
\begin{equation*}
\left.\dot{J}_{2}(\vec{r})=\vec{r}_{1} \delta(r) A_{y}\right) \dot{i}\left(z-z_{1}\right) \tag{214}
\end{equation*}
$$

The Helmholtz cquations in the three regions now take the form

$$
\begin{aligned}
& \nabla^{2} \vec{A}_{1}+\vec{r}_{\mathrm{r}} k_{\mathrm{r}}^{2} \vec{A}_{1}-\overrightarrow{0} \quad 0<z<\mu_{1},
\end{aligned}
$$

$$
\begin{aligned}
& \nabla^{2} \mathcal{A}_{1}+i_{3}^{2} \mathcal{A}_{3}=0 \quad J_{2}<\pi<\infty,
\end{aligned}
$$

where the vector potential may be writen th terms of the components of the dyadic Green's function

$$
\begin{align*}
& =\overline{\bar{G}}\left(\overrightarrow{r_{0}}, \overrightarrow{r_{0}}\right) \tag{216}
\end{align*}
$$

In a homogeneous medium the electromagnctic ficlds created by an α-difected electric dipole can be described with the x-component of the magnetic vector potential alone, i $e_{\text {. with }} G_{r, r} \mathrm{In}_{n}$ a layered medium, however, a second component of the magnetic vector potential is required Sommertcld has shown [64, p. 257] that a solution can be found with $G_{t z x} \neq 0$ and $G_{t y x}=0$ Under the asumption that $G_{i y r}=0$, for $:=1,2,3$, equation (2.15) takes the form

$$
\begin{aligned}
& \left.\begin{array}{ll}
\nabla^{2} G_{3 x \mathrm{x}}+k_{0}^{2} G_{2 x,} & =0 \\
\nabla^{2} G_{2, x}+k_{n}^{2} G_{3 v} & =0
\end{array}\right\} \quad t_{22}<z<\infty
\end{aligned}
$$

$G_{1, w}$, and G_{12}, with ? $-1,2,3$. have to be chosen such that the corresponding field satisfies the boundary conditions (2.13) Unfortunately, it is not possible to find a closed-form expression for G_{1}, \ldots and $G_{v x}$ in the spatial doman ((x, y, z)-domain). Therefore, a Founcr transformation with respect to the x - and y ncoordinate is introduced, ie $(x, y, z) \rightarrow\left(k_{n}, L_{4}, z\right)$ The $\left(k_{F}, k_{y}, z\right)$ doman is called the spectral domain. In the spectral domain, an analytical solution for the boundary-value problem can be oblained This will be discussed in sectron 2.3 .

Vertical dipole in region I or region 2

Figure 24 shows the configuration for this situation. The volume current distribution associated with thes vertical dipole io region 1 or 2 is given by

$$
\begin{equation*}
\vec{F}(\vec{r})=\vec{\zeta}_{2} k(x)(b) r\left(z-z_{9}\right) \tag{218}
\end{equation*}
$$

It can be shown that only a single component of the vector potental is needed in order to solve the boundary-value problem for a z-directed dipole, ie $\vec{A}_{i}=\mathcal{G}_{7 \times 2} \overrightarrow{c_{z}}$ [64, p 246]. In terms of

Figure 2.4 A.z-divected dipole at $t_{10}=\left(0,0, \omega_{1}\right)$
G., , Belmholte's cquation (2 12) ratids

$$
\begin{align*}
& \nabla^{2} G_{2 x x}+E_{r_{2} 2} k_{1}^{2} G_{2 x z}=0 \quad h_{1}<2<h_{2}, \tag{219}\\
& \nabla^{2} G_{3_{22}}+i_{1}^{2} G_{3_{3}}=0 \quad f_{2}<2<\infty
\end{align*}
$$

If the dipole is located in regon ! and

$$
\begin{align*}
& \nabla^{2} \mathcal{G}_{2 x}+\varepsilon_{r 2} h_{i}^{2} G_{2 z}--(u) h(i j) h\left(z-z_{0}\right) h_{1} \leqslant z<h_{2}, \tag{2.20}
\end{align*}
$$

it the dipole is located an regron 2. Agan, $G_{2 z}$ has to be chosen such that the corresponding fietd satusties the boundary conditions (2.13) A Founcer transformation with respect to the transverse condinates will be introduced in order to obtan a solution for \underline{G}_{13},

2.3 Spectral-domain solution

It has already been stated before that in the spectral doman an analytical expression of the dyadic Green's function can be obtained. The original spatial-domain Green's function can be determined by applying an inverse Foutier transformation The Fourier transform with respect to x and y of a function $\mathcal{G}(x, y)$ and its concsponding inverse Fourier transform $G\left(k_{x}, k_{y}\right)$ are defined as

$$
\begin{align*}
& G\left(k_{n}, k_{y}\right)=F T\{\mathcal{G}(x, y)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{C}(x, y) e^{k_{x}, x} e^{y k_{y} y} d x d y, \\
& G(x, y) \quad-\quad P T^{-1}\left\{G\left(k_{x}, k_{y}\right)\right\} \tag{2.21}\\
& =\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G\left(k_{x}, k_{i}\right) e^{-k_{s} r_{i}} e^{-j k_{n} y} d k_{n} d k_{y} .
\end{align*}
$$

Some useful propertics of the Fourter transformation are

$$
\begin{align*}
& F T\left\{\nabla^{2} G_{x x}(x, y)\right\}=\left(-k_{y}^{2}-k_{y}^{2}+\partial_{z}^{2}\right) G_{2 x}\left(k_{x}, k_{y}, z\right), \tag{222}\\
& F T\left\{\delta\left(x-x_{0}\right) b\left(y-y_{0}\right) \delta\left(z-z_{0}\right)\right\}=e^{k_{x} x_{n}} e^{k_{y}, y_{1} \delta\left(z-z_{0}\right)}
\end{align*}
$$

These properties will bc used to find the spectral-domain Green's function of a horizontal dipole and of a vertical dipole.

Horizontal dipole in regron 2
The spectral-domain form of the Helmholtz equations (2.17) is given by

$$
\left.\left.\begin{array}{r}
\partial_{2}^{2} G_{1 x x}+h_{1}^{2} G_{1 \pi x}=0 \\
\partial_{x}^{2} G_{12 x}+k_{1}^{2} G_{12 x}=0
\end{array}\right\} \begin{array}{l}
0<z<h_{1} \tag{2.23}\\
\partial_{z}^{2} G_{2 \pi x}+i_{2}^{2} G_{2 x x}=-\delta\left(z-z_{0}\right) \\
\partial_{x}^{2} G_{2 x x}+k_{2}^{2} G_{2 x x}=0
\end{array}\right\} \begin{aligned}
& h_{1}<z<h_{2}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\partial_{2}^{2} G_{Y_{2 F}}+h_{3}^{2} G_{Y F r}=0 \\
\partial_{s}^{2} C_{3_{Y Y}}+k_{3}^{2} G_{Y_{z Y}}=0
\end{array}\right\} n_{2}<z<\infty_{1}
$$

in which the vertical components of the wave vector in each region are given by

$$
\begin{aligned}
& \lambda_{1}^{2}=\therefore A_{0}^{2} \quad i_{2}^{2} \quad h_{4}^{2} \quad\left(\operatorname{Im}\left(h_{1}\right)<0 \operatorname{or} \operatorname{Im}\left(R_{1}\right)=0 \wedge \operatorname{Re}\left(h_{1}\right) \geq 0\right)_{1} \\
& l_{2}^{2}-\varepsilon_{2} i^{2}-k_{3}^{2}-k_{3}^{2} \quad\left(\operatorname{lm}\left(h_{2}\right)<0 \text { or } \operatorname{lm}\left(k_{2}\right)-0 \wedge \operatorname{Re}\left(k_{2}\right)>0\right) . \\
& k_{i}^{2}-k_{1}^{2}-k_{3}^{2}-k_{k}^{2} \quad\left(\operatorname{Im}\left(k_{3}\right)<0 \text { or } \operatorname{Im}\left(k_{3}\right)=0 \wedge \operatorname{Re}\left(k_{3}\right)>0\right)
\end{aligned}
$$

The solution of the inhomogeneous Helmholtz equation for $G_{2 v,}$ is a combination of a homogencoust solution and a particular volution. The particular solution can be found by means of variation of constants and is giver by

$$
\begin{equation*}
G_{\lambda_{2}}^{n}=\frac{1}{2 H_{2}} \cdot x, x_{1}-x_{1} \mid \quad H_{1}<z<h_{2} \tag{2.24}
\end{equation*}
$$

The other components of the spectral-domam Green's function satisfy a homogeneous Helmholtz equation. The general solution of (2.23) is a lincar combination of elementary functons
where the radiation condition was used to elimmate the terms proportionat to ation $\mathrm{G}_{\text {? }}$, and $G_{1, n}$ Note that $I m(\xi) \leq 0$. The physical interpretation of the general solution (2 25) in allustrated an figure 25 for the r-component G_{1}, \ldots In region 1 and region 2 , the gencrat solution of

Figure 2.5: Physical interpretation of the general solution of $G_{\text {wate }}$
$G_{x . x}$ is a combinaton of an upgoing wave in the $+z$-drection and a downgoing wave propagatung in the $-z$-direction In regron 3 there is only an upgoing wave in the $+z$-drection.
The 10 unknown constants in (2.25) can be determined by applying the boundary conditions (2.13) for the electric and magnetic field at the interfaces belween the layers The Fourier transform of (213) gives rise to the following set of boundary equations in terms of the components of the spectral-domain Green's function

$$
\left.\begin{array}{ll}
G_{1 x x} & =0 \\
-j k_{x x} G_{1 x x}+\theta_{x} G_{1 z x}= & 0
\end{array}\right\} \quad=G_{2 x x}, z=0,
$$

$$
\begin{aligned}
& G_{n: n} \quad=G_{s,}
\end{aligned}
$$

$$
\begin{aligned}
& G_{2 a} \quad=G_{3 \mathrm{~m}} \\
& \partial_{s} G_{2 z} \quad=\partial_{5} G_{? T r} \\
& \therefore=11_{2}
\end{aligned}
$$

With the general solution (2.25) substituted in the boundary conditions (2.26), one obtains a set of 10 linear equations with 10 unknown coefficents Ths set of lanear equations can be solved analy tically. A convenient way to determine the unknown coefficients sto use the Fresmel reflection coefficients at the interfaces between each region for T'E and T'M fields [12, p. 48] These coefficients are given by

$$
\begin{equation*}
h_{i i}^{l t}=\frac{k_{i}-i_{2}}{k_{i}+k_{i}} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{y 2}^{j M}=\frac{\varepsilon_{r}, k_{2}-\varepsilon_{i} k_{1}}{\varepsilon_{r_{2}} k_{j}+\varepsilon_{r y} k_{i}^{k_{i}}} \tag{228}
\end{equation*}
$$

in which k, is the vertical component of the wave vector in one of the thee regrons, $-1,2,3$ As an example, we will take a closer look at the solution for $C_{2 r x}$ and $D_{2_{r r}}$ of $G_{2 r, t}$ in region 2 . At the miterface: - h_{2}, the downgong wave in region 2 can be expressed in terms of the upgong wave in region 2

Similarly, at the toterface $z-h$ the upgong wave in region 2 can be expresed in cerms of the downgong wave Thas gives the relation

$$
\begin{equation*}
C_{2 r}=R_{21}^{L L}\left(D_{2, w} r^{-k_{A} d_{2}}+\frac{1}{2 \gamma k_{2}} e^{-k_{2}\left(x_{1}-i_{21}\right)}\right) \tag{230}
\end{equation*}
$$

where $\bar{R}_{21}^{j} L$ is the generalised reflection coefficient, which includes the effect of anultple reflections; and transinismions in region 2
in which $T_{21}^{\prime L}=\left(1+R_{21}^{T E}\right)$ is the Fresnel transmission coefficient between layer 2 and layer 1 Note that the Fresnel reflection coefficient for TE-waves at the ground planc is equal to -1 If cquation (2.29) is substituted into equation (2.30), a solution for $C_{2 x w}$ and $D_{2 n s}$ can be obtained:

$$
\begin{align*}
& C_{2 x:}=\frac{1}{2 j k_{2}} \vec{R}_{21}^{T E}\left[\frac{e^{-j k_{2}\left(z_{0}-k_{1}\right\rangle}+R_{23}^{T E} e^{-j k_{2}\left(2 h_{2}-h_{1}-k_{0}\right)}}{D^{T E}}\right], \tag{2.32}\\
& D_{2 x x}=\frac{1}{2 j k_{2}}-R_{23}^{T E}\left[\frac{e^{-j k_{2}\left(h_{2} \alpha_{2 j}\right)}+\tilde{R}_{21}^{I E} e^{-j k_{2}\left(x_{1}+h_{2}-2 h_{1}\right)}}{D^{T E}}\right],
\end{align*}
$$

in which the denominator $D^{T E}$ is given by

$$
\begin{equation*}
D^{r E}=1-\tilde{R}_{21}^{T E} R_{23}^{T E} e^{-2 j k_{2} d_{2}} \tag{2,33}
\end{equation*}
$$

The other 8 unknown coefficients in (2.25) can be calculated in a simlar way,
To summarize, the expressions for the components of the spectral-domain Green's function due to an x-directed dipole are given by

$$
\begin{array}{ll}
G_{2, x}=g_{i}, & \text { for } t=1,2, \\
G_{2 y I}=0, & \text { for } t=1,2, \tag{234}\\
G_{1, i x}=-k_{m} g_{i+2}, & \text { for } t=1,2,
\end{array}
$$

with

$$
\begin{aligned}
& \left.g_{1}=\frac{1}{2 \eta k_{2} D^{I E}}\left(\frac{\left(1+R_{21}^{T E}\right) e^{-j k_{1} h_{1}}}{\left(1-R_{21}^{T E} e^{-2 j k_{1} h_{1}}\right)}\right) 2\right) \sin \left(k_{1} z\right) . \\
& {\left[e^{j^{k_{2}\left(z_{n}-h_{1}\right)}}+R_{23}^{I E} e^{j_{2}\left(k_{1}-2 h_{2} \mid h_{1}\right.}\right],} \\
& \int \frac{1}{2 j k_{2} D^{2 E}}\left[e^{-j k_{2} s_{11}}+R_{\Omega 3}^{T E} e^{j k_{2}\left(=0-2 k_{2} t\right.}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(\varepsilon_{2} \quad \varepsilon_{3}\right)\left(1+R_{2}^{G} c^{23 k_{2} d_{2}}\right) L_{2}(20)\right] .
\end{aligned}
$$

with

The functions $F_{1}\left(t_{0}\right)$ and $F_{2}\left(\sum_{i}\right)$ ate given by

$$
\begin{aligned}
& {\left[0^{-k_{2}\left(s_{1}-x_{1}\right)}+h_{2}^{7 D_{2}} e^{w_{2}\left(x_{1}-2 n_{2}+h_{1}\right)}\right] \text {, }}
\end{aligned}
$$

and the denominators $D^{i M}$ and D^{72} are given by

$$
\begin{align*}
& D^{I M}=1-\dot{म}_{21}^{C M} \bar{R}_{2,}^{Y}{ }^{M}{ }^{2 j k_{2} d_{2}}, \tag{2.38}\\
& D^{i t}-1-\bar{R}_{21}^{i} R_{23}^{1} t_{c}^{-2 \cdot k_{2} \alpha_{2}}
\end{align*}
$$

Note that we are only interested in the fields in region 1 an 2 . Therefore, the expressions for C_{3} : and $G_{T_{z} r}$ are nol given here. The functons $D^{T M}$ and $D^{\text {Th }}$ can be rewrilten in the following form
in which 7ε and T_{m} are given by

$$
\begin{align*}
T_{e}= & \rho k_{2} k_{3} \sin \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right)+k_{1} k_{2} \cos \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right) \\
& -k_{2}^{2} \sin \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right)+\jmath k_{1} k_{3} \cos \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right) \tag{2.40}\\
T_{m}= & k_{2} k_{3} \varepsilon_{\mathrm{r}!} \varepsilon_{\mathrm{r} 2} \cos \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right)+j k_{2}^{2} \varepsilon_{r_{1}} \cos \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right) \\
& -k_{1} k_{3} \varepsilon_{r_{2}}^{2} \sin \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{3}\right)+j k_{1} k_{2} \varepsilon_{r 2} \sin \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right)
\end{align*}
$$

The zeros of the functions T_{n} and T_{m} correspond to solutions of the characternstic equation for transverse electric (TE) and transverse magnetic (TM) surface waves, respectively, in a grounded two-layer dielectric structure [32, p. 168]. These zeros correspond to first-order poles in the spectral-domain Green's function and some care has to be taken in the numerical inverse Fourier transformation. In section 3.8, an analytical method will be proposed to avoid these numerical problems. The spectral-domain Green's function of a y-directed dipole can be found by interchanging k_{x} and k_{y} in the spectral-domain Green's function of an z-directed dipole, iee

$$
\begin{array}{ll}
G_{i y y}=g_{i} ; & \text { for } t=1,2 \\
G_{i z y}=0, & \text { for } t=1,2 \tag{2.41}\\
G_{i z y}=-i_{y} g_{i}+2, & \text { for } t=1,2
\end{array}
$$

Vertical dipoie in region I or region 2

First, the situation of a vertical dipole located inside region I will be considered Transforming Helmholtz's equations (2,19) to the spectral domain yields

$$
\begin{array}{ll}
\partial_{3}^{2} G_{1 z z}+k_{1}^{2} G_{: z z}=-\delta\left(z-z_{0}\right) & 0<z<h_{1} \\
\partial_{z}^{2} G_{2 \pm 2}+k_{2}^{2} G_{2 z z}=0 & h_{1}<z<h_{2}, \tag{2.42}\\
\partial_{3}^{2} G_{3 x z}+k_{3}^{2} G_{3 z z}-0 & h_{2}<z<\infty
\end{array}
$$

The general solution of (2 42) is a combmation of a homogencous solution and a particular solution"

Where agan the radation condition was used to elminate the term propotional to : : : in $G_{\text {ers }}$ From the boundary conditions (2 13), a et of restrictions for $C_{\text {nax }}$ can be obtained

$$
\begin{aligned}
& \theta_{i} G_{1 s:}=0 \quad z=0,
\end{aligned}
$$

Substituting (243) into (2 44) results in a sel of 5 lanear equathons with 5 unknown cocficients At the interfuce between the ground plane and layer I , ie. at $z=0$, the upgong wave car be exprested in terms of the downgoing wave.

$$
\begin{equation*}
G_{1=s}=D_{1=s^{*}} \quad \left\lvert\, k_{1} k_{1}+\frac{1}{2 j k_{1}} v^{k_{1}=s_{1}}\right. \tag{2.45}
\end{equation*}
$$

From the boundary conditions at:- h_{1} and $z-h_{2}$ we get

$$
\begin{equation*}
D_{1 \times 8}=\dot{R}_{12}^{T}\left(C_{1=8}^{\prime} N_{1}^{k_{1}^{\prime}, 1}+\frac{1}{2 k_{1}}, A_{1} k_{1} z_{21}\right) \tag{246}
\end{equation*}
$$

In which $R_{1}^{n}{ }^{n}$ is the generalised reflection coefficient from layer I to layer 2 and is geven by

$$
\dot{R}_{12}^{M}=R_{12}^{M}, \begin{array}{r}
\left.\left(1+R_{12}^{M}\right) R_{22}^{M}\left(1+R_{21}^{M}\right)^{M}\right)^{-2, k k_{2} d t} \tag{247}\\
1+\Gamma_{12}^{M} R_{2}^{G} i_{i}-2, k_{2} d d_{2}
\end{array}
$$

From (245) and (2.46) the cocfficients $C_{15:}$ and $D_{1 x z}$ can be determmed The remaining 3 unknown coefficients in (2.43) can be found in a similar way The final result is

$$
\begin{align*}
& G_{1+4}=g_{5} \tag{2.48}\\
& G_{2 x i}=g_{6}
\end{align*}
$$

with

$$
\begin{align*}
& \left(\left(\frac{1+R_{12}^{T M} R_{23}^{T M} \epsilon^{-2, k_{2} d_{2}}}{2 j k_{1} D^{T M}\left(1-R_{12}^{T M} e^{-2 / k_{1} h_{1}}\right)}\right) 2 \cos \left(k_{1} z\right)\right. \\
& {\left[e^{-j \mu_{1} \hat{A}_{1}}+\tilde{R}_{12}^{\left.T M_{2} e^{j k_{1}\left(\tilde{z}_{1}-2 \xi_{1}\right.}\right)}\right] \quad 0 \leq z \leq \pm 0,} \\
& \left(\frac{1+R_{12}^{\mathrm{f} M} R_{23}^{T M} e^{-2 j k_{2} d_{2}}}{\left.2 j k_{1} D^{T M} M_{(}-R_{12}^{T M} e^{\left.-2 k_{1} k_{1}\right)}\right)}\right) 2 \cos \left(k_{1} z_{0}\right) . \tag{2.49}\\
& {\left[e^{-3 k_{1} z}+\vec{R}_{12}^{I M} m^{k_{1}\left(s-2 h_{1}\right.}\right] \quad z_{0} \leq z \leq h_{1},} \\
& k_{6}=\frac{2 \cos \left(k_{1} z_{0}\right)\left(1+R_{12}^{\mathrm{P} M}\right) e^{-k_{1} k_{1}}}{2 / k_{1} D^{T M}\left(1-R_{2}^{T M} e^{\left.-2) k_{1} h_{j}\right)}\right.}\left[e^{-k_{2}\left(t-h_{1}\right)}+R_{23}^{T M} e^{2 k_{2}\left(z-2 h_{2}+k_{1}\right)}\right] .
\end{align*}
$$

The same procedure can be used if the vertical dipole is located inside region 2. The final expressions for $G_{1: 2}$ and $G_{2 z z}$ are also given by (2.48), where g_{5} and g_{6} now take the form

$$
\begin{align*}
& \left\{\frac{1}{2 j k_{2} D^{7 M}}\left[e^{k_{2} z_{n}}+R_{2}^{7} M_{c}^{M_{2}\left(k_{7} \cdot\left(z_{11}-2 h_{2}\right)\right.}\right]\right. \\
& {\left[\mu^{k_{2} z}+\breve{R}_{21}^{T_{e}}{ }^{-k_{2}\left(z-2 h_{1}\right)}\right] \quad h_{1} \leq z \leq z_{0}} \tag{2.50}\\
& \frac{1}{2 j k_{2} D^{T M}}\left[e^{\mu_{2} z_{0}}+\bar{R}_{21}^{T} M_{c}-y^{-k_{2}\left(z_{1}-2 k_{1}\right)}\right] . \\
& {\left[e^{-k_{2} s}+R_{23}^{2 M_{c} k_{z_{2}\left(z-2 h_{3}\right)}}\right] \quad z_{0} \leq z \leq h_{2},}
\end{align*}
$$

Sumpary

To summarize, the spectraldomain Green's function of a horizontal dipole in layer 2 or a vertical dipole in layer 1 or layer 2 , located at the coordinates $r_{1}=\left(r_{n}\right.$, th $\left._{n}, z_{0}\right)$, 18 given in matrix form by

An addtional factor of f, . $\|_{1}$: , whe ocure in the above expression, which 1 duc to the displacement (x, y) of the dipole with respect to the ongin of the coordinate system

2.4 Electric and magnetic fields in the spatial domain

Once the dyadic Green's function of the macrostrep structure has been determined, the fields in each regron eatn be catculated with retations (26) and (29) The electric field in the spectral doman can be found from relatron (2 8) "
and the spectrat-doman magnetic fied from relation (2.7)
with

$$
\begin{aligned}
& ?=1 \quad \text { if } 0 \leq z \leq h_{1} \\
& i=2 \quad \text { if } h_{1} \leq z \leq h_{2}
\end{aligned}
$$

where \vec{A}_{t} is the magnetic vector potential, with $\vec{A}_{v}=A_{i x} \vec{e}_{x}+A_{w} \vec{e}_{y}+A_{i s} \vec{e}_{x}$. Now let us assume that there is a certan volume current distnbution inside volume V_{0}, which is located in region 1 and/or in region 2 . The magnetic vector potental caused by this current distribution can be whiten in terms of the spectrad-doman Green's function, when relation $(2,9)$ is used. This relation can be rewritten in the following way

$$
\begin{align*}
& \vec{A}_{2}(\vec{r})=\iiint\left(\overrightarrow{r_{2}}, \vec{r}_{0}\right) \quad \vec{J}\left(\vec{r}_{0}\right) d x_{0} d y_{0} d z_{0} \\
& =\iiint\left[\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{G}_{i}\left(k_{x y}, k_{3}, z_{y}, \overrightarrow{F_{0}}\right) e^{-j k_{n} x^{2}} e^{-j k_{v} y} d k_{x} d k_{y}\right] \\
& \vec{J}\left(\vec{r}_{0}\right) d r_{0} d y_{0} d z_{0} \\
& =\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{h_{2}} \vec{G}_{2}^{\prime}\left(h_{n,}, k_{y,}, z, z_{0}\right) \vec{J}\left(h_{m}, k_{1,}, z_{0}\right) d z_{0} \tag{2.54}\\
& e^{-j k_{1} k_{e}-k_{y "}} d k_{5} d k_{3} \\
& -P T{ }^{\prime}\left\{\overrightarrow{A_{v}}\left(k_{w}, k_{y}, z\right)\right\},
\end{align*}
$$

 transform, with respect to x_{0} and y_{0}, of the current distribution $\vec{J}\left(x_{0}, y_{0}, z_{0}\right)$, with

$$
\begin{equation*}
\vec{J}\left(k_{n}, k_{1}, z_{0}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \vec{J}\left(x_{0}, y_{0}, z_{0}\right) c^{k_{x} x_{1}} e^{k_{x} z_{1}} d x_{0} d y_{0} \tag{2.55}
\end{equation*}
$$

From (254) it follows that

$$
\begin{equation*}
\dot{A}_{1}^{\prime}\left(k_{x}, k_{y}, z\right)=\int_{0}^{h_{2}} \vec{G}_{x}\left(k_{x}, k_{y}, z, z_{0}\right) \vec{J}\left(k_{x}, k_{y}, z_{0}\right) d z_{0} \tag{256}
\end{equation*}
$$

If relation (2.56) is substituted in (2.52) and (253), an expression for the electric and magnetic fields in region 1 and region 2 can be determined:
and
with

$$
\begin{aligned}
& =1 \quad \text { if } 0 \leq z \leq h_{1} \\
& =2 \text { if } i_{1} \leq x<l_{2}
\end{aligned}
$$

in which the dyadic function $\overline{Q_{2}}$ is given by
with

$$
\begin{aligned}
& Q_{1 \Sigma \Sigma}^{E}\left(h_{x}, h_{y}, * z_{0}\right)=-\frac{\mu \mu_{0}}{g_{r_{i}} k_{0}^{2}}\left[-k_{x} g_{n} g_{t+4}\right] \\
& 0 \leq x_{0} \leq h_{2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq \overbrace{0} \leq h_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{2 i y}^{L}\left(k_{x}, h_{y}, z, z_{0}\right)=\frac{j \omega \mu_{0}}{\epsilon_{T T} k_{0}^{2}}\left[k_{y} \varepsilon_{r_{i}} k_{n}^{2} g_{2+2}+h_{y} \dot{g}_{2}^{2} g_{i+2}+j k_{i j} \partial_{2} g_{i}\right] \quad h_{1} \leq z_{0} \leq h_{2},
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\partial \omega \mu_{0}}{\varepsilon_{\mathrm{rt}} k_{\mathrm{G}}^{2}} \delta\left(z-z_{0}\right)-\frac{\gamma \omega \mu_{0}\left(k_{x}^{2}+k_{y}^{2}\right)}{\varepsilon_{\mathrm{r}} k_{0}^{2}} q_{\mathrm{v}}+4 \quad 0 \leq z_{\mathrm{U}} \leq h_{2},
\end{aligned}
$$

and where the dyadic function $Q_{i}{ }_{i}^{h}$ is given by
with

$$
\begin{aligned}
& Q_{i t h}^{H}\left(k_{\pi}, h_{2,}, z_{1} z_{0}\right)=-j k_{T} h_{y} g_{i+2} \quad h_{1} \leq z_{0} \leq h_{2}, \\
& Q_{2 r y}^{\prime \prime}\left(k_{x}, k_{u}, z, z_{0}\right)=j k_{i}^{2} g_{2+2}-\partial_{z} g_{2} \quad h_{1} \leq z_{0} \leq h_{2}, \\
& Q_{x_{t}}^{H}\left(i_{y}, h_{y}, \dot{,}, A_{0}\right)=\partial_{2} g_{2}-j k_{r}^{2} g_{2+2} \quad h_{1} \leq z_{0} \leq h_{2}, \\
& Q_{w x}^{i}\left(h_{x}, k_{w}, z_{1}, z_{0}\right)=-i h_{3} G_{v+4} \quad 0 \leq z_{y} \leq h_{2},
\end{aligned}
$$

$$
\begin{aligned}
& Q_{t_{y}}^{4}\left(k_{x}, k_{5}, z, z_{0}\right)={ }_{j} k_{x} g_{i+4} \quad 0 \leq z_{1} \leq h_{2}, \\
& Q_{i=r}^{H}\left(k_{r}, k_{y}, z, z_{0}\right)=j k_{i} g_{i} \quad h_{1} \leq z_{0} \leq h_{2}, \\
& Q_{i \Sigma y}^{v}\left(k_{x}, k_{4}: z_{1}, z_{0}\right)=-j k_{x} q_{2} \quad h_{1} \leq z_{1} \leq h_{2}, \\
& Q_{0, \pi}^{i j}\left(k, k_{10}, z_{1}, z_{0}\right)=0 \quad 0 \leq z_{0} \leq h_{z}
\end{aligned}
$$

Chapter 3

Isolated microstrip antennas

3.1 Introduction

This chapter deals with the annalysis of isolated, lincarly polarised, microstrip antennas. The antemna is built up of two dielectric layers mounted on an infinite ground plane, and has one or two rectangular metallic patches. The lower patch is fed with a single coaxial cable, which results in a linearly polarsed far field. Circular polarisation is discussed in chapter 4 of this thesis. From the electric-field boundary condition on the patchcs and on the coaxial probe of the morostip antenna an integral equation for the unknown currents is derived This integral equation rs solved numerically with a Galerkin type of method-of-moment procedure, which includes the exact spectral-doman Green's fuperion of chapter 2. Once this curent distribution is known, the input impedance and radation pattern can be detemined. In the case of an electrically thick substrate. a very accurate model for the feeding coaxial cable has to be used that includes the variation of current along the coaxial probe and that ensures continuity of current at the patch-probe transition. In section 3.8 some techniques will be discussed to improve the numerical accuracy of the method and to reduce the total computation time

3.2 Model description

3.2.1 Two-layer stacked microstrip antenna

The geometry of an isolated stacked microstrip antcnna with rectangular patches and fed by a coaxial cable is shown in figure 3.1. The layered structure consists of two dielectric layers backed by a perfectly conducting infinite ground plane. This 15 exactly the same structure as discussed in chapter 2 , section 2.2. Therefore, the notation introduced in section 2.2 will also be used here From a practical point of view. we may assume that both patches are situated within region 2.

Figure 3. : Geometry of an isolated stackedmicrostrip antenna embedded an a we-iayer dieiectric structure.
so $h_{1} \leq z_{1}^{\prime} \leq x_{2}^{\prime} \leq h_{2}$. The x - and $;$-dimensions of the lower patch (located at $z=\dot{z}_{1}^{\prime}$) are denoted by $W_{x 1}^{\prime}$ and W_{z}, respectively, and the r - and y-dimensions of the upper patch (located at $z=V_{2}$) are denoted by $W_{x 2}$ and $W_{y 2}$. Both patches are treated as perfect electric conductors and are assumed to be infintely thin. The centres of both patches are located at $(x, y)=(0,0)$. The feeding coaxial cable consbth of an inner conductor with radius a and an outer conductor with radus, b. The centre of the coaxial cable is located at $\left(x_{w}, \psi_{s}\right)$ The inner conductor (also called probe) is usually connected to the lower patch and the outer conductor is connected to the ground plane. Another possible feeding structure that will be studied in this thesis is show in figure 3.2 . Now, the inner conductor or the coaxial cable is not physically connected to the lower patch, $i \varepsilon$, $\lambda_{f}<z_{1}$. This so-called elcctromagnetically coupled (EMC) microstrip structure has broadband characteristics if the dimensions of the antenna are chosen properly (see section 39)

3.2.2 Thin-substrate model

Microstrip antennas, for which the patches are printed on an electrically thin substrate, have a high quality factor, and therefore have a very small frequency bandwidth ff the distance between the fower patch and the ground plane is small compared to the wavelength in the substrate, i.e, if $z_{i}^{\prime} \leqslant \lambda$, we may assume that the current distribution along the coaxial probe is constant The

Figure 32 Etectromagnetically coupled (EMC) microstrip antenna.
probe is represented by a cylinder with radius a. The x-independent current distribution on this cylinder is then given by

$$
\begin{align*}
\overrightarrow{\mathcal{T}}_{p: o b e}^{t, t}(x, y, z) & =I^{p} \overrightarrow{\mathcal{T}}_{p o b s}(x, y, z) \tag{3.1}\\
& =\vec{\varepsilon}_{\mathrm{z}} \frac{I^{p}}{2 \pi a} b\left(\sqrt{\left(x-x_{s}\right)^{2}+(y-y s)^{2}}-a\right), \quad 0 \leq z \leq \bar{x}^{\prime}
\end{align*}
$$

Where T^{p} is the port current at $z=0$ and z_{F} is the length of the coaxial probe. This current distribution is now used as a source exciting the two metallic patches of the antenna. Note that this model only works well if the probe is connected to the lower patch. Therefore, the configuration of figure 3.2 cannot be analysed with this simple source model. This thin-substrate source model has been often used succesfully in literature to analyse microstrp antennas $[5,28,56]$, because most of these microstrip antennas are narrow-banded and therefore have a relative thith substrate. Microstrip antcnnas with a large bandwidth arc usually fabricated on electrically thick substrates. This means that the simple source model, represented by formula (3.1), cannot be used any morc, because the current distribution along the probe will not be constant. A second major drawback of the simple constant-current source model is the fact that the condition of continuity of current at the probe-patch transition is not fulfilled. A better and more general soutce model is presented in the next section.

3.2.3 Thick-substrate model

Figure 3.3 shows a detailed view of the feeding coaxial cable. The inner conductor of this cable is represented by a cylunder with radius a with perfectly conducting walls. It is assumed that

Гigure 3.3. Detailed vew of the feeding coaxial structure.
the $\%$-direcred surface current on the cylinder does not depend on the angular coordinate ϕ. This surface current is unknown and will be determined with the same procedure as the currents on both patches (see section 33) Further, a special attachment mode will be used to ensure the continuty of current at the probe-patch transition (see section 3.4) The clectric ficld in the coaxtal aperture at $z=0$, act as a source exciting the antenna, ic the probe and the two patches.
From the analysis of wire antennas it was concluded that at frequencies for which $\leqslant \leqslant<0.1$, wath $k-2 \pi f \sqrt{\mu_{k}}$, accurate results are obtained if the field at the coaxial aperture $1 s$ approximated by the fundamental mode only, 1 e, the TEM-mode [54, p. 35]. The clectric ficld of the TEM-mode in the coaxial cable is the same as the electric field of the corresponding electrostatic problem for the coaxial cable [32, p. 63] When higher-order modes are neglected, the electric field in the aperture of the coaxial cable at $\%=0$ is given by

$$
\begin{equation*}
\vec{E}_{\mathrm{r}}(r) \approx \vec{\varepsilon}_{\mathrm{r}: \mathrm{M}}(r)=\frac{V^{p}}{\ln (b / a)} \vec{k}_{r} \quad a \leq r \leq b \tag{3.2}
\end{equation*}
$$

where $\vec{r}^{-}=\vec{r}-\vec{r}_{*}=\left(r^{\prime} \cos \phi, r \sin \phi_{y}^{\prime}, 0\right.$, with $\vec{r}_{*}-\cdots\left(x_{s}, y_{k}, 0\right) \quad V^{r}$ is the impressed port voltage between the mner and outer conductor of the coaxial eable. So for agiven port voltage V^{p}, we have to determine the corresponding port current I^{p} From the equivalence principle [32, F 1| |] it follows that the ongmal problem of figure 3 4a can be replaced by the equavalent problem of figure 3.4b In figure 3.4b a surface magnetic current $\vec{M} \vec{M}_{f i n i}$ is placed at the former coaxial opening, immediately above an infinte ground plane Tbe approximated magnetic current

Figure 34. Equivalent magnetic surface current at the couxial opening.
distribution at the coaxial opening is now given by

$$
\begin{equation*}
\vec{M}_{f r a i l}^{+s t}(r)=\overrightarrow{\mathcal{M}}_{f r 2 l i}(r) V^{p}=\vec{\varepsilon}_{r}(r) \times \vec{e}_{x}=-\frac{V^{p}}{r^{\prime} \ln (b / a)} \vec{e}_{\phi}, \quad a \leq r^{\prime} \leq b \tag{3.3}
\end{equation*}
$$

In the literature this source model is often called the "magnetre frill excitation model" [54, p 35]

3.3 Method-of-moments formulation

In this section the thick-substrate source model of section 323 will be used. The magnetic current distribution (3 3) an the coaxial aperture is used as a source. The current distribution on the probe and on both patches of the microstrip antenna are the unknown quantities that have to be determined. At the end of this section the equations for the case of the thin-substrate model of section 3.2 .2 are given The boundary conditons on the two patches and on the coaxial probe: are used to formulate a system of integral equations for the unknown current distribution \vec{J} on the antenna These integral cquations are solved by applying the method o[moments [31] We will start with the boundary condition that on both patches and on the probe the total tangential clectric field has to vanish

$$
\begin{equation*}
\vec{r}_{\mathrm{r}} \times \vec{\varepsilon}^{\mathrm{st}}(\vec{r})=\overrightarrow{c_{0}} \times\left(\vec{E}^{x}(\vec{r})+\vec{\varepsilon}^{\mathrm{s}}(\vec{r})\right)=\overrightarrow{0}, \quad \vec{r} \in S_{0} \tag{3.4}
\end{equation*}
$$

in which the surface S_{0} denotes the surface of the patches and the probe and where $\overrightarrow{V^{\prime \prime}(\vec{r}) \text { and }}$ $\vec{\varepsilon}^{*}(\vec{r})$ represent the excitation field and the scatered field, respectively, and where \vec{F}_{1}, is the unit normal vector on the metallic surface under consideration The scattered field results from the induced currents on both patches and on the probe The excitation field is the electric held due to the magnetic current distribution in the coaxial aperture at $z-0$ The scattered field can be expressed in terms of the unknown current distribution $\overrightarrow{\mathcal{J}}$ and the dyadic Green's Lunction $\overline{\overline{\bar{G}}}$ by using relations (26) and (29) Equation (34) then takes the following form

$$
\begin{align*}
& \vec{r}_{1} \times \vec{E}^{+x}(\vec{r})=\vec{r}_{\nu} \times j+\iint \bar{G}\left(\vec{r}, \overrightarrow{r_{0}}\right) \vec{f}\left(\vec{r}_{0}\right) d S_{0} \tag{35}\\
& +\vec{r}_{k} \times \nabla\left(\frac{h \omega \mu}{R^{2}} \nabla \cdot \iint \overline{\bar{G}}\left(\vec{r}, \vec{r}_{0}\right) \cdot \vec{J}\left(\vec{r}_{0}\right) d S_{0}\right), \vec{r}, \zeta_{0}
\end{align*}
$$

Integral equation (35) can be solved numerically with the method of moments The first step in the method of moments is the expansion of the unknown currents into a bet of basis functions:

$$
\begin{equation*}
\vec{f}(x, y, \bar{v})=\sum_{n} I_{n} \vec{F}_{n}(x, y z) \tag{3.6}
\end{equation*}
$$

where J_{11} are mode coefficients that bave to be determined $\vec{Z}_{n}(:, z, z)$ is called a basis fintetion or mode If one wants to obtan an exact solution for the current distribution on the antenna, (36) has to be an mfinte summation and the set of basis functions have to form a complete set In practice, the summation in (36) is truncated at a maximmm value $x^{-}-N$, approxmation of the exact solution 14 obtained. The current distribution on the patches and on the probe is now grven by

$$
\begin{align*}
& \tilde{f}(0, y, z)=\sum_{n}^{N_{\text {man }}} I_{n} \mathscr{H}_{n}(x, y, z) \\
& =I_{1} j^{a}(i, \psi, z)+\sum_{\eta=2}^{n=+1} I_{n} \mathcal{J}_{n}(i, i, y, z) \tag{3.7}\\
& +\sum_{n_{-}-N_{1}+2}^{1+N_{1}+N_{1}+N_{2}} I_{n} \vec{T}_{1}\left(i, z_{1} z_{n}\right) \text {, }
\end{align*}
$$

with:

$$
z_{n}- \begin{cases}z_{1}, & \text { if } \left.N_{2}+2\right\} n N_{3}+1 \mid N_{1} \\ z_{2}, & 11 \geqslant N_{z}+1+N_{1}\end{cases}
$$

where the basrs function $\vec{J}^{a}(x, y, z)$ represents the attachment mode at the transition between the probe and the lower patch, $\vec{J}_{n}^{f}(x, y, z)$ is a basis function on the feeding coaxial probe and $\vec{J}_{n}^{p}\left(\mathrm{r}, y, z_{n}\right)$ is a basis function on one of the patches. An attachment mode is used to ensure continuty of cument along the patch-probe transition. More details about this attachment mode will be given in section 3.4.3. There are N_{z} basis functions on the probe, N_{1} basis functions on the lower patch and N_{2} basis functions on the upper patch and there is 1 attachment mode The total number of bass functions is therefore $N_{\text {wos: }}=1+N_{2}+N_{1}+N_{2}$. More details about the type of basis functions that we will use are given in section 3.4. The scattered clectric field $\mathcal{E}^{*}(x, y, z)$ can be expressed in terms of the current distribution $\mathcal{J}(x, y, z)$

$$
\begin{equation*}
\overrightarrow{\mathcal{E}}^{s}(x, y, z)=L\{\overrightarrow{\mathcal{J}}(x, y, z)\} \tag{3.8}
\end{equation*}
$$

where L is a linear operator Combining (38) with (37) gives

$$
\begin{equation*}
\overrightarrow{\varepsilon^{\prime}}(x, y, z)=\sum_{n=1}^{N_{\text {nna }}} I_{n} L\left\{\overrightarrow{\mathcal{F}}_{n}(r, y, z)\right\}=\sum_{n=1}^{N_{n, n}} I_{n} \vec{E}_{n}^{c}(x, y, z) \tag{39}
\end{equation*}
$$

Substituting the expunsion (3.9) in equation (34) gives

$$
\begin{equation*}
\vec{e}_{z} \times\left(\sum_{n=1}^{N+} I_{n} \vec{\varepsilon}_{n}^{s}(x, y, z)+\overrightarrow{\varepsilon^{n x}}(x, y, z)\right)=\overrightarrow{0} \tag{3.10}
\end{equation*}
$$

on each patch and probe. Now, we introduce a residue according to

$$
\begin{equation*}
\vec{R}(x, y, z)=\vec{\varepsilon}_{\nu} \times\left(\sum_{n=1}^{V_{\operatorname{man}}} I_{n} \vec{\varepsilon}_{n}^{s}(x, y, z)+\vec{E}^{\varepsilon z x}(x, y, z)\right) \tag{3I1}
\end{equation*}
$$

This residue has to be zero at all points of the two patches and on the probe This condition will be relaxed somewhat. The residue is weighted to zero with respect to some weighting functions $\overrightarrow{\mathcal{J}}_{\mathrm{mi}}(x, y, z)$ such that

$$
\begin{equation*}
\left(\vec{R} ; \vec{T}_{m}\right)=\iint_{s_{n}} \dot{R}(x, y, z) \quad \overrightarrow{\mathcal{J}}_{m}(x, z, z) d S=0 \tag{3.12}
\end{equation*}
$$

for $m-1,2$, $N_{\text {rhar }}$, where S_{m} is the surface on which the weighting function $\overrightarrow{\mathcal{J}}_{m}$ is nonzero. Note that the set of weighting functions, also called test functions, is the same as the set of expansion functions. This particular choice 1 s known as Galerkin's method [31] Inscrting (3 11) into (3.12) gives a sct of linear equations

$$
\begin{equation*}
\sum_{n=1}^{N_{m a x}} I_{n} \iint_{S_{m}} \vec{E}_{n}^{s}(x, y, z) \quad \vec{J}_{m}(x, y, z) d S+\iint_{S_{n}} \vec{E}^{e x,}(x, y, z) \cdot \vec{J}_{m}(x, y, z) d S=0 \tag{3!3}
\end{equation*}
$$

for $m-1,2, N_{\text {mus }}$ This set of linear equations can be wntten in the more compact form

$$
\begin{equation*}
\sum_{n-1}^{N_{m a n}} I_{r n} Z_{r n}+V_{r n}^{c r} V^{p}=0 \tag{3.14}
\end{equation*}
$$

for $m=1.2, N_{\text {max }}$ In matrix notation we get.

$$
\begin{equation*}
[Z|I|]+\left[V^{* *} \mid V^{\prime}=[0]\right. \tag{315}
\end{equation*}
$$

in which V^{F} is the input port voltage at the base of the coaxial cable and where the elements of the matrices $\left[Z \mid\right.$ and $\left\{V^{n T}\right\}$ are given by

$$
\begin{align*}
& Z_{r i t h}=4 \pi^{2} \iint_{S_{\mathrm{m}}} \vec{E}_{\mathrm{s}}^{\mathrm{x}}(x, y, z) \cdot \vec{J}_{\mathrm{m}}(x, y, z) d S \tag{3.16}
\end{align*}
$$

$$
\begin{aligned}
& =--4 \pi^{2} \iint_{f-i!!} \overrightarrow{\mathcal{H}}_{r, i}^{d}(x, y, 0)-\vec{M}_{f r u l}(x, y, 0) d x d y,
\end{aligned}
$$

 distribution in the coaxal aperture given by expression (3 3) The matrix $[Z]$ contans, $N_{\text {rix }} \times N_{\text {mac }}$ elements, $[f]$ is a vector containing the $N_{\text {wase }}$ unknown modecoeficients and $\left|V^{\prime \cdot}\right|$ is the exchetion vector with $N_{\text {ase: }}$ elements. If an cxpansion of the form (3.7) is used, the method-of-moments matrix $\left\{Z \mid\right.$ and the excitation vector $\left\{V^{n} T\right.$ have the following structure
and

$$
\left[V^{* v}\right]=\left(\begin{array}{c}
V^{* \cdots:} \tag{3.18}\\
\left.\mid V^{* r j}\right] \\
{\left[V^{*}\right]}
\end{array}\right)
$$

where the superscript a denotes the attachment mode, f a basis function on the coaxial probe (fced) and p a basis function on one of the patches. $[Z]$ is a symmetrical matrix, because Gaierkin's method 15 used, i.e , the expansion functions and test functions are identical. In chapter 2 of this thesis a closed-form expression was derived for the spectral-domain dyadic Green's function in a grounded two-Layer configuration. Therefore, we will express the elements of $[Z]$ and $\left[V^{* s}\right]$ in terms of this spectral-domain Green's function. If we look for example at an clement of the submatrix $\left[Z^{P_{P}}\right]$, i.e, cxpansion and test function pertaning to the surface current on one of the patches, we get

$$
\begin{align*}
& Z_{n=n}^{P p}=4 \pi^{2} \iint_{S_{i \pi}} \vec{E}_{n}^{g}\left(a, y_{1}, z_{\pi n}\right) \quad \overline{\mathcal{J}}_{m}^{p}\left(x, y, z_{m}\right) d x d y \\
& =4 \pi^{2} \iint_{S_{n i}}\left[\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{Q}_{2}^{E}\left(k_{x}, k_{y}, z_{n n}, z_{n}\right) \cdot \bar{J}_{r i}^{z}\left(k_{n}, k_{1}, z_{n}\right)\right. \\
& f^{\left.-j k_{5} x_{e}-j k_{y} y d k_{x} d k_{n}\right] \cdot \vec{J}_{m}^{B}\left(x, y, z_{n}\right) d x d y} \\
& =\int_{\infty}^{\infty} \int_{-\infty}^{\infty}\left[\bar{Q}_{2}^{E}\left(k_{x}, k_{y,}, z_{m, n}, z_{n}\right) \quad \vec{p}_{n}\left(k_{x}, k_{y}, z_{n}\right)\right] \tag{3.19}
\end{align*}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\bar{Q}_{2}^{\dot{L}}\left(k_{x}, k_{y}, z_{T n}, z_{n}\right) \overrightarrow{j_{v}}\left(k_{n}, i_{y}, z_{n}\right)\right] \cdot \vec{J}_{m}^{m}\left(k_{x}, k_{v}, z_{m}\right) d k_{n} d k_{y},
\end{aligned}
$$

with
$z_{m}= \begin{cases}z_{1}^{\prime}, & \text { if domain } m \text { is located on the lower patch, } \\ z_{2}^{\prime}, & \text { if domain } m \text { is located on the upper patch, }\end{cases}$

In which $\vec{J}_{m}\left(k_{j}, k_{j}, z_{m}\right)$ is the Fourier transform of the π_{i}-th basis function on the patch located at $z=\bar{z}_{m}$ and where $\bar{Q}_{2}^{L}\left(k_{2}, k_{i}, z, z_{0}\right)$ is the electric-field dyadic Green's function in the spectral domain, given by (259). The definition of the Fourier transformation is given in (2.21) Only realvalued basis functions will be used, so $\vec{J}_{m}^{\text {w }}(x, y, z)=\vec{J}_{m}^{v}(x, y, z)$, where $\vec{J}_{m}^{p}(x, y, z)$ denotes the complex conjugate of $\overrightarrow{\mathcal{J}_{m}^{P}}(x, 3, z)$. The other elements of the method-of-moments matrix $[Z]$

Can also he expressed in terms of the spectrai-doman clectricefield Green's function $\overline{\bar{Q}}{ }^{\circ}$:
with

$$
= \begin{cases}1 & \text { if } 0 \leq 2 \leq i_{1} \\ 2, & \text { if } h, z=i_{2}\end{cases}
$$

 the Founer transform of the y_{i}-th basis function on the probe. The megration over a and t_{t} in (320) can be carred out analytically Furthermore, it can be shown that the two-dimensional
 More details can be found in section 3.5 and appendix A. The elements of the exultation vetor $\left[V^{* e x}\right]$ can be expressed in terms of the spectral-domain magnetic-field Green's function $\overline{\bar{Q}}_{1}^{\prime \prime}$:
where $\vec{M}_{f+16}\left(k_{z}, k_{y}\right)$ is the Fourier transform of the magnetic current distribution in the coaxial sperture of the antenna, given by

$$
\begin{align*}
\vec{M}_{f r i l l}\left(k_{s}, k_{y}\right)= & \vec{M}_{f r i l}(\beta, \alpha)=\frac{2 \pi j}{k_{0} \beta \ln (b / a)}\left[J_{0}\left(k_{0} \beta b\right)-J_{0}\left(k_{0} \beta a\right)\right] \tag{3.22}\\
& e^{k k_{1} \beta \cos \alpha x_{A}} e^{j k_{1} \beta \sin \alpha x_{r}}\left\{-\vec{e}_{\mathrm{x}} \sin \alpha+\vec{e}_{y} \cos \alpha\right\}
\end{align*}
$$

In (3.22) a transformation to cylundrical coordinates has been introduced with $k_{x}=h_{0} \beta \cos \alpha$ and $k_{y}=k_{0} \beta \sin \alpha . J_{n}(x)$ is the Bessel function of the first kind of order 0 . Two of the three integrations in $V^{* x}$ and $V_{i n}^{c r, j}$ can be carried out in closed form (see 35 and appendix B).
If the thin-substrate model of section 3.2 .2 is used, no attachment mode and no basis functions on the probe are used. In this case the matrix $[Z]$ reduces to

$$
\begin{equation*}
[Z]=\left[Z^{p p}\right] \tag{3.23}
\end{equation*}
$$

where the elements of $\left[Z^{n T}\right]$ are given by (3.19) In this case the method-of-moments matrix equation takes the form

$$
\begin{equation*}
\{Z]|I|+\left|V_{i}^{c z}\right| I^{p}=[0] \tag{3.24}
\end{equation*}
$$

where I^{p} is the input port curent 7 he excitation vector $\left[V_{1}^{c}\right]$ differs from (3.21), bccause now an electric current source is used instead of a magnetic current source Let $\vec{\xi}^{\overrightarrow{2 x}}$ be the elcetric field due to the conslant curfent source on the probe. Then from (3.16) we obtan

$$
\begin{align*}
& V_{\mathrm{T}=\mathrm{mi}}^{\mathrm{ex}}=\frac{4 \pi^{2}}{I^{n}} \iint \dot{\varepsilon}^{e_{x}}\left(r, y_{1}, z_{\mathrm{r}}\right) \quad \ddot{J}_{m}\left(x, y, z_{\mathrm{r}}\right) d x d y \tag{3.25}\\
& =4 \pi^{2} \iiint_{y r t b x} \vec{E}_{m}^{*}(x, y, z) \cdot \vec{J}_{\text {probe }}(x, y, z) d x d y d z,
\end{align*}
$$

where, again the reaction concept was used in (3.25), and where $\vec{J}_{\text {pron }}(x, y, z)$ is given by (3.1). Agam the elements of $\left[V_{t}^{e s}\right]$ can be expressed in terms of the spectral-domain Green's function
with

$$
\begin{cases}1, & \text { if } 0<z<i_{11} \\ 2, & \text { if } h_{1}<z<l_{2}\end{cases}
$$

where $\bar{I}_{p=3}^{*}\left(K_{r}, i_{n}\right)$ is the complex conjugate of the Fourier transform of the current distribution on the probe

3.4 Basis functions

In a method-of-moments procedure a proper chore of the set of basis functions 1 very monortant, becausc only a limited tumber ol basis functrons can be used due to the limited computer capacity In generul, twotypes of bass functions can be distinguished The first type are the so called entredoman basts functrons, which are non-7ero oyer the entire doman of the unknown lunction The second type are the subsectional or subdoman basis functions each of which exish only over a small subsection of the domain of the unknown function.
Subsectional basis functions are very flexible, so they could be used to analye arbitrarily shaped microstrip antennas A great disadvantage of subsectional basis functions, however, is the fact
that they usually require a lot more computation time and computer memory than properly chosen cntire domain basis functions Nomally, only a few entre-domain basis functions bave to be used to obtain accurate results from a method-of-moments procedure. The latter is especially of great importance when arrays of microstrip antennas are considered (sec chapter 4)

3.4.1 Basis functions on the patches

In the thesis it is assumed that the patches have a rectangular form. Other patch forms can, of coursc, be analysed with the same procedure as described in this thests. The only difference is the set of basis functions that is employed. Several types of bass functions can be used to approximate the current distribution on the patches We have studied three different rypes. In section 39 the results obtained wrth cach type will be compared

Entire-domain sinusoidal bass functions

This set of basis functions can be obtained from a cavity-model analysis of a microstrip antenna [10]. They form a complete and orthogonal set that exists on each patch of the antenna. The m-th x-directed basis function on the lower patch, with $\left(m=1, \quad, N_{x}\right)$, is given by

$$
\begin{align*}
& \vec{J}_{w}^{P T}\left(x, y, z_{1}\right)=\overrightarrow{\mathcal{J}}_{m_{p} m_{q}}^{P T}\left(x, y, z_{1}\right)=\vec{c}_{x} \sin \left(\frac{m_{2} \pi}{W_{a 1}}\left(x+\frac{W_{w}}{2}\right)\right) \cos \left(\frac{m_{s} \pi}{W_{x 1}}\left(y+\frac{W_{v 1}}{2}\right)\right), \tag{3.27}\\
& \text { with }|x| \leq \frac{W_{-1}}{2}:|y| \leq \frac{H_{i 1}}{2}, m_{p}=1,2, \ldots \quad, m_{\eta}=0,1,2, \ldots,
\end{align*}
$$

and the m-th y-directed basis function on the lower patch, with ($m=N_{\mathrm{at}}+1, \quad, N_{\mathrm{ta}}+N_{\mathrm{y} 1}$), is given by

$$
\begin{align*}
& \text { with }|x| \leq \frac{W_{m}}{2},|y| \leq \frac{W_{j}}{2}, m_{p}=0,1,2, \ldots ., \quad m_{n}=1,2 \text {, } \tag{3.28}
\end{align*}
$$

where for every m a certan combination ($m m_{3}$,,m_{c}) bas to be chosen. Note that the total number of basis functions on the lower patch is equal to $N_{1}=N_{x 1}+N_{y 1}$ On the upper patch at $\dot{i}=x_{2}^{\prime}$, a simular set of basis functions is used with $W_{x 1}$ and $W_{y 1}$ replaced by $W_{x 2}$ and $W_{y 2}$, respectively, and z_{1}^{\prime} rcplaced by z_{2}^{\prime} in (3.27) and (328). Figure 35 shows the x-dependence of the first three α-diected basis functions of this sel. The corresponding Fourier transforms of (3.27) and (3.28)

Figure 3.5 a-dependence of x-directed enire-domain basis functions
have the form
with

$$
F_{s}\left(m_{r}, k_{r}, W_{r 1}\right)-\left\{\begin{array}{l}
\frac{2 \pi m_{F} \pi W_{x 1} \cos \left(k_{x} W_{x 1} / 2\right)}{\left(m_{p} \pi\right)^{2}-\left(k_{s} W_{\pi 1}\right)^{2}} \\
\frac{-2 m_{k} \pi W_{s 1} \sin \left(k_{x} W_{w 1} / 2\right)}{\left(m_{p} \pi\right)^{2}-\left(k_{x} W_{u 1}\right)^{2}}
\end{array} \quad \mu_{r p}\right. \text { odd }
$$

and

From convergence tests in [57] and from teste described in section 39 it became clear that by using a set of entire-domain basis functions with Y-dirceted modes for which $m ;=0$ and with y-directed modes for which $m_{p}=0$, quite good results can be obtaned for lincarly polarised
microstrip antennas. The other modes in (3.27) and (328) do not significantly improve the result This sub-set of (3.27) and (3.28) is given by

$$
\begin{align*}
& \overline{\mathcal{T}}_{m}^{p a}\left(x, y, z_{1}^{\prime}\right)=\overline{\mathcal{J}}_{m_{p}}^{p x}\left(x, y, z_{1}^{\prime}\right)=\vec{\epsilon}_{x} \sin \left(\frac{m_{p} \pi}{W_{w 1}}\left(x+\frac{W_{v 1}}{2}\right)\right), \tag{330}\\
& \text { with }|x| \leq \frac{W_{x 1}}{2}:|y| \leq \frac{W_{y 1}}{2} ; \quad m=1,2 ; \quad N_{x 1}, \quad m_{p}=1,2, \ldots \quad \ldots,
\end{align*}
$$

and

$$
\begin{align*}
& \text { With }|x| \leq \frac{W_{x 1}}{2},|y| \varsigma \frac{W_{k 1}}{2}, m=N_{x 1}+1, \quad \ldots, N_{x 1}+N_{k 1} \quad w_{4}=1,2, \tag{3.31}
\end{align*}
$$

The Fourier transforms of these basis functions are given by

$$
\begin{align*}
& \vec{F}_{m}^{*}\left(i_{T}, k_{y}, z_{1}^{\prime}\right)=\vec{F}_{m_{p}}^{x+}\left(k_{T}, k_{y}, z_{1}^{\prime}\right)=\vec{e}_{x} F_{y}\left(m_{T}, k_{x}, W_{x 1}\right) \Gamma_{L}\left(0, k_{y}, W_{y}\right), \tag{332}
\end{align*}
$$

$$
\begin{aligned}
& \text { with } m_{p}=1,2, \ldots, m_{n}=1,2 \text {, }
\end{aligned}
$$

Entire-domain sinusoidal basis functions with edge conditions

The current normal to the edge of a patch behaves as $\sqrt{\Delta r}$ when the distance from the edge dpproaches zero, i.e. $\Delta^{y} \rightarrow 0$ lf the direction of current is parallel to the edge of the patch, the current behaves as $1 / \sqrt{\Delta^{T}}$ when the distance from the edge is nearly zers, ne., $\Delta r \rightarrow 0$ [47] It could be cxpected that when these edge conditions are explicitly included in the set of basis functions, a faster convergence of the method-of-moments procedure can be obtanted. For that purpose, the set of basis functions given by (3.27) and (3.28) is modified wath these edge conditions. The m-th x-direcred basis function on the lower patch of this modified set with $m=1, \ldots, N_{r l}$, is given by

$$
\begin{align*}
& =\vec{e}_{x} \frac{\sin \left(\frac{\pi_{y} \pi}{W_{x 1}}\left(x+\frac{W_{x 1}}{2}\right)\right) \cos \left(\frac{m_{g} \pi}{W_{y!}}\left(3+\frac{W_{y 1}}{2}\right)\right)}{\sqrt{1-\left(2 x / W_{i t 1}\right)^{2}} \sqrt{1-\left(2 g / W_{y j}\right)^{2}}}, \tag{333}
\end{align*}
$$

with $|x| \leq \frac{W_{r 1}}{2},|y| \leq \frac{W_{i \cdot 1}}{2}, n_{i_{p}}=1,2, \ldots, m_{r_{i}}=0,1,2$,
and the m-th y-directed basis function on the lower pateh, with $\left(\%=N_{w 1}+1 ; \quad N_{v 1}+N_{v 1}\right)$, is given by

$$
\begin{align*}
& \vec{T}_{m}^{ \pm}\left(r, y_{1}, z_{1}^{\prime}\right) \quad \overrightarrow{\mathcal{T}}_{m_{y}, m_{e}}^{m}\left(x, u, z_{1}^{\prime}\right) \\
& =\vec{c}_{4} \frac{\cos \left(\frac{m_{1} \pi}{W_{r 1}}\left(y+\frac{W_{r 1}}{2}\right)\right) \sin \left(\frac{m_{n} \pi}{W_{y 1}}\left(y+\frac{W_{y 1}}{2}\right)\right)}{\sqrt{1-\left(2 r / W_{w 1}\right)^{2}} \sqrt{1-\left(2 y / W_{y 1}\right)^{2}}}, \tag{3.34}
\end{align*}
$$

with $|x| \leq \frac{w_{s 1}}{2},|y| \leq \frac{W_{s}}{2}, m_{p}=0,1,2, \quad, m_{q}=1,2, \ldots$
A similar set of basis functions is used on the upper patch. The Fourner transtorm of (3 33) and (3 34) can be evaluated analytically at a sum of two zero-order Bessel functions of the first kind
with
where $\varepsilon_{m_{1}}^{e}$ and $\epsilon_{m_{i p}}^{*}$ ate given by

$$
\begin{aligned}
& \epsilon_{m_{k}}^{\infty}=(-1)^{m_{p}-11 / 2} \\
& \epsilon_{m_{k}}^{n}=(-1)^{m_{F} / 2}
\end{aligned}
$$

Figure 3.6 Piecewise Inear approximation of a function.

Figure 37 Segmentation of the rectangular patch.

Subsectional basis functions

With rooftop subsectional basis functions, a piecewise-linear approximation of a function can be obtained. Figure 3.6 shows an one-dımensional example of such an approximation. Figure 3.7 shows the segmentation into cells on onc of the rectangular patches

The unknown currents on the patches are expanded in terms of overlapping piesewise-fncar basis functions in the durection of current and in piecewise-constant functions in the direction orthogonal to the current, i e., rooftop basis functions. On the lower patch we have $N_{x 1}$ r-drected basis functions and $N_{y 1} 17$-dirceled basis functions The Fourier transform of the m-th subscetional
x-directed rooftop basis function on the lower patch is given by $\left(m=1, N_{s}\right)$.

$$
\begin{aligned}
& \text { with } k_{n, 1}-1: \quad K_{s} \text { and } l_{m}=1: \quad, L_{s}+1,
\end{aligned}
$$

and the Fourier transform of the m-th η-directed rooftop basis function on the lower patch is given by $\left(m=N_{11}+1, \quad N_{i 1}+N_{i 11}\left(-N_{1}\right)\right)$

$$
\begin{aligned}
& \text { with } f_{m}-1_{1}, K_{s}+1 \text { and } l_{m}=1, \ldots, I_{*},
\end{aligned}
$$

 y_{i} and where $\mathscr{F}_{n=}^{p e}(x, y, x)$ is nonzero in the interval $x_{k_{m}-1} \leq x \leq x_{k_{m}}$ and $h_{n n} \quad \leq y \leq y_{i_{n}+1}$ (sec also figure 3 7). The dimensions of a subdomain on the 7 - and in the 3 -durection are equal to a_{n} and $b_{\text {, }}$, respectively On the upper patch a similar set of basis functions can be used

3.4.2 Basis functions on the coaxial probe

The coaxial probe is represented by a metalic cylinder with radus a with perfectly conducting walls. The current distribution on this metallic cylinder is expanded into a set of basis functions If the thick-qubstrate model of section 323 is used. Because the coaxial probe is very thin $\left(a \& \lambda_{0}\right)$, we may assume that the current distribution on the coaxial probe has only a - -directed component that depends solely on the z-coordinate. This z-directed current on the outer surfice of the probe is expanded into a set of pecewise-linear (rooftop) basis functions. The m-th batho function of this set is given by
with

$$
g_{m}(z)=\left\{\begin{array}{lll}
\frac{2}{h}\left(\frac{h}{2}-z\right), & m=1, & 0 \leq t \leq \frac{h}{2} \\
\frac{2}{h}\left(z-t_{m-1}\right), & m \geq 2, & z_{m-1} \leq z \leq z_{m} \\
\frac{2}{h}\left(z_{m+1}-z\right), & m \geq 2, & z_{m} \leq z \leq z_{m+1}
\end{array}\right.
$$

The first basis function at the base of the probe with $m=1$, is a half rooftop function. In figure 38 the z-dependent part of the bassi4 functions 15 shown. The total number of basis functions on the probe cquals N_{z}

Figure 3 8 Rooftop basis functions along the probe
The Fourier transform of the m-th basis functions of this set is given by

$$
\begin{equation*}
\vec{J}_{1 m}^{\prime}\left(k_{x}, k_{z}, z\right)=\vec{\epsilon}_{x} J_{0}\left(a \sqrt{k_{x}^{2}+\lambda_{y}^{2}}\right) g_{m \mathrm{~m}}(z) \mu^{k_{x} x_{1}} e^{k_{x} y_{n}} . \tag{339}
\end{equation*}
$$

3.4.3 Attachment mode

The so-called attachment mode is a special basis function introduced to ensure continuity of the cutrent at the transition from the probe to the lower patch. In addition, this mode describes the rapid varation of current on the lower patch near the connection point of the probe. The use of the attachment mode accelerates the convergence of the method-of-moments procedure Note that the attachment mode $1 s$ not needed of the EMC configuration of figure 32 is analysed, because in this case the inner conductor of the coaxial cable is not connected to the lower patch The attachment mode is built up of two parts, namely a part on the lower patch and a part on the probe, The patch part of the attachment mode has a r^{-1} dependence near the patch-probe transition On the probe, a half rooftop function is used In formula form the attachment mode is given by:

$$
\begin{equation*}
\overrightarrow{\mathcal{J}}^{\mathrm{a}}(x: y, z)=\overrightarrow{\mathcal{J}}^{a p}\left(x, y, z_{1}\right)+\overrightarrow{\mathcal{J}}^{\Delta f}(x, y, z) \tag{3.40}
\end{equation*}
$$

with

$$
\overrightarrow{7}^{a F}\left(x, y, Z_{1}^{\prime}\right)=\left(\begin{array}{ll}
-\frac{r^{\prime}}{2 \pi b_{3}^{2}} \vec{\epsilon}_{\mathrm{r}} & 0 \leq r^{\prime} \leq a \\
\left(\frac{r^{\prime}}{2 \pi b}+\frac{1}{2 \pi \tau^{\prime}}\right) \vec{\epsilon}_{r^{\prime}}, & a \leq r^{\prime} \leq b_{\pi} \\
0, & r^{\prime} \geq b_{w}
\end{array}\right.
$$

and

$$
\begin{aligned}
& \vec{f}^{a r}(x, y, z)-\vec{r}_{z} \frac{1}{2 \pi o} b\left(\sqrt{\left(r-x_{s}\right)^{2}+\left(y-y_{n}\right)^{2}}-a\right) \frac{2}{h}\left(x-z_{1}^{\prime}+\frac{h_{1}}{2}\right), \\
& \text { with } z_{1}^{\prime}-\frac{h}{2} \leq z=z_{1}^{\prime},
\end{aligned}
$$

where $r^{3}=\left(x-r_{s, ~}^{\prime} y-y_{2}, 0\right)$ A three-dimenstonal plot of the patch part of the attachment mode is shown in figure 3.9 A similar attachment mode (however, without a variation of ciment along the coaxial probe) was used in [53] for the analysis of circular microstrip antennas.
Tests ni the literature $[53,63]$ show that excellent results can be obtaned if b is choven property. The best results are obtaned if $01 \lambda \leq b, \leq 02 \lambda$, where λ is the wavelength in the medtum of interest A drawhack of this attachment mode is the fact that it cannot be used af the probe conncetion is near the edge of the lower patch. In almost all practical merostrip configurations, however, this is not a severe problem, because the input impedance of an edge-fed morostap antemat is very high and these configurations therefore have no practical menerest. The Founer transform of (3.40) is known in closed form and is given by

$$
\begin{equation*}
\vec{J}^{u}\left(i_{2}, k_{4}, \lambda\right)-\vec{J}^{a p}\left(k_{1}, k_{3}, q_{1}\right)+\vec{J}^{a}\left(k_{3}, k_{1}, z\right) \tag{341}
\end{equation*}
$$

with
where a transiomation to cylindrical coordinates was mtroduced with $k_{r}-k_{i n} ; \cos \alpha$ and $k_{i,}=k_{0} \beta \sin \alpha$. In the literature other attachment modes have also been studed. The attachment mode introduced by Pozar in [57] for the analysus of infinte array \& of microstrip antennas describes the variation of the current at the patch-probe transition more acourate, but is inelicent from a

Figure 3.9. Thtree dimensional representation of the patch-part of the attachment mode
computational point of view, because it involves an infinite summation of cavity modes Another disadvantage of this mode is the fact that it does not include a variation of current along the coaxial probe This means that electrically thick microstrip antennas cannot be analy sed properly with the mode of Pozar: In (30] another type of attachment mode is used, where the patch current near the probe-patch transition is approximated by means of a piecewisc-linear function. Therefore, this mode does not account for the rapid vartation of the patch current near the probe attachment.

3.5 Calculation of the method-of-moment matrix $[Z]$ and $\left[V^{e i}\right]$

The general structure of the method-of-moments matrix [$Z \mid$ is given by the expression (3.17) in the case where the thick-substrate model is used Only 6 of the 9 submatrices need to be calculated, because of the symmetry in $[Z]$, i.e., $\left[Z^{a f}\right]=\left[Z^{f a}\right\}^{s},\left[Z^{a p}\right]=\left[Z^{m a}\right]^{7}$ and $\left[Z^{f r}\right]=\left[Z^{n f}\right]^{T}$ The elements of the remaning stx relevant submatrices can be calculated from (3.20) and (3 19). The submatrx $\left[Z^{a x}\right]$ has only one element, because there is only one attachment mode, $\left[Z^{f a}\right]$ is a vector with N_{2} elements, $\left[Z^{\mathrm{Pa}}\right]$ is a vector containng $N_{1}+N_{2}$ elements, $\left[Z^{\text {J }}\right]$ is a symmetric matrix with $N_{z} \times N_{z}$ clements, $\left[Z^{p /}\right]$ is a matrix with $\left(N_{1}+N_{2}\right) \times N_{z}$ clements and finally $\left[Z^{P P}\right]$ is a symmetric matrix with $\left(N_{1}+N_{2}\right) \times\left(N_{1}+N_{2}\right)$ clements. The integrals in (3 20) and (3.19)
can be smplified somewhat by introducing cylindrical coordinates:

$$
\begin{align*}
& k_{n}=k_{y} \beta \cos \alpha_{t} \\
& k_{y}=k_{0} \beta \sin \alpha, \tag{3.42}
\end{align*}
$$

with $0 \leq \beta \leq \infty$ and $-\pi<\alpha \leq \pi$

When (342) is substituted in (320) and (3 19), it is possible to carry out the integration over ca for the elements of $Z^{\prime \prime 4},\left[Z^{\prime *}\right]$ and $\left[Z^{f f}\right]$ analytually. The α-integration interval of the otherelements, of the matrix $[Z]$, i.e, $\left[Z^{p a}\right],\left[Z^{p \prime}\right]$ and $\left[Z^{p p}\right]$ can be reduced to the interval $\left[0, \frac{n}{2}\right]$. The integrution over z and z_{0} in (3.20) and (319) can be carried out analytically if rooftop basis functions on the probe are being used The expressions for the clemente of the matrix $[7]$ are given in appendix A of this thests The resulting integrals in these expressions have to be cvaluated numerically The computational and numerical details are discussed in section 38 , where some numerical and antalytical techniques are introduced in order to calculate the elements of $[Y]$ and $\left[V^{*}\right]$ with a computer program in an accurate and fist way
The general structure of the excitation vector $\left[V^{e x}\right]$ is given by (3.18) when the thick-substrate riodel is used. It consists of three submatrices. Submatrix [$\left.V^{c r}\right]$ has only one element, $\left|V^{e r}\right|$
 froto (3.21). Again a change to cylindrical coordinates (342) is introduced. The integration over a for $V^{e r} r^{a}$ and for the elements of $\left[V^{e s}\right\rangle$ can be carried out analytucally and the k-minegratuon interval for the clements of $\left[V^{*-r}\right]$ can be reduced to the interval $\left[0, \left.\frac{\pi}{2} \right\rvert\,\right.$. Agam, the integrations over z and z_{0} can be performed andylically if rooftop basss functions on the probe are used The expressions for the elements of the vector $\left|V^{2 x}\right|$ are given in appendix B of thes thesis. In this appendrx also the expressions for the elements of $\left[V_{t}^{* *}\right]$ are given if the thin-substrate model of scction (32 2) is used

3.6 Input impedance

As a rcsult of the method-of-moments procedure, we oblain an approximation of the cxact solution For the current distribution on the patches and on the coaxal probe. Engincer unaully work with port currents and port voltages instead of current distributions or electric and magnctic fictd. We will therefore represent the merostrip antenna by the one port of figure 3.10

Figure 3.10. One-port representation of an isolated microstrip antenna.
The relation between the port current and the port volage can be described in two ways:

$$
\begin{align*}
& V^{p}=Z_{1 n} I^{\prime \prime} \tag{343}\\
& I^{p}=Y_{\mathrm{in}} V^{p}
\end{align*}
$$

where $Z_{\text {in }}$ is the input impedance and $Y_{\text {in }}$ is the inpur admitance. The relation between port current I^{F} and port voltage V^{F} can also be written in the following form [32, p. 96]

$$
\begin{equation*}
I^{v}=\frac{P_{1 n}^{*}}{V^{m}} \tag{344}
\end{equation*}
$$

where $P_{\text {in }}$ is the total complex power supplied by the sources. It is defined as

$$
\begin{equation*}
P_{\mathrm{rb}}=-\iiint\left(\vec{\varepsilon} \cdot \overrightarrow{\mathcal{T}}_{\text {rmares }}^{*}+\vec{H}^{*} \quad \overrightarrow{\mathcal{M}}_{\mathrm{smure}}\right) d V \tag{3.45}
\end{equation*}
$$

where $\vec{J}_{\text {sewree }}$ and $\vec{M}_{\text {seare }}$ are the electric and magnetic current distibutions of the source, respectively. If we use the thick-substrate model of section 323 , the source is a magnetic current distribution corrcsponding to the TEM-mode in the coaxial aperture. This magnetic cutrent distribution is given by (3 3) Substituting this expression in (3 45) yields

$$
\begin{equation*}
I^{v}=\frac{I_{\mathrm{in}}^{*}}{V^{p}}=-\iint_{i r, d \mid} \vec{T} \vec{M}_{j r u t}^{*} d S \tag{346}
\end{equation*}
$$

Note that $\vec{H} 1 s$ the total magnetic field due to the electric currents on both patches and due to the electric current on the probe We may therefore write \vec{H} in terris of the mode coefficients I_{m}, with $m-1,2, N_{\text {twere }}$

$$
\begin{equation*}
H=I_{1} \vec{H}^{\prime}+\sum_{m=2}^{11 N_{n}} I_{m} \vec{H}_{k^{\prime}}^{\prime}+\sum_{m=N_{x}+2}^{1+N_{0}+N_{1}+N_{2}} I_{m} \vec{H}_{m}^{p} \tag{347}
\end{equation*}
$$

In whech the supseript a refers to an attachment mode, f to a basis function on the coaxial probe (feed) and p to a bass function on one of the patches If we substitute the athove expansion of the miagnetic ficld in (3.46) we get the relation

$$
\begin{equation*}
\left.\left.I^{P}-\frac{1}{4 \pi^{*}}\left[\left.V^{\mu}\right|^{i} \mid I\right]-\frac{-1}{4 \pi^{2}}\left|V^{* r}\right|^{T}|Z|^{-1} \right\rvert\, V^{e s}\right] V^{N}, \tag{348}
\end{equation*}
$$

where the matrix cquation (315) has been used. The matrix $\left[\left.Z\right|^{-1}\right.$ is the itiverse of the method-of-moments matrix $[Z]$ and $\left[V^{* x}\right]^{2}$ is the transpose of [$\left.V^{e 2}\right]$. Apparently, the mput admitlance can be calculated from

$$
\begin{equation*}
\left.\left.Y_{t+1}=\frac{I^{P}}{V^{r}}=-\frac{-1}{4 \pi^{2}} \right\rvert\, V^{*}\right]^{l}[Z]^{-1}\left[V^{e s} \mid\right. \tag{3.49}
\end{equation*}
$$

In the literature a dufferent approach is sometimes used to calculate the input admitance 130$]$. [54, p 40]. One often uses the formula

$$
\begin{equation*}
Y_{\mathrm{Fl}}-\frac{I(0)}{V_{F}} \tag{350}
\end{equation*}
$$

where $1(0)$ is the current at the base of the coaxial probe ($z-0$), which can be determined by solvige the matrix cquation (3.15). Formula (350) can be derived from (349) if ore uses the TEM approxmation of the magnetic field in the coaxal opening-

$$
\begin{equation*}
h_{p}(r, \eta, z)=\frac{X(0)}{2 \pi \varphi} \tag{3.51}
\end{equation*}
$$

where a is the distance from the pont (x, y, z) to the centre of the probe The expression (350) 1s based on an approxmation of both the electric and magnetic field at the coaxial aperture, whereas (3.49) is based on a TEM-approximation of the clectric field, while the magnetic field is, essentially assumed to contain higher-order modes. In the case of an electrically thick substrate, the approximation (350) gives fairly accurate results. However, fom tests we have found that the relative difference between expressions (3.49) and (350) becomes very large $: 20 \%$) if the substrate of the antenna under consideration is electrically thin To avotd errors. it is recommended to use expresson (349) In addition, the overall computation time is not mereared very mud when (349) is used, because the merse of $|Z|$ needs to be calculated anyway

If the thin-substrate model of section 3.2 .2 is used, the electric current distribution of the source, 1.e, the constant cument along the probe given by (3.1), is inserted into (3.45). The total electric field at the source is now expressed in temims of the mode coefficients I_{m} of the basis functions on the patches

$$
\begin{equation*}
\vec{E}^{r}=\sum_{m=1}^{N_{1} \mid N_{2}} \lambda_{m} \vec{\varepsilon}_{m}^{P} \tag{3.52}
\end{equation*}
$$

Substituting this expansion in (344) and (3.45) yrelds

$$
\begin{equation*}
V^{p}=\frac{-1}{4 \pi^{2}}\left[V_{t}^{c x}\right]^{T}[I]=\frac{1}{4 \pi^{2}}\left[\left.V_{t}^{n \pi}\right|^{T}[Z]^{-1}\left[V_{4}^{e t}\right] I^{p}\right. \tag{3.53}
\end{equation*}
$$

where the matrix equation (3.24) was used. Apparently, the input impedance is given by

$$
\begin{equation*}
\left.\left.Z_{\mathrm{in}}=\frac{V^{F}}{I^{p}}=\frac{1}{4 \pi^{2}} \right\rvert\, V_{t}^{e x}\right]^{T}[Z]^{-1}\left[V_{i}^{s i}\right] \tag{354}
\end{equation*}
$$

At microwave frequences one usually measures the reflection coefficent rather than the input impedance or the input admittance, becausc at higher frequencics it is easier to accurately measure the incident and reflected power quantities than to measure the impressed voltages and impressed currents. The incrofent power will usually remain constant under varying conditions, whereas it is very difficult to keep the impressed voltages or the impressed current constant [2, p. 51] The reflection cocfficient can be calculated by means of the well-known relation

$$
\begin{equation*}
R=\frac{Z_{\mathrm{in}}-Z_{0}}{Z_{\mathrm{in}}+Z_{\mathrm{o}}} \tag{3.55}
\end{equation*}
$$

or

$$
\begin{equation*}
R=\frac{Y_{0}--Y_{\mathrm{in}}}{Y_{0}+Y_{\mathrm{in}}} \tag{3.56}
\end{equation*}
$$

in whech $Z_{0}=Y_{0}^{-1}$ is the characteristic mpedance of the coaxial cable. Usually $Z_{0}=50 \Omega$

3.7 Radiation pattern

In addition to the port characteristics of antennas, one is usually also interested in the radiation patterth, sioce antennas are by definition made to radiate or receive electromagnetic power into/from free space. The method-of-moments procedure described in the previous sections, yields an approximation for the cument distribution on the upper and lower patch and on the feeding coaxial probe The easicst way to detemme the far-field pattern is by using the cquvalence principle This means that the sources which are cmbedded in the grounded two-layer structure are replaced

Figure 3.11: Equivalent magnetic current source.
by an cquivalent electric and magnetce current distrbution on the top surface 5 of the dielectric structure dt $z=h_{2}$ Figure 311 shows the location of this surface S These cquvalent sources have to be chosen in such a way that the field above the plane S is equal to the field of the onginal problem, ice, $\vec{\varepsilon}, \overrightarrow{7}$ We may postulate that the fictd in the region below the plane S is a null field In this case the equivalent clectric and magnetic sources on S must take the form

$$
\begin{align*}
& \vec{J}_{1}\left(A_{1}, h_{2}\right)=r_{2} \times \vec{H}\left(A_{1}, j_{1}, i_{2}\right)_{1} \tag{357}\\
& \overrightarrow{M_{1}}\left(a, j_{1} h_{2}\right)=\vec{\varepsilon}\left(r, y, h_{2}\right) \times \vec{r}_{2}
\end{align*}
$$

where \dot{H} and \vec{E} are the magnetic and electric field of the original problem Thus lorm of the equivalence principle is known is Love's equivalence principle [13, p. 35] Since the field below S is a oull field, we can place a perfectly conducting suface just below 5 . In this case the clectric surface current \bar{J}_{4} vanishes Therefore, the field above the perfectly conducting surface S, 1 e . \vec{E}, \vec{H} above S, can be found from the magnetic surface current $\vec{M}-\vec{E} \times{ }_{x}$ alone The presence of the perfectly conductung infinite plane S can be climunated by applying mage theory, 1 e. by replacing \vec{M}, by $2 \mathcal{M}$, and removing the perfectly conducting plane S The electric ficld at the point (x, y, a), with $s>l_{2}$, can now be calculated from $[13, p 36]$

$$
\begin{equation*}
\vec{E}(\vec{r})=\nabla \times \iint_{s} 2 \vec{M}_{s}\left(\vec{r}_{n}\right) \frac{x_{n}\left|\cdot-r_{n}\right|}{4 \pi\left|r^{*}-r_{0}\right|} d S \tag{358}
\end{equation*}
$$

Figure 3 12: Coordinate system.
where $\vec{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ represents a source point. In the far-field region it is assumed that $|\vec{r}|>\left|\vec{r}_{0}\right|$. Under far-ficld conditions relation (3.58) takes the form

$$
\begin{equation*}
\vec{E}(\vec{\tau})=\frac{k_{0} e^{-j k_{0} r}}{2 \pi r} \bar{F}_{\tau} \times \iint_{S} \vec{M}_{s}\left(x_{0}, y_{0}, h_{2}\right) e^{k_{k} \vec{E}_{r} \tilde{F}_{n}} d x_{0} d y_{0 r} \tag{359}
\end{equation*}
$$

where $\vec{\epsilon}_{r}$ is a unit vector in the \vec{r}-direction. Far fields are normally expressed in terms of sphencal coordinates (r, θ, ϕ) instead of Cartesian coordinates (x, y, z). The coordinate system is shown in figure 3.12 . The mner product $\vec{e}_{,}, \overrightarrow{r_{0}}$ can be written in the form

$$
\begin{equation*}
\vec{\epsilon}_{r} \quad \vec{r}_{0}=\frac{r x_{0}+y y_{0}+z z_{0}}{r}=x_{0} \sin \theta \cos \phi+y_{0} \sin \theta \sin \phi+z_{0} \cos \theta \tag{3.60}
\end{equation*}
$$

Combining relation (3.59) with this last expression yields

$$
\begin{align*}
\vec{E}(\vec{r})= & \frac{j k_{0} e^{-k_{0} t}}{4 \pi r} \omega^{k_{1}, h_{1}+\cos \theta} \vec{e}_{T} x \tag{361}\\
& \iint_{S} 2 \overrightarrow{M_{s}}\left(\tau_{0}, y_{0}, h_{2}\right) e^{\left.j k_{c \mid} I_{0} \sin \theta \cos \phi+w_{1} \sin \theta \sin \phi\right)} d x_{0} d y_{0}
\end{align*}
$$

Now introduce the spectral-doman coordinates k_{x} and $k_{i j}$, with

$$
\begin{align*}
& k_{x}=k_{0} \sin \theta \cos \phi \tag{3.62}\\
& k_{1}=k_{0} \sin \theta \sin \phi
\end{align*}
$$

The integral over the suffate S in (361) can now be expressed in terms of the spectral-doman electric field at $z=h_{2}$

$$
\begin{align*}
& -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\vec{E}\left(x_{0}, y_{1}, i_{2}\right) \times \vec{e}_{x}\right| e^{: i k_{2}: x_{1}+k_{x}, y_{n}} d y_{u} d y_{0} \tag{3.63}\\
& =\vec{F}\left(k_{3}: k_{w}, l_{2}\right) \times r_{1}
\end{align*}
$$

Using this result, we are able to construct a cloyed-form expression tor the far field from (360)

$$
\begin{aligned}
& \left.-E_{r}\left(h_{w}, h_{16}, h_{2}\right) \cos \theta \sin \phi\left|+\cos _{0}\right| E_{1}\left(h_{x}, h_{y}, h_{2}\right) \sin \phi+E_{x}\left(k_{x}, h_{7}, h_{2}\right) \cos \phi \phi_{0}\right\},
\end{aligned}
$$

 the current dustribution on the coaxial probe $\overrightarrow{7}(r, y, z)$. At the plane $z=t_{2}$ the spectral-dnmato electric ficld 14 , according to (2.57), given by

$$
\begin{align*}
& \vec{F}\left(h_{1}, h_{4}, h_{2}\right)-\bar{Q}_{2}^{i}\left(l_{1}, i_{3}, h_{2}, z_{1}^{\prime}\right) \cdot \vec{J}^{v}\left(h_{p}, h_{1}, z_{1}\right) \tag{365}
\end{align*}
$$

Note that we have neglected the contribution of the magnetic current surce in the coaxtal aperture. Once an approximation of the current distributon on the patches and on the probe has been determmed with the method of moments, the far-ficld paltern can be calculated wihout any numencal difficultes from (3.64) The remaining integration over x_{i} in (365) can be performed analytically. The comesponding magnetic field in the far-feld region cun be culculated from the electric fictd by using the relation

$$
\begin{equation*}
\overrightarrow{F i}-\sqrt{\frac{6}{1+1}} ; \Leftrightarrow \vec{G} \tag{366}
\end{equation*}
$$

If the microstrip antenna under consideration has only a single patch ($z_{1}^{\prime}=z_{2}^{\prime}$) and is linearly polarsed with $y_{s}=0$, the far-field pattern can be approximated by a very simple closed-form expression. It is assumed that the current distribution on the patch is x-directed and that it has the same form as the first basis function of the set (3.30). The current on the patch and its corresponding Fourier transform are now given by

$$
\begin{align*}
& \vec{J}^{p}\left(x, y, z_{1}\right)=\vec{e}_{x} \sin \left(\frac{\pi}{W_{x 1}}\left(x+\frac{W_{x 1}}{2}\right)\right) \tag{3.67}\\
& \vec{J}^{\prime}\left(k_{x}, k_{y}, z_{1}\right)=\vec{e}_{x}\left[\frac{2 \pi W_{x 1} \cos \left(k_{x} W_{x 1} / 2\right)}{\pi^{2}-\left(k_{x} W_{x 1}\right)^{2}}\right] W_{z 1} \operatorname{sinc}\left(k_{y} W_{y 1} / 2\right)
\end{align*}
$$

where the amplitude of the current has been normalised to I The far-field pattern in the E-plane ($\phi=0^{\circ}$) and H -plane $\left(\phi=90^{\circ}\right)$ can be calculated from the following formulas:
E-plane $\left(\phi-0^{0}\right)$

$$
\begin{equation*}
\vec{E}(\vec{r})=\frac{j k_{n} e^{-t k_{4 i} r}}{2 \pi r} e^{* k_{0} h_{2} \cos \theta}\left[\frac{2 \pi W_{x 1} W_{y 1} \cos \left(k_{x} W_{x 1} / 2\right)}{\pi^{2}-\left(k_{x} W_{x 1}\right)^{2}}\right] Q_{2 x x}^{F}\left(k_{x}, k_{z}, h_{2}, z_{1}^{\prime}\right) \vec{\epsilon}_{\theta} \tag{3.68}
\end{equation*}
$$

with $k_{z}-k_{01} \sin \theta, k_{y}=0$,
and in the H -plane $\left(\phi=90^{\circ}\right)$

$$
\begin{equation*}
\overrightarrow{\varepsilon_{(}}(\vec{r})=\frac{-k_{p} e^{-1 k_{r} r}}{2 \pi r} e^{k_{\mathrm{n}} h_{2} \cos \theta}\left[\frac{2 W_{x 1} W_{31}}{\pi} \operatorname{sinc}\left(k_{4} W_{3} / 2\right)\right] Q_{2 m}^{E^{\prime}}\left(k_{r}, k_{3}, h_{2}, z_{1}\right) \cos \theta \vec{c}_{\phi} \tag{3.69}
\end{equation*}
$$

wath $k_{\mathrm{y}}=0, k_{y}=k_{0} \sin \theta$.
Figure 313 shows the E-plane radiation pattern at resonance of an electrically thin, single-fayer, microstrip antenna ($h_{2} / \lambda=002$) calculated with approximation (3.68) and with the exact expression (3.64) Clearly the approximation is qute good in this case. In figure 3.14 the F-plane radation pattern at resonance is shown of an clectrically thick, sngle-layer, microstrip antenna with $h_{2} / \lambda=011$ We now see a slightly larger difference between the approximation (3.68) and the exact formula (3.64), which is mainly caused by the currents on the coaxial probe.
Note that the far-field pattern derived in this section is essentrally a linearly polarised field, because only one coaxial cable was used to feed the microstrip antenna. If two coaxial cables are used with a 90 degree phase difference, a circulatly polarised far field can be obtained. More details on circular polarsation can be found in section 4.6 of this thesis.
An important antenna parmeter is the antenna gain the gain of an antenna is defined as

$$
\begin{equation*}
G_{0}=n D_{e}, \tag{3.70}
\end{equation*}
$$

Ethers (dB)

axiat sppex

Figure 3.13 Radiation pattem of an electrically thin microstrpp antenna at resomance, with $z_{1}=z_{2}^{\prime}=h_{1}=h_{2}=0.79 \mathrm{~mm} W_{x 1}=W_{31}=18025 \mathrm{~mm} \varepsilon_{r 1}=233 x_{4}=2.75 \mathrm{~mm}$ and $i_{s}=0$

Figure 3.14 Radiation pattern of an clectrically thick microstrip antenna at resoname, with $\dot{s}_{1}=\dot{a}_{2}=h_{1}=1_{9}=3.175 \mathrm{~mm}_{1} W_{r 1}=11 \mathrm{~mm}, W_{01}-17 \mathrm{~mm} \varepsilon_{r 1}=233_{i}-4 \mathrm{~mm} \mathrm{and}$ $i_{y}, 0$

In which D_{i} is the directivity of the antenna and where η is the antenna efficiency which accounts for the losses in the antenna. The directivity of a microstrip antenna can be calculated once the far field, given by (364), is known:

$$
\begin{equation*}
D_{n}=4 \pi \frac{\max \left\{|\vec{E}(\theta, \phi)|^{2}\right\}}{\int_{0}^{\pi / 2} \int_{0}^{2 \pi}|\vec{E}(0, \phi)|^{2} \sin \theta d \theta d \phi} \tag{3.71}
\end{equation*}
$$

3.8 Computational and numerical details

3.8.1 Introduction

A major drawback of rigorous numerical procedures such as the method of moments or the finite-element method is the rclative long computation time and large memory requirements of the computer on which the code is implemented. The most difficult and computationally intensive part in our method-of-moments procedure is the calculation of the elements of the matrices $[Z]$ and $\left[V^{* r}\right]$ of equation (3 15). The elements of these matrices are integrals with infinite boundaries that have to be calculated numerically. Once all elements of $[Z]$ and $\left[V^{\text {er }}\right]$ are known, it is relatively casy to solve matrix equation (3.15), because the order of $[Z]$ is usually not very large. If, for example, entire-doman basis functions are used on the patches, only a few of them are needed to obtain accurate results. However, if finte artays of microstrip antentas are studied, the order of $|Z|$ will be larger and the numcrical inversion of this matrix may become a problem (sce scetion 47) The numerical inversion of the matrix $[Z]$ is carried out with routines of the LINPACK library [21] for the inversion of complex symmetric matrices. Note that the software is written in FORTRAN-77 and has been implemented on several types of computer workstations (PC-486, VAX, HP). In this scetion some methods will be discussed that make it possible to calculate the elements of $[Z]$ and $[V e x]$ accuratcly with an acceptable use of computer time, Each element of [$Z \mid$ can be represented by an integral of the following form

$$
\begin{equation*}
Z_{m n}=\int_{0}^{\infty} g_{m n}(\beta) d B \tag{3.72}
\end{equation*}
$$

The clements of $\left[V^{e x}\right]$ can also be represented by an integral of the form (3.72) The infinte β-integration interval can be divided into the subintervals $[0,1],\left[1, \beta_{5 n}\right]$ and $\left[\beta_{\varepsilon_{r}, \infty}\right)$, where $\beta_{\varepsilon \text { s }}$ is defined as

$$
\sigma_{s_{1}}= \begin{cases}\sqrt{\operatorname{Re}\left(\varepsilon_{1}\right)}, & \text { if } \operatorname{Re}\left(\varepsilon_{r_{1}}\right)>\operatorname{Re}\left(\varepsilon_{r_{2}}\right) \tag{3.73}\\ \sqrt{\operatorname{Re}\left(\varepsilon_{\mathrm{r} 2}\right)}, & \text { if } \operatorname{Re}\left(\varepsilon_{r_{2}}\right)>\operatorname{Re}\left(\varepsilon_{\left.r_{1}\right)}\right)\end{cases}
$$

and where $R e\left(\varepsilon_{1}\right)$ is the real parl of the relative permittivity of layer 1 .
In the first integration interval, $g_{\mathrm{m},:}(\beta$) has a branch singularity at $\beta-1$ ln the second integration interval numerical problem occurs due to the presence of poles in the Green's function which are caused by surface waves in the grounded diclectric structure. In the last integration interval no singularities occur. Because of the fact that $g_{\mathrm{m} \text { m }}(\beta)$ is a slowly decaying and strongly oscilating function for large β, a so-called asymptotic-form extraction technique is introduced in order to reduce the total computation tunc and to increase the numerical accuracy The integration over this extracted part can be carried out in closed form. This results in a substantial reduction of the required computer CPU tume. Techniques that can be used to avoit numerical problems ne each of the three integration intervals will be discussed in the following two sections. The remaining integrals are calculated with standard numerical integration routines of the package QUADPACK [52]. These routimes use efficient Gauss-Kronrod integration rules and can be used to calculate integrals of real- or complex-valued functions. These routines also give an estimate of the abwolute error in the approximated intcgral

38.2 Surface waves and other singularities

In this gection the numencal problems assoctated with the singulanties that oceur in the 0 -
 oceurs at the branch pornt $\beta-1$. At this point, the derivative of $j_{m \times n}(i s)$ is infinte Consequently, many integration points are needed near this point in order to obtan a good itcuracy in the numerical ategration Thas singukaty at $\beta=1$ can be avoded by introducing the change oil variables B - cos $/$ in the merval $[0$ I]:

$$
\begin{equation*}
\left.\int_{i=1}^{1} y_{n+1} i t\right) d i \phi-\int_{i}^{\pi / 2} g_{: n+1}(\cos t \sin t i \phi, \tag{374}
\end{equation*}
$$

and the change of variables if -- cosht in the interval $\| 1, \beta$. \mid

conditions of these surface waves are given by

$$
\begin{align*}
T_{r}= & \Rightarrow k_{2} k_{3} \sin \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right)+k_{1} k_{2} \cos \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right) \\
& -k_{2}^{2} \sin \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right)+\jmath k_{1} k_{3} \cos \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right)=0 \tag{3.76}\\
T_{\mathrm{m}}= & k_{2} k_{3} \varepsilon_{+1} \varepsilon_{r 2} \cos \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right)+j k_{2}^{2} \varepsilon_{r 1} \cos \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right) \\
& -k_{1} k_{3} \varepsilon_{r 2}^{2} \sin \left(k_{1} d_{1}\right) \sin \left(k_{2} d_{2}\right)+j k_{1} k_{2} \varepsilon_{r 2} \sin \left(k_{1} d_{1}\right) \cos \left(k_{2} d_{2}\right)=0
\end{align*}
$$

The zeros of $I_{r n}$ and T_{r} give rise to poles in the spectral-domain dyadic Green's function. It can be shown that these poles are first-order poles that are located just below the real β-axis if the substrates are lossy. Although the poles are not located exactly on the real β-axis, they do give rise to numerical problems when an integration is cartied out along that β-axis. The exact location of the zeros of the complex functions T_{m} and T_{e} can only be found with numerical techniques. However, it is possible to say something about which TM- or TE-modes appear in the microstrip structure For that purpose we will assumc that the dielectric losscs are negligible, i.e., tan $\delta_{1}=0$ The zcros of $T_{m,}$ and T_{n} now lie on the real axis of the complex β-planc and they are located within the interval $\left|1, a_{\varepsilon_{r}}\right|$. n this interval k_{3}, defined in (2.23), is imaginary and the z-dependence of the fields in the arr region will be of the form $\mathrm{exp}\left(-h_{0} z \sqrt{6^{2}}-1\right)(\sec (2.25))$. Note that we look only at positive values of β. Not all the TM and TE surface wave modes are excited in the delectric structure This depends on the permittivity and thickness of the dielectric layers and on the frequency of operation Now let β_{k} be the radial propagation constant for the k-th surface-wave mode. A certain surface-wave mode k torns on when $b_{k}=1$ [1]. Inserting $\dot{\beta}_{k}=1$ into (376) yields

$$
\begin{equation*}
\tan \left(k_{0} d_{2} \sqrt{\varepsilon_{r 2}-1}\right)=-\frac{\varepsilon_{r 2} \sqrt{\varepsilon_{r 1}-1}}{\varepsilon_{r 1} \sqrt{\varepsilon_{r 2}-1}} \tan \left(k_{n} \dot{c}_{1} \sqrt{\varepsilon_{r 1}-1}\right) \tag{3.77}
\end{equation*}
$$

for TM modes, and

$$
\begin{equation*}
\tan \left(k_{0} d_{2} \sqrt{\varepsilon_{r 2}-1}\right)=\frac{\sqrt{\varepsilon_{r}-11}}{\sqrt{\varepsilon_{-2}-1}} \cot \left(k_{r 1} d_{1} \sqrt{\varepsilon_{r 1}-1}\right) \tag{3.78}
\end{equation*}
$$

for 'l'E surface-wave modes. When we introduce the notation

$$
\begin{align*}
& r_{1}=k_{0} d_{2} \sqrt{\varepsilon_{r 2}-1} \\
& C=\frac{d_{1} \sqrt{\varepsilon_{r 1}-1}}{d_{2} \sqrt{\epsilon_{r 2}-1}} \tag{3.79}
\end{align*}
$$

Figure 3.15 Graphical representation of the TM ard TE cut-off conditions, with $=-r_{r=1} h_{2} / \mathrm{c}_{\mathrm{r}} \mathrm{d}_{1}$ $a n d b=d_{2} / l_{1}$
the equations (3.77) and (378) take the following form

$$
\begin{equation*}
\tan (1,1)=-\frac{\varepsilon_{12} \dot{d}_{2}}{\varepsilon_{1} \dot{d}_{1}}\left(\tan \left(C r_{d}\right),\right. \tag{3.80}
\end{equation*}
$$

for TM modes, and

$$
\begin{equation*}
\tan \left(x_{d}\right)={ }_{d_{1}}^{d_{1}} C \cot \left(\alpha_{d}\right), \tag{3.81}
\end{equation*}
$$

for TE surfacc-wave modes. The cut-off conditions for atertan mode can be made more clear if both sides of equations (380) and (3.81) are deplayed graphically Figure 3.15 shows the graphical representation of the TM and $\mathrm{l}^{\prime} E$ cut-off conditions for a fixed C° and a variable .x. The lowest order TM surface-wave mode is alway, above cut off. The mode is denoted at the TM_{8} surface-wave mode with it acro cut-off frequency and with a propagation constant $j_{i j}$ in the interval $1 \leq \beta_{1} \leq \beta_{2}$. The next surface-wave mode is the TE , mode From figure 3.15 it is clear that il $x_{i} \leqslant x_{d 1}$, with $x_{d 1}$ being the first root of (381), this first TE-mode is below cut off. This imples that, sil the condrtion

$$
\begin{equation*}
\tan \left(x_{4}\right)<\frac{\dot{\alpha}_{2}}{\dot{\alpha}_{1}} C \cot \left(C_{t}\right) \tag{382}
\end{equation*}
$$

is fultilled, only the $\mathrm{TM}_{\text {ti-mode }}$ existe in the layered structure In almost all pratical mocrostrip configurations, condition (3.82) is satisfied

If delectric losses are introduced, the vahues of β for which the functions T_{e} and $T_{\pi n}$ are zero will be complex

$$
\begin{equation*}
\beta_{k}=\chi_{k}+\mu_{k}, \tag{3.83}
\end{equation*}
$$

where $\nu_{k}<0$. So the $\left\{B_{k}\right\}$ are located just below the real axis of the complex β-plane. The exact location of a zero B_{k} is determined with a numencal routine of the library MINPACK [50], which is a very robust routinc based on the Powell-hybrid method. Now let us assume that only T_{m} has one zero, located at $\beta=\beta_{0}=\chi_{0}+7 \nu_{0}$ with $1 \leq \chi_{0} \leq b_{8,}$ and $\nu_{0} \leq 0$. The β-integrand in (372) may be writen in the form

$$
\begin{equation*}
q_{\pi i n}(B)=\frac{h(\beta)}{T_{m}(\beta)} \tag{384}
\end{equation*}
$$

where $h(\beta)$ is an analytical function in the interval $1 \leq \beta \leq \beta_{\varepsilon_{r}}$. Because the function T_{m} has a first-order zero at $\beta=\beta_{0}, g_{m, n}(\beta)$ will have a first-order pole at this point. In the neighbourhood of this pole, $g_{m, n}(\beta)$ can be expanded in a Laurent series. The singular part or this seres is given by

$$
\begin{equation*}
a_{\pi n}^{x_{n} \pi g_{0}}(\beta)=\frac{R_{0}}{\ddot{b}-\ddot{b}_{0}}, \tag{385}
\end{equation*}
$$

where R_{fl} as the residue of $g \mathrm{~m}, \mathrm{n}$ at $\beta=\beta_{0}$

$$
\begin{equation*}
R_{0}=\lim _{\gamma \rightarrow m_{1}}\left(\beta-\beta_{0}\right) g_{\mathrm{m}, n}(\beta)=h\left(\beta_{0}\right) \lim _{3 \rightarrow \mathcal{K}_{0}} \frac{\beta-\beta_{0}}{I_{\mathrm{rm}}(\beta)}=\frac{h\left(\beta_{0}\right)}{\bar{T}_{r,}^{\prime}\left(\beta_{0}\right)}, \tag{386}
\end{equation*}
$$

with

$$
T_{m}^{\prime}\left(B_{0}\right)=\left.\frac{d\left(T_{m}(B)\right)}{d B}\right|_{\beta-\beta_{0}}
$$

Numerical problems associated with surface waves can be avoided by extracting the singular part, denoted by $g_{n n}^{* 1 m}$, from the orginal integrand g_{m} :

The integration over i of gine can be pertormed analytically

In the case of a lossless substrate $\left(\nu_{0} \dagger 0\right)$ the integral of $q_{m \pi}^{s i n h}$ takes the form

$$
\begin{equation*}
\int_{1}^{a_{\mathrm{r}}} q_{1 n, n}^{\operatorname{snn},(B) d B}=R_{0} \ln \left[\frac{\beta_{r,}-\lambda_{0}}{\left(x_{0}-1\right)}\right]-\pi R_{0} \tag{389}
\end{equation*}
$$

The remaining integral over β in (387) is well-bchaved and can be calcutated by standard numerical integration. This is illustrated in figure 316 where the real part of the onsinal integrand
 for a typical merostry configuration

3.8.3 Asymptotic-form extraction technique

 of (372). It is therefore possible to perform this integration numencally up to a certan upper limit $\beta_{\text {mas. }}$ The upper limit $\beta_{\text {ras }}$ has to be chosen carefully to ensure that the relative error of the calculated numerical approximation of the megral (3.72) is sufficiently mall. A great disadvantage of the direct integration strategy is the fact that $g_{m n}(d)$ is a slowly decaying and strongly oxillating function. Thus menns that a lot of computer time is needed to obtain accurate results. This stuation becomes even worse if one wants to analysc arrays of microstrip antenas, becaus the frequency of oscillations in ψ_{m}, (θ) nereases if the distance between the two basis functions under consideration increases (arrays are discussed in chapter 4)
These numerical problems can be avoided the the walled asymptotic-form extraction technique is used. The stymptote form of 9 anin 13) for large (0 -values is substrated from the onginal integrand, which results in a rapudly converging integral The infinte integration over the extracted asymptotic part of ifn a (6) can be cvaluated in closed form. This leads to a signoficant reduction of the regured computer time (CPU time) needed to calculate the elements of $|Z|$ and $\left.\mid V^{\sim \sim}\right\}$ From numerical tests, we found that the total computer trme for a typieal mecostrip configuration 1s reduced by a factor 20 or more when the method is appled. In the spathal dotame is the
 singulaty, where \vec{r}_{0} is a source point This source sungulaty is responsible for the asymptotic behavior of the dyadic Green's function in the spectral domain if the z-coordnates of the two bass functions of the element $Z_{1, \ldots}$, intersect each other, the spectral-doman Green's function decreases slowly ($\propto 1 / \beta^{2}$) for latge values of B. On the other hand, if the α-coordnate of these two basis functions do not intersect, the asy mptotic form of g_{n} ((6) will decrase exponentially for large t In the latter case, the asymptotic-form extraction technique obviously need not be used. Now let $\hat{d}_{m}, n(\beta)$ be the asy mptotic form of $\eta, n(\beta)$. Then an element of the method-ot-monents

a) no extraction

b) with extraction

Figure 3.16: Real part of $g_{m n}(B)$ and $g_{m n}(B)-g_{m+n}^{\sin (B)}\left(\beta\right.$ with $h_{2}=6.08 \mathrm{~mm}, \epsilon_{r 1}=\varepsilon_{r 2}=294$ and $f=3 \mathrm{GHz}$

 with $L_{2}=608 \mathrm{~mm} \varepsilon_{r \mid}-\varepsilon_{22}=294 \mathrm{and} f=3 \mathrm{GIIz}$
matrix [7] may be wrilten at

$$
\begin{align*}
& Z_{n+1 ;}=\int_{i}^{\infty}\left(a_{n+4}(i) d i j\right. \\
& -\int_{i=}^{\infty}\left[a_{n: 2}(i)-\bar{i}_{n, 1}(3)\right] d i+\int_{i}^{\infty} i_{n+1},(i) d i \tag{3.90}
\end{align*}
$$

with

$$
\hat{Z}_{m: 1}-\int_{11}^{\infty} \dot{\eta}_{n}\left(\ln _{1 / \prime}\right.
$$

The improved convergence of the integend of the first integral in : 90) a dhustated in figure 317 In tha legure the real patt of it: : 3 hampared with the real part of the modeded integrand

requred for an accurate numerical evaluation of the original integrand ln the following part of thss section we will discuss how this asymptotic-form extraction technique can be applied to the calculation of the elements of each of the submatrices of $\{Z]$ and of $\left[V^{* x}\right]$, given by (3.17) and (318). It should be noted that we will only consider the case of entire-domain smusoidal basis lunctions on the patches, given by (330) and (331) From convergence tests (see also scction 3.9) it was shown that with this set of basis functons very accurate results can be obtained cven if only a few basss functions are used in a method-of-moments procedure. The asymptotic-form extraction technique can, of course, also bc applied if different sets of basis functions on the patches are used. In the following part of this section it is assumed that the length of the coaxial probe is not longer than the height of the first laycr, $1, e_{\text {, }}, z_{1} \leq h_{1}$. An extension to the more general case is straightforward.

i. $\left\{\mathbf{Z}^{\text {pp }}\right]:$ patch modes \longleftrightarrow patch modes

Ir section 34, scveral types of basis functions that can bc used on the patchcs were discussed Further on, in section 39 , it will be shown that very good results can be obtained if the set of basis functuons given by (3.30) and (3.31) is used. Normally, only a few modes of this set are needed in the method-of-moments procedure to obtann fairly good results. This is essential when we are going to look at arrays of microstrip antennas in chapter 4. We will therefore present the extraction technique only for this set of basis functions Note that the analytical techniquc presented in this section for the case of isolated microstrip antennas can easily be cxtended to the case of an axay of microstrip antennas.
The cxtracted part $\bar{Z}_{m, n}^{p p}$ of the asymptotic-form extraction technique is in this case given by (see also (A.13) of appendix A)

$$
\begin{align*}
& \ddot{Z}_{m n}^{p n}= \int_{0}^{\frac{r}{2}} \int_{0}^{\infty}\left[\overline{\bar{Q}}_{2}^{E}\left(\theta, \alpha, \alpha_{r}, z_{n}\right)\right. \tag{3.91}\\
&\left.\vec{J}_{n}^{p}\left(\beta, \alpha, z_{v}\right)\right] \\
& \tilde{J}_{r}^{p+}\left(\beta, \alpha, z_{m}\right) S_{p p}(m, 1, n, 1, \beta, \alpha) k_{0}^{2} \beta d \beta d \alpha,
\end{align*}
$$

with

$$
z_{n}= \begin{cases}z_{1}, & \text { if domain } m \text { is located on the lower patch, } \\ z_{2}^{\prime}, & \text { if domain } m, ~ i s ~ l o c a t e d ~ o n ~ t h e ~ u p p e r ~ p a t c h ~\end{cases}
$$

where $\overline{\bar{Q}}_{2}^{E}$ is the asymptotic form of the dyadic Green's function $\overline{\bar{Q}}_{2}^{E}$ for large-valued B, i e, k_{1}, k_{2} and k_{3} replaced by $-j k_{0} \beta$ The numbering of the elements of the submatrix [$Z^{p 7}$] is now
$m=1,2, \quad, \quad N_{1}+N_{2}$ and $n=1,2, \ldots, N_{1}+N_{2}$ The function $S_{m}(m, 1, n, 1, j, s)$ is given by (A 14) in appendix A. Both patches are located in layer 2 . Note that \bar{Q}, is extracted from the ongmal integrand for all values of β We are only interested in r - and y-directed basis functions on the patches. Therefore, the following asymplotic Green's function $\bar{Q}{ }^{E}$ is used here
with

$$
\begin{aligned}
& \bar{Q}_{2 x}^{L}= \begin{cases}\frac{-\mu / k_{0}}{2 k_{0} \beta}[1 & \left.\frac{i^{2} \cos ^{2} \alpha}{z_{1},}\right], \\
0, & z_{72}=z_{n n} \\
0, & z_{1 n} \neq z_{n},\end{cases}
\end{aligned}
$$

with

$$
\varepsilon_{m_{1}}= \begin{cases}\left.r_{n_{1}}+\varepsilon_{r_{2}}\right) / 2, & \text { if } z_{1,4}=z_{1}-h_{1} \\ \varepsilon_{n} & \text { if } i_{1}<z_{r 1}-z_{n} \leq h_{2} \\ \left(c_{r 2}+1\right) / 2, & \text { if } z_{m,}=z_{n}=h_{2}\end{cases}
$$

 are located both at the same x-coordnate, ie , if $z_{r n}=z_{\mathrm{n}}$. Our task is now to find a closed-form expresston for the infinte integration over β of the extracted part of the integrand. The integral
over B in (3.91) depends on the type of basis function used on the patches. Now let us consider two x-directed basis functions of the set (3.30), both located on the lower patch or both located on the upper patch, with m_{p} and n_{p} both odd. In the following part of this section we will present an analytical method to determine $\ddot{Z}_{r n, r}^{p p}$, for these two basis functions The procedure for the calculation of $\bar{Z}_{m, n}^{p p}$ for the remaining basis functions of the set (330) and (331), on both the lower and upper patch, is analogous. Substitution of (32) and (392) in expression (391) yiclds

$$
\begin{align*}
\dot{Z}_{\pi n}^{p p}=4 A \int_{0}^{\frac{\pi}{2}} & \frac{1}{\sin ^{2} \alpha} \int_{0}^{\infty}\left[1-\frac{\beta^{2} \cos ^{2} \alpha}{\varepsilon_{n}}\right] \tag{3.93}\\
& \frac{\cos ^{2}(\beta \gamma / 2) \sin ^{2}(\phi \xi / 2)}{\left(n_{p} \pi-\beta_{\gamma}\right)\left(n_{p} \pi+\beta \gamma\right)\left(m_{p} \pi-\beta-\right)\left(m_{p} \pi+\beta_{\gamma}\right) \beta^{2}} d / \beta d \alpha,
\end{align*}
$$

with n_{p} and n_{p} both odd and with

$$
\begin{aligned}
& A=\frac{-8 \gamma_{\omega} / \mu_{0} \pi^{2} m_{p, p} \eta_{t} W_{s t}^{2}}{k_{0}}, \\
& \gamma=h_{0} \cos \alpha W_{c b} \xi=\ln \sin \alpha W_{3}, \\
& W_{r t}= \begin{cases}W_{r 1}, & \text { if } z_{r u}=z_{n}-z_{1}, \\
W_{v 2}, & \text { if } z_{r \mathrm{rt}}=z_{r i}=z_{2},\end{cases} \\
& W_{m i}^{*}= \begin{cases}W_{n 11}, & \text { if } z_{m}=z_{n}=z_{1}^{\prime}, \\
W_{y 2}, & \text { if } z_{r: n}=z_{n}-z_{2}\end{cases}
\end{aligned}
$$

The term $\cos ^{2}(3-2) \sin ^{2}(19 / 2)$ in (393) can be watten as a sum of exponential functions.

$$
\begin{equation*}
\cos ^{2}(\alpha-2) \sin ^{2}(3 \varepsilon / 2)=\frac{1}{!6}\{q(B)+9(-1)\} \tag{394}
\end{equation*}
$$

with

$$
y^{3}=-2 \cdot 2 \cdot+2 r^{14}+r^{4}+8
$$

Figure 318 Modified integration contour if $m_{1} \neq n_{p}$
interval (∞, ∞) This results m

$$
\begin{align*}
& \bar{Z}_{*+1}^{*}-2 A \int_{i}^{\pi} \frac{1}{\sin ^{2}{ }_{n}} \int_{-\infty}^{m}\left[1-\frac{\theta^{2} \cos ^{2} \sigma}{\varphi_{\mu i}}\right] \tag{395}
\end{align*}
$$

$$
\begin{aligned}
& =24 \int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{2}}-L_{a}(\gamma) \alpha \alpha_{0}
\end{aligned}
$$

with

The integral $l_{\text {g }}$ can be calculated analytically. First the integration contour wall be defomed such that values of b for wheh the denominator of the $\beta-1$ integrand is sero are aivoided The second step is the expansion of the term $\cos ^{2}(\beta \gamma / 2)$ sn $n^{2}(\beta / \theta / 2)$ into exponental functrons, given by (3.94) The integral I_{5} is then witten ats a sum of 10 integrals Each of these 10 integrals can be calculated by closing the integration contour wath a serni circle and applyng Cachy's Theorem and Jordan's Lemma. The location of the semi circle, ie above or below the tiaxis, depends on the argument of the exponential function.
 both situaturs.

1. $m_{p} \neq n_{p}$

The integrand of $I_{o}(c)$ in analytic for all complex i. We may, therefore deform the in-integration contour as illustrated in figure 3.18 " 5 hn, figure shows the modified integration contour in the complex 3 -platne.

Figure 3.19: Integration contour for $t \geq 0$
Based on this modified integration contour, the integral $I_{B}(\alpha)$ is given by

$$
\begin{equation*}
I_{\beta}(\alpha)=\int_{-\infty}^{\infty} \frac{\left[1-\frac{\beta^{2} \cos _{2}^{2} s x}{\sigma_{r}}\right] \cos ^{2}\left(\beta_{\gamma} / 2\right) \sin ^{2}(\beta \xi / 2)}{\left(n_{p} \pi-\beta \gamma\right)\left(n_{p} \pi+\beta_{\gamma}\right)\left(m_{p} \pi-\beta_{\gamma}\right)\left(m_{p} \pi+\beta_{\eta}\right) \beta^{2}} d \beta, \tag{3.97}
\end{equation*}
$$

where $\oint_{-\infty}^{\infty}$ denotes that the integration 1 s along the contour shown in figure 3 18. If we substitute (394) in expression (397), $I_{j}(\alpha)$ can be written as a sum of 10 integrals of the general form

The integrand of the above integral has foux poles of order 1 at $\beta= \pm\left(m_{p} \pi / \gamma\right)$ and $\beta= \pm\left(r_{p}, t / \gamma\right)$ and a pole of order 2 at $B=0$ A closed-form expression for the integral $G_{1}(f)$ can be found by using Cauchy's theorem and Jordan's Lemma [78]. Two subcases have to be distinguished, namely i) $t \geq 0$ and ii) $t<0$.
$1 \geq 0$
The ongmal integration contour of tigure 3.18 is closed by the semi-circle C_{p}^{+}of radus p, shown in figure 3.19 If $t>0$ the integral over C_{ρ}^{+}tends to 0 as $p \rightarrow \infty$ according to Jordan's Lemma If $t=0$ the integral over C_{p}^{+}also tends to 0 as $\rho \longrightarrow \infty$, because the integrand is of $O\left(\beta^{-4}\right)$ as $|\beta| \longrightarrow \infty$ The integral $G_{1}(t)$ is equal to zero for $t \geq 0$, because no singularities are located in the region enclosed by the integration contour of figure 319 :

$$
\begin{equation*}
G_{1}(i)=0 \text { for } 1 \geq 0 \tag{3.99}
\end{equation*}
$$

Figure 3.20: Integraton contour forl <0
$t<0$
Our integration contour 15 now closed with the semecrele ©-, shown in figure 320 In the region enclosed by the integration contour 5 poles are located. According to Jordan's 4 emmia the integral over G_{p} tends to 0 as $b \longrightarrow \infty$. Then $G_{1}(t)$ can be expressed in terms of the 5 residues:
where the function $J_{1}(\beta, 4)$ ts given by

The residues in (3.100) are given by

$$
\begin{aligned}
& \mathrm{g}-\frac{\mathrm{mpr}}{\mathrm{q}}
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{Res} f_{1}(j, f)=\frac{\partial t}{m_{p}^{2} n_{p}^{2} \pi^{4}}: \tag{3.102}
\end{align*}
$$

$$
\begin{aligned}
& A=\frac{\operatorname{cox}}{4}
\end{aligned}
$$

Substiating these results in expression (3.100) gives a closed-form expression for the integral $G_{1}(t):$

$$
\begin{array}{rlrl}
G_{1}^{\prime}(t)= & \frac{2 t}{m_{p}^{2} \eta_{p}^{2} \pi^{3}}-\frac{2 \gamma}{m_{p}^{3} \pi^{4}\left[n_{p}^{2}-m_{p}^{2}\right]}\left[1-\frac{m_{p}^{2} \pi^{2} \cos ^{2} \alpha}{\gamma^{2} \varepsilon_{p h}}\right] \sin \frac{m_{p} \pi t}{\gamma} \tag{3.103}\\
& -\frac{2 \gamma}{n_{p}^{3} \pi^{4}\left[m_{p}^{2}-\eta_{p}^{2}\right]}\left[1-\frac{n_{p}^{2} \pi^{2} \cos ^{2} \alpha}{\gamma^{2} \varepsilon_{i} h}\right] \sin \frac{\eta_{p} \pi t}{\gamma}, & 1<0
\end{array}
$$

Define an auxiliary function $F_{1}(l)$ with $F_{1}(t)=G_{1}(t)+G_{1}(-t)$ Then according to (3.103) and (3.99) $F_{1}(t)$ is given by

$$
\begin{align*}
\Gamma_{1}(t)= & \frac{-2|t|}{m_{p}^{2} \eta_{p}^{2} \pi^{3}}+\frac{2 \gamma}{m_{p}^{3} \pi^{4}\left|n_{p}^{2}-m_{p}^{2}\right|}\left[1-\frac{n_{p}^{2} \pi^{2} \cos ^{2} \alpha}{\gamma^{2} \varepsilon_{m h}}\right] \sin \frac{m_{p} \pi|t|}{\gamma} \tag{3.104}\\
& +\frac{2 \eta}{n_{p}^{2} \pi^{4}\left|m_{p}^{2}-n_{p}^{2}\right|}\left[1-\frac{n_{p}^{2} \pi^{2} \cos ^{2} \alpha}{\gamma^{2} \varepsilon_{r k}}\right] \sin \frac{n_{p} \pi|+|}{\gamma}
\end{align*}
$$

Now that $F_{1}(t)$ is known, we can also calculate the onginal integral $I_{\beta} I_{\beta}$ can be writen in terms

Figure 321^{-}Modffed integration contour for the cone that $m_{p}=n_{p}$.
of the function $F_{1}(f)$:

$$
\begin{aligned}
& -\frac{1}{16}\left\{2 F_{1}(0)-2 \mu_{1}(r)+2 F_{1}(\xi)+F_{1}(\rho+\xi)+\Gamma_{1}(r-\xi)\right\} . \\
& \text { with } m_{1} \neq r_{1}
\end{aligned}
$$

2. $m_{p}=n_{p}$

The same procedure a presented in the case when $m \neq i_{x}$ is used now. The integrand of C_{i}, given by (396), w also in this case analytic for all complex β. We may therefore use the modified integration contour of figure 3.21 to determine $I_{\beta} I_{3}$ is then given by
where the symbol $\int_{-\infty}^{\infty}$ is uned to mancate that the integration contour of figure 321 in uncd. Now substatute (3.94) in expression (3.106) The utegral $I_{n}(\mathrm{c})$ can then be written ath a tum of 10 integrals with the general form:

The integrand of $G_{2}(i)$ has three poles of order 2 at $\beta= \pm m_{r} \pi / \gamma$ and $i \gamma-0$. Agan two subcases can be distingunshed, ı.e., i) >0 and i$) t<0$

Figure 3 22: Modifed integration contour if $t \geq 0$.

Figure 3.23: Modified integration contour ift <0.
$1 \geq 0$

The integration contour is closed with C_{p}^{+}, shown in fig. 3.22. According to Jordan's Lemma the integral over C_{ρ}^{+}tends to 0 as $\rho \longrightarrow \infty$ There are no singularities located in the region enclosed by the integration contour of figure 322 , so $G_{2}(t)$ will be zero in this casc:

$$
\begin{equation*}
G_{2}(t)=0 \text { for } t \geq 0 \tag{3108}
\end{equation*}
$$

$+\leq 0$
The integration contour is closed with the semi-circle C_{p}^{-}as shownin figure 3.23 Again Jordan's Lemma can be used to show that the contribution of the integral over C_{p}^{-}tends to 0 as $p \rightarrow \infty$

Now let

$$
\begin{equation*}
f_{2}(\beta, 1)=\frac{\left[1-\frac{j j^{2} \cos ^{2} \theta}{\varepsilon_{p h}}\right] r^{i \beta t}}{\left(m_{i} \pi-\beta \gamma\right)^{2}\left(m_{n} \pi+\beta \gamma\right)^{2} \beta^{2}} \tag{3109}
\end{equation*}
$$

then $\left(G_{2} 1 t\right)$ is cralculated from

$$
\begin{align*}
& -\frac{2 i}{m_{\mu}^{4} \pi^{3}}+\frac{t}{m_{p}^{4} \pi^{3}}\left[1-\frac{m_{p}^{2} \pi^{2} \cos ^{2} \alpha}{\gamma^{2} \xi_{1} h}\right] \cos \frac{m_{y} \pi l}{\gamma} \tag{3.110}\\
& -\bar{\gamma}\left[3-\frac{\theta_{\gamma}^{2} \pi^{2} \cos ^{2} \sigma}{\gamma^{2} \varepsilon_{\Gamma}}\right] \sin \frac{m_{p} \pi t}{\gamma} .
\end{align*}
$$

If we define an auxiliary function $I_{2}(t)$ with $F_{2}(t)-G_{2}(\dagger)+G_{2}(-t)$ then $I_{i i}$ can be expressed in terms of this function f_{2} as

$$
\begin{align*}
I_{\theta}(\alpha) & -\oint_{x}^{\infty}\left[1-\frac{i^{2} \cos ^{2} \alpha}{\sigma_{\gamma h}}\right] \frac{\cos ^{2}(\beta \gamma / 2) \sin ^{2}(\beta \zeta / 2)}{\left(\pi m_{1} \pi-\beta \gamma\right)^{2}\left(\mu_{p} \pi+\beta_{\gamma}\right)^{2} \beta^{2}} d \beta \tag{3.111}\\
& -\frac{-1}{16}\left\{-2 I_{2}(0)-2 F_{2}(\gamma)+2 F_{2}(\xi)+F_{2}(\gamma+\varepsilon)+F_{2}(\gamma-\varepsilon)\right.
\end{align*}
$$

With $m_{1},-n_{y}$ The remaning integral over a in (3,95) has to be evaluated numerically. If one properly davdes the a-integration interval into two subintervals, only a few integration points are necded to obtain an acceptable accuracy These two intervals are $\left[0\right.$, mind and $\left[\sigma_{n}, ~ \tau / 2\right]$, where $\sigma_{\text {t }}$ is the value of of for which $r-\xi-0$. Fortunately, the integration over ir only needs to be carried out for one frequency pount

ii. $Z^{\text {as }}:$ attachment mode \longleftrightarrow attachment mode

A detarled expression of $Z^{2 \prime}$ in given by formula (A 2) of appendix A, where it wats assumed that the lower patch 16 located at the interface between latyer 1 and layer $2\left(0-h\right.$, . Now let $K^{2 a}$ be represented by the following integral

$$
\begin{equation*}
Z^{\infty}-\int_{i}^{\infty} a^{m a}(\beta) d \beta \tag{3112}
\end{equation*}
$$

This can also be written in the form

$$
\begin{align*}
& Z^{n a}=\int_{0}^{\infty} g^{u u}(\beta) d \beta=\int_{0}^{0} g^{n u(}(\beta) d B+\int_{\theta}^{\infty} g^{\omega \alpha}(\theta) d \beta \\
& =\int_{0}^{\infty} g^{a a}(\beta) d \beta+\int_{\dot{y}}^{\infty}\left[g^{a \alpha}(\beta) \cdot \ddot{g}^{a a}(\beta)\right] d \beta+\int_{2}^{\infty} \ddot{g}^{\infty a}(\beta) d \beta \tag{3.113}\\
& =\left[Z^{a n}-\tilde{Z}^{a, 2}\right]+\tilde{Z}^{a a} \text {, }
\end{align*}
$$

with

$$
\check{z}^{\mathrm{as}}=\int_{i}^{\infty} \bar{g}^{a \alpha}(B) d B
$$

where $\bar{g}^{\text {ana }}(\beta)$ is the asymptotic form of the original β-integrand $g^{a z}(\beta)$ for large-valued β Note that in this case the extraction technique is only used when $\beta>0$, because the asymptotic form $\bar{g}^{\text {aa }}(B)$ has a $1 / \beta^{2}$-dependence for $\beta!0$. The exact valuc of v is not very critical In our simulations, we have used $v=50$. The asymptotic form of $\eta^{0.0}(\beta)$ can be found by substituting $k_{1}=\cdots k_{0} \beta, k_{2}=-j h_{0} \beta$ and $k_{7}=-\gamma k_{0} \beta$ in the orignal expression We then finally arrive at

$$
\begin{aligned}
& \left.-\frac{\left(4 \varepsilon_{r \mathrm{r}}+12 \varepsilon_{r 2}\right) J_{6}^{2}\left(k_{0} B a\right)}{\varepsilon_{r 1}\left(\varepsilon_{r 1}+\varepsilon_{r 2}\right) h^{2} k_{0}^{2} \sigma^{2}}\right) d i \beta, \quad z_{1}=h_{h_{1}}
\end{aligned}
$$

The above integral contans four types of infinite integrals All of them can be cvaluated analytually or can be approximated by a closed-form cxpression. These five integrals have the
form

$$
\begin{align*}
& I_{1}=\int_{0}^{\infty} \frac{J_{1}^{2}\left(h_{0} \beta b_{n}\right)}{\beta^{2}} d D^{2}, \\
& j_{2}-\int_{v}^{\infty} \frac{J_{0}^{2}\left(\lambda_{0} \beta a\right)}{\beta} d \beta, \\
& I_{2}=\int_{i=}^{\infty} \frac{J_{0}^{2}\left(k_{0} \beta a\right)}{\beta^{2}} d i, \tag{3115}\\
& I_{4}=\int_{;=}^{\infty} \frac{J_{1}\left(k_{n} \beta b_{n}\right) J_{0}\left(k_{n} / \beta o\right)}{9^{2}} d i j
\end{align*}
$$

The first type of integral can be evaluated analytically if we choose : $=0$

$$
\begin{equation*}
I_{1}=\int_{i 1}^{\infty} \frac{T_{1}^{2}\left(h_{1} p b_{n}\right)}{i^{2}} d j=\frac{4 k_{i} j_{n}}{3 \pi} \tag{3}
\end{equation*}
$$

The second mentegral cannot be evaluated analytically, but can be reduced to an megral over a finte interval for: $>0[7]$:

$$
\begin{align*}
I_{2} & -\int_{i}^{\infty} \frac{J_{0}^{2}\left(k_{0}(\beta a)\right.}{j} i \phi \\
& --\log \frac{1}{2} i_{n} \beta \quad \zeta \int_{0}^{k_{n}=a} \frac{J_{i,}^{2}(1)}{2} d i \tag{3.117}
\end{align*}
$$

where 6" -0577215 is Euker's constant The third integral $I_{\text {? }}$ can be evaluated in clowed form [27, p 634]

$$
\begin{align*}
& I_{3}=\int_{\theta^{2}}^{\int_{0}^{2}\left(\delta_{0} j_{1}\right)} d / \tag{3118}
\end{align*}
$$

$$
\begin{aligned}
& -2 i_{01} I_{10}\left(i_{n}=1 / J_{1}\left(h_{1}!a\right)\right.
\end{aligned}
$$

The integrals Y_{4} and I_{3} cannot be evaluated analytically, but can be approximated by a closed-form expression For large-valued β, the Bessel functions can be replaced by their asymptotic forms, so

$$
\begin{equation*}
J_{0}(x)=\sqrt{\frac{2}{\pi x}}\left\{\cos \left(x-\frac{\pi}{4}\right)+\frac{\sin \left(x-\frac{\pi}{4}\right)}{8 x}+\phi\left(\frac{1}{x^{2}}\right)\right\} \tag{3.119}
\end{equation*}
$$

For the sake of simplicity. only the first term in the above expansion will be used here A better approximation can, of course, be obtained if more terms of the asymptotic expansion of the Bessel functions are used. Considering only the first term of (3119), we get

$$
\begin{align*}
I_{4} & =\int_{0}^{\infty} \frac{J_{1}\left(k_{0} \beta b_{a}\right) J_{0}\left(k_{0} \beta a\right)}{\beta^{2}} d B \\
& \approx \int_{0}^{\infty} \frac{2}{\pi k_{0} \sqrt{b_{n} a}} \frac{\cos \left(k_{0} \beta b_{4}-\frac{3 \pi}{4}\right) \cos \left(k_{0} \beta a-\frac{\pi}{4}\right)}{\beta^{3}} d \theta \tag{3I20}\\
& =-\frac{k_{0}}{\pi \sqrt{b_{n} a}}\left(\left(a+b_{u}\right)^{2}\left[\frac{\cos k_{0} v\left(a+b_{a}\right)}{2 k_{0}^{2} b^{2}\left(a+b_{n}\right)^{2}}-\frac{\sin k_{0} v\left(a+b_{a}\right)}{2 k_{0} v\left(a+b_{a}\right)}+\frac{1}{2} \operatorname{co}\left(k_{0} v\left(a+b_{n}\right)\right)\right]\right. \\
& \left.+\left(a-b_{a}\right)^{2}\left[\frac{\sin k_{0} v\left(a-b_{a}\right)}{2 k_{0}^{2} v^{2}\left(a-b_{a}\right)^{2}}+\frac{\cos k_{0} v\left(a-b_{a}\right)}{2 k_{0} v\left(a-b_{u}\right)}+\frac{1}{2} \operatorname{sa}\left(k_{0} 0\left(a-b_{a}\right)\right)\right]\right),
\end{align*}
$$

where $c(r)$ and $s(x)$ are the cosine and sine integral, respectively, defined by

$$
\begin{align*}
& \pi(x)=-\int_{x}^{\infty} \frac{\cos t}{t} d t \tag{3.121}\\
& s(x)=-\int_{i}^{\infty} \frac{\sin t}{t} d t
\end{align*}
$$

The integral I_{5} is calculated by a simalar procedure

iii. $\left[Z^{\text {fa }}\right]$: feed modes \longleftrightarrow attachment mode

The extracted part $\bar{Z}_{\pi}^{f a}$ can be found by substituting $k_{1}=k_{2}=k_{3}-j k_{0} \beta$ in the integrand of the expression of $Z_{m}^{f a}$, given by formula (A 5) of appendix A. The extracted part $\tilde{Z}_{m}^{\prime \prime a}$ is only nonzero if subdoman m on the coaxial probe touches or overlaps the attachment mode.

With 1 n $=1,2, \quad, N_{2}$ and where it is again assumed that the lower patch is located at the interface between layer I and layer 2, ie., $\dot{x}_{1}^{\prime}=l_{1}$ 'The three types of intugrals in (3 122) have already been discussed in the previous part of the section and are given by (3.1[7), (3.118) and (3.120).

iv. $\left[Z^{\text {if }}\right]:$ feed modes \longleftrightarrow feed modes

The numbering of the elements of the submatrix $\left[Z^{f f} \mid\right.$ is now ${ }^{m}-1,2, \ldots, N_{2}$ and $n=$ $1: 2, \quad N_{k}$. In this case, threc stuations can be distinguished, namely $m=n, \quad=3 ; \quad 1$ and $m \leq m-2$ In the first wo cases, there is an overlap between subtomain :a and subdomain n The extracted part $\ddot{Z}_{\mathrm{ma}}^{\prime \prime \prime}$ is agan found by substituting $k_{1}=h_{2}=h_{x}=-h_{4} \beta_{1}$ in cxpression (A 9) of appendx A We then get (with $z_{1}-h_{1}$):
with for $m=n$,
and for $r=1$,
and for : $-3 \cdot 2$.

Consequently, $\ddot{Z}_{\dot{m}}^{i j}$ is nonzero only if subdomain m intersects subdomain n. Note that we have assumed that the length of the probe is not longer than the height of the first layer, 1 e, $z_{i} \leq h_{1}$ The same assumption was made in appendix A. Apparently, two types of integrals have to be calculated. They are of the same type as integral I_{2} and I_{3} given by (3.117) and (3.118), respectively

v. $\left[Z^{p a}\right]:$ patch modes \longrightarrow attachment mode

The extracted parl $\dot{Z}_{n}^{p a}$ is only nonzero if basis function m is located on the lower patch, i.e., if $z_{n}=z_{1}^{\prime}$. The extracted part can be found by substituting $k_{1}=k_{2}=k_{3}=-j k_{0} f$ in expression (A.17) of appendix A. This gives

$$
\bar{Z}_{m}^{p a}= \begin{cases}\frac{j \omega \mu_{0}}{\varepsilon_{r h}} \int_{0}^{5} \int_{0}^{\infty}\left(-\frac{j J_{1}\left(k_{0} \beta b_{a}\right)}{k_{0} b_{a}}+\frac{j \frac{J_{0}\left(k_{0} \beta \sigma\right)}{h_{0} h}}{}\right. \tag{3.124}\\ & \left.-\frac{j \varepsilon_{r 1} J_{0}\left(k_{0} \beta_{0}\right)}{2 \beta}\right) S_{p f}(m, 1,1, B, a) d \beta d \alpha, z_{m}=z_{1}^{\prime} \\ 0, & z_{m, n}=s_{2}^{\prime}\end{cases}
$$

with

$$
\varepsilon_{r h}=\frac{\varepsilon_{r 1}+\varepsilon_{r 2}}{2}, \text { for } \xi_{1}=h_{1}
$$

Note that $m=1,2, \quad, N_{1}+N_{2}$. The function $S_{p f}\left(m, 1,1, \beta_{1}, \alpha\right)$ is given by (A 18) in appendix A. We have thiee different types of integrals in (3.124)

$$
\begin{align*}
& I_{1}(\alpha)=\int_{0}^{\infty} J_{1}\left(b_{n} \beta b_{a}\right) S_{p}\left(\cdots, I_{1}, 1, \beta, \alpha\right) d \beta \\
& I_{3}(\alpha)=\int_{0}^{\infty} J_{0}\left(\alpha_{0} \beta \alpha\right) S_{p}(m, 1,1, \beta, \alpha) d \beta \tag{3.125}\\
& I_{3}(\alpha)=\int_{0}^{\infty} \frac{J_{0}\left(k_{0} \beta a\right)}{\theta} S_{p f}(m, 1,1, \beta, \alpha) d \beta
\end{align*}
$$

Let us first take a closer look at the integrals $I_{1}(\alpha)$ and $I_{3}(\alpha)$. The integrands of both integrals are even functions of j They can therefore be evaluated by a similar technique as used for the calculation of the extracted part of the elements of $\left[Z^{p F}\right]$. The only additional factors are the cero-order and first-order Bessel functions in the integrands of $I_{1}(\alpha)$ and $I_{3}(\alpha)$, respectively. The Bessel functions can be represented by an integral as

$$
\begin{equation*}
J_{n}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{j v \sin \theta} e^{-m \theta} d \theta \tag{3126}
\end{equation*}
$$

This integral representation is used to write the fumerator of the integrand of $I_{1}(\alpha)$ and $I_{3}(\mathrm{cx})$ as a sum of exponential functions, smimar to (3.94). As a result, a sum of integrals with a smimar form as (398) ts obtaned
The second integral in (3.125) is an integration over an odd functon with respect to B . We will present a method to calculate I_{2} for the case of a x-directed bass function of the set (3.30) pertaining to the lower patch, with mip odd. The procedure for the other busis functrons of this, set is analogous to the one presented here. Substitution of (3 32) and (A.18) into expression (3.125) gres

$$
\begin{equation*}
I_{2}(\alpha)=\frac{A \cos \alpha}{\sin \alpha} \int_{0}^{\infty} \mu_{0}\left(k_{\beta} \beta_{a}\right) \frac{\cos (\beta \gamma / 2) \sin (\beta \xi / 2) \sin (\beta \gamma) \cos \left(\beta_{\mu}\right)}{\left(m_{F} \pi-\beta_{\gamma}\right)\left(m_{p} \pi+\beta_{\gamma}\right) \beta} d \sigma_{1} \tag{3.127}
\end{equation*}
$$

with

$$
\begin{aligned}
& A-\frac{16 \eta \pi n_{p} W_{y 1}}{k_{0}} \\
& \gamma=h_{0} \cos \alpha W_{r 1}, \xi=i_{1} \sin \alpha W_{y 1} \\
& \gamma-h_{n} \cos \alpha r_{r} \mu-k_{0} \sin \sigma \psi_{\alpha} .
\end{aligned}
$$

Using the mtegral representation (3126) of the Besbel function $J_{0}\left(k_{1} \beta\right.$ 保) we may witte

$$
\begin{equation*}
J_{0}\left(h_{0} / \beta_{1}\right) \cos (\beta \gamma / 2) \sin (\beta \xi / 2) \sin \left(\beta_{\infty}\right) \cos (\beta \omega)=\frac{-1}{32 \pi} \int_{0}^{2 \pi}\left\{\beta_{0}\left(\beta_{0} \theta\right)+\theta_{2}(--\beta, \theta)\right\}(\theta) \tag{3128}
\end{equation*}
$$

with
where $T=k_{0}$ ann θ. Cauchy's theorent will now be applied to tind a closed-form exprecsion for I_{2} (o) . The modtfied integration path of figure 3.24 will be used here The integral f_{2} (o) is then given by

Figure 3.24: Modified integration path for $I_{2}(\alpha)$.
where \int_{0}^{0} denotes the integration path of figure 3.24 If we substitute (3.129) in (3.130) we can write I_{2} as a sum of 16 integrals of the general form

$$
\begin{equation*}
G(t)=\int_{0}^{\infty} \frac{e^{j \beta t}-1}{\left(m_{p} \pi-\beta_{\gamma}\right)\left(m_{p} \pi+\beta_{n}\right) \theta^{2}} d \beta \tag{3.131}
\end{equation*}
$$

Two subcases can be dssinguished, namely i) $t \geq 0$ and in) $t<0$
$t \geq 0$
The onginal integration path is closed with the contours C_{p}^{+}and C_{γ}^{+}as shown in figure 3.25 If $t \geq 0$ the integral over C_{p}^{+}tends to 0 as $p \longrightarrow \infty$, because the integrand behaves as $O\left(\beta^{-3}\right)$ as $f \rightarrow \infty$. Furthermore, there are no singularities located in the area enclosed by the integration contour of figure 325 . So the only contribution to the integral $G(t)$ is the integration over C_{γ}^{+}:

$$
\begin{equation*}
G(t)=-\int_{\infty}^{0} \frac{\beta^{\beta \beta t}-1}{\left(m m_{p} \pi-\beta \gamma\right)\left(m, p^{2} \pi+\beta \eta\right.} d \beta \tag{3.132}
\end{equation*}
$$

Figure 325 Integration contour for $t \geq 0$
This integral may also be written in the form

$$
\begin{align*}
& =-\int_{0}^{\infty} \frac{\left.1-m_{p} \pi-\beta n\right)\left(n_{p} \tau+\beta_{n}\right)}{\left(m_{j}\right) d \beta} \tag{3133}
\end{align*}
$$

Divide the integrand of the above integral into two parts and use retation 3.435 F [27]
gives

$$
\begin{align*}
& G(t)=\frac{-1}{\gamma^{2}} \int_{n}^{\infty} \frac{1-e^{-i \psi}}{\left(\frac{m_{2} \pi}{\gamma}-y y\right)\left(\frac{m_{\gamma} \pi}{\gamma}+\eta y\right) y} d y \\
& =\frac{-1}{\gamma^{2}}\left\{\frac{\gamma}{2 m m_{p} \pi} \int_{0}^{\infty} \frac{1-e^{-y_{y}}}{y\left(\frac{m_{p} \pi}{\gamma}+j y\right)} d y+\frac{\gamma}{2 m_{m_{p}} T} \int_{0}^{\infty} \frac{1-e^{-t y}}{y\left(\frac{m_{p} \pi}{\gamma}-\eta y\right)} d y\right\} \\
& =\frac{-1}{2 m_{p}^{2} \pi^{2}}\left\{2 C+\ln \left(-\frac{\partial m_{p} \pi t}{\gamma}\right)+\ln \left(\frac{\partial m_{p} \pi t}{\gamma}\right)\right. \tag{3.134}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{-1}{m m_{p}^{2} \pi^{2}}\left\{C+\ln \left|\frac{\square \eta_{p} \pi t}{\gamma}\right|-c\left(\frac{m_{p} \pi t}{\gamma}\right) \cos \left(\frac{m_{p} \pi t}{\gamma}\right)\right. \\
& \left.-\leftrightarrows\left(\frac{m_{n} \pi t}{\gamma}\right) \sin \left|\frac{m m_{p} T t}{\gamma}\right|\right\} \text {, }
\end{aligned}
$$

for $t \geq 0$, where C is Euter's constant and where $E(x)$ is the exponential-integral function defined as

$$
\begin{equation*}
E_{\imath}(x)=-\int_{r}^{\infty} \frac{e^{-t}}{t} d t \tag{3.135}
\end{equation*}
$$

and where $s(x)$ and $c(w)$ are the sine and cosine integrals, respectively, given by (3.121) The exponentual-megral function $E v(x)$ can be expressed in terms of the sine and cosine integral-

$$
\begin{equation*}
E v(\pm x)=c \imath(x) \pm j s v(2) \tag{3136}
\end{equation*}
$$

This property has been used in (3.134).
$t \leq 0$
The integration contour for this situation is shown in figure 3.26. There is one singularity located mide the integration contour. The contribution of the integral over C_{ρ}^{-}tends to 0 as $\rho \longrightarrow \infty$ So $G(f)$ can in this case be expressed in terms of the residuc at $B=m_{p} \pi / \gamma$ and the integral over C-

$$
\begin{align*}
G(t)= & -2 \pi j \operatorname{Rcs}\left(\frac{e^{\beta \beta}}{\beta=\frac{\beta^{x}}{\gamma}}\left(\frac{1}{\left(m_{p} \pi-\beta \gamma\right)\left(m_{p} \pi+\beta \gamma \beta\right.}\right)\right. \tag{3137}\\
& -\int_{-\infty}^{0} \frac{\omega_{p} \pi-1}{\left(m_{p} \pi\right)\left(m_{p} \pi+\beta_{\gamma}\right) \beta} d \beta
\end{align*}
$$

Figure 326 . Integration contour for $1<0$

The residue at $h=\pi m_{i}, \pi / \gamma$ is given by

The integration over C; can be rewritten in the following form

This is exactly the same integral as an (3 133), because in the case $:<0$ So we can unc (3.134) as a result of the integral over C_{γ} - Combining (3 138) and (3134) with (3 137) gives

$$
\begin{align*}
& G(1)-\frac{j}{m_{R}^{2} \pi}\left(e^{\frac{m p r i}{\gamma}}-1\right) \underset{n_{1}^{2} \pi^{2}}{1}\left\{\left(C+\ln \left|\frac{m_{Y} \pi t}{\gamma}\right|\right.\right. \tag{3140}\\
& \left.-c\left(\frac{m_{p} \pi i}{\gamma}\right) \cos \left(\frac{\pi r_{p} \pi i}{\gamma}\right)-s\left(\frac{m m_{p} \pi i}{\gamma}\right)=\left|\frac{m_{p} \pi t}{\gamma}\right|\right\} \text {, }
\end{align*}
$$

for $:<0$

Define an auxiliary function $F(t)=G(t)+G(-t)$. The original integral $I_{2}(\alpha)$, given by (3.127), can now be expressed in terms of $F(t)$

$$
\begin{align*}
I_{2}(\alpha)= & \frac{A \cos \alpha}{\sin \alpha} \int_{0}^{\infty} J_{0}\left(k_{0} \beta \alpha\right) \frac{\cos (\beta \gamma / 2) \sin (\beta \xi / 2) \sin (\beta \nu) \cos (\beta \mu)}{\left(m_{p} \pi-\beta \gamma\right)\left(m_{p} \pi+\beta \gamma\right) \beta} d \beta \\
= & \frac{-A \cos \alpha}{32 \pi \sin \alpha} \int_{0}^{2 \pi}\{F(\gamma / 2+\xi / 2+\nu+\mu+\tau)+F(\gamma / 2+\xi / 2+\nu-\mu+\tau) \\
& -F(\gamma / 2+\xi / 2-\nu+\mu+\tau)-F(\gamma / 2+\xi / 2-v-\mu+\tau) \tag{3.141}\\
& -F(\gamma / 2-\xi / 2+\nu+\mu+\tau)-F(\gamma / 2-\xi / 2+v-\mu+\tau) \\
& +F(\gamma / 2-\xi / 2-v+\mu+\tau)+F(\gamma / 2-\xi / 2-\nu-\mu+\tau)\} d \theta
\end{align*}
$$

with m_{p} odd. The θ-integration interval can be reduced to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The θ-integration in (3.141) can be climinated if we assume that the radus of the coaxial probe a is equal to zero. This saves some computation time while the final results do not change significantly, because in almost all practical configurations $a<\lambda_{0}$. Now that we have found a way to calculate the threc integrals I_{1}, I_{2} and I_{3}, we can determine $\bar{Z}_{m}^{\text {pa }}$ by evaleating the remanning integration over α in (3 124) numerically. Thes can be done very efficiently if the α-integration interval is divided properly into subintervals such that the boundaries of these subintervals correspond with values of o for which the derivative of the integrand is discontinuous The integrations over these subintervals can be carted out with standard numerical integration routines of the package QUADPACK [52]. An advantage of the asymptotic-form extraction technique is the fact that the integrals in $\bar{Z}_{T}^{\mathrm{van}}$ need to be cvaluated for one frequency point only, because these integrals are frequency-independent.

vi. $\left[Z^{\text {pf }}\right]:$ patch modes \longleftrightarrow feed modes

The numbenng of the elements of $\left[Z^{p \prime \prime}\right]$ is $m=1,2,, N_{1}+N_{2}$ and $\mathrm{r}=1,2, \ldots, N_{z}$. The extracted part $\bar{Z}_{r i n}^{p f}$, is non-zero only if the domain of basis function m is located on the lower patch and if the domain of basis function n on the coaxial probe touches the lower patch, i.e., if $n=N_{z}$ and if $z_{F}=z_{1}^{\prime}$. If we assume that the length of the coaxial probe is not larger than the height of the first layer, the extracted part is given by

$$
z_{m n}^{n f}= \begin{cases}0, & z_{n+1}<z_{m} \tag{3.142}\\ \frac{w \mu_{0}}{h \varepsilon_{\mathrm{r}} h_{0}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \rho_{0}\left(\kappa_{0} \beta_{a}\right) S_{m}(m, 1,1, j, \alpha) d \beta d o, & z_{n+1}=z_{1}\end{cases}
$$

with

$$
\varepsilon_{r_{2}}=\frac{\dot{s}_{1}+\varepsilon_{r_{2}}}{2} \mathrm{ff} z_{1}^{\prime}=h_{1}
$$

The integral over is in (3 142) has cxatty the same form as integral $I_{2}(\alpha)$ in (3125). So we can use the same methods to calculate the above integral over β. The remaining megration over is is again divided into properly chosen subintervals.

vii. $V^{\text {cx, }}:$ attachment mode

The expression for $V^{\wedge}{ }^{2}$ is given by formula (B I) of appendix B. The rotegral over ; converges quickly in most practical stuations. However, il the probe part of the attachment mode intersects with the ground plane, l.e, if $h_{/ 2}-z_{1}^{\prime}\left(N_{z}=1\right)$, the integral over b converges vory slowly for this situation, the asymptotic-form extraction technique will be used to sped up the convergence.

The above integral can be calculated with the same methods that were used to arrive at (3 [[5).

viii. [Vex $\left.{ }^{[}\right]$: feed modes

The asy mptote form of the ongmal θ-integrand can be found by insertung $i_{1}=l_{9}-h_{i}--h_{0} h^{i}$ into (A 4) or (B 3) or appendix B. With some algebraic manipulations, it is easly shown that the extracted part $\bar{V}_{1 ;}^{\prime r} f$ is given by

$$
\begin{aligned}
& \bar{V}_{r_{2}}^{n i}--\frac{4 \pi^{2} \xi_{1}^{2}}{\ln (b / a)} \int_{i=}^{\infty} J_{0}\left(h_{0}, \beta_{0}\right)\left[J_{0}\left(h_{n} \beta b\right)-J_{0}\left(k_{n} \beta n\right)\right]
\end{aligned}
$$

with $m=1,2, \quad, N_{2}$. The extracted parl differs from zero only if the subdornain ins touches the ground plate The type of integrals that occur in (3.144) have the same form as the integrals;
discussed in (3.115) and can therefore be evaluated analytically.

ix. [V $\left.{ }^{\text {ex:p }}\right]$: patch modes

In this case the asymptotic-form extraction technique need not be used, because the β-integrand of $V_{m}^{m, p}$ (see expression (B.5) of appendix B) decays exponentially for large values of $B\left(\sim e^{-6}\right)$.

x. $\left[\mathrm{V}_{\mathrm{t}}^{\mathrm{ex}}\right]$: thin-substrate model

The expression for an clement of the vector [$V_{l}^{* *}$] when the thin-substrate model of section 3.2 .2 Is used is given by (B 6) of appendix B Again the asymptotic-fomm extraction tecbnique can be applied to speed up the convergence of the integral over β The extracted part $\tilde{V}_{i, m}^{\text {ex }}$ differs from zero in this case only if the doman of the basis function m is located on the lower patch of the antenna and is given by

$$
\begin{equation*}
\bar{V}_{i m}^{e,}=\frac{-\omega \mu_{0}}{k_{0}^{2}\left(\varepsilon_{\mathrm{r}:}+\varepsilon_{\mathrm{r} 2}\right)} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} J_{0}\left(k_{0} \beta a\right) S_{m f}^{*}(m, 1,1, \beta, \alpha) k_{0}^{2} \beta d \beta d \alpha \tag{3.145}
\end{equation*}
$$

with $m=1,2, \ldots, N_{1}+N_{2}$, in which it is again assumed that $Z_{1}=h_{1}$ and where $S_{p f}(m, 1,1, \beta, \alpha)$ 1s given by expression (A. 18) in appendix A. The integral over β that appears in the extracted term $\tilde{V}_{t \rightarrow 0}^{e x t}$ is of the same type as the integral I_{3} given by (3.125), and can therefore be evaluated in closed form

3.9 Results

The calculated results presented in this section are obtained by using the thick-substrate model of section 32.3 The anlenna characteristics are found by solving the matrix equation (3 15).

3.9.I Validation of the model

In section 3.4 of thas thesia several types of basis functions were discussed that can be used in a method-of-moments procedure for the analysis of microsirip antennas. The question 14 now: which set of basis functions and how many of them must be used on the patches and on the coaxial probe to obtain accurate results with a minimum use of computer time and computer memory? And, when is a solution accurate enough? This last question may be answered if we take a closer look at the tolerances of the materials and at the production techniques of microstrip antennas If, for example, Duroid 6002 with $\xi,-294$ is used, a typical error of $\pm \frac{1}{2} \%$ in the nominal value of the permiltivity ε_{r} occurs, and an crror of $\pm 3 \%$ in the thickness of the substrate The patches can usually be etched with an accuracy of $\pm 1 \%$. Other ermers that can be made are an inaccurate poxitioning of the coaxial cable and a misalignment of the patches in a stacked conftguration In addition to these construction errors, crrors will be made in the measurements We have done our measurements in the Compact Antenna Test Range of the Eindhoven University of Technology. A HP 8510 B network analyser was used to perform the actual measurements. Errors in the measurements can be minmized if a proper calibration set is used For an accurate measurement of the mput impedance, one has to be sure that the reference plane is positioned very accurately In sumrany, a number of errors can oceur when a merostrip antenna is constructed and measured It is therefore useless to pot much effort in the development of an extremely aceurate model for the andysis of mocrostrip antennas. A certam error level in the predicted chatactersitics of a mucrostrip antenna is acceptahle.
Table 31 shows the calculated resonant frequency and the corresponding maximum input resistance $h_{\text {in }}$ for three single-layer, linearly polarised $\left(y_{s}-0\right)$ morostrip antennst with vatrying thickness the resonant frequency is delined as the frequency for which the real part of the mput impedance, ic, $l_{\text {m }}$, has ite maximum The calculatione were made with the thick-substrate model of section 3.2 .3 with rooftop basis functions on the coaxal probe The dimensons of the antennas are given at table 3.2 The calculations were done with each of the three seth of basm functions of section 3.41 The first wo set consist of entire-doman basis functions, where the fitst set (set 1) is given by cxpressions (3 30) and (3.31) and the second set (set 2) is given by (3.33) and (334) and includes the behavour of the current near the edges of the patches. In [44] It was shown that with 14 -directed hasis functions and 4 ;directed basis tunctions of set 2, accurate results can be obtained. The third set (set 3), given by (3 . 36) and (3.37), contains subsectional rooftop basis functions

	Number of modes	Anterna 1	Antenna 2	Antenna 3
f_{r}, set l	$N_{x}=4, N_{y}=1$	0623 GHz	1.875 GHz	61 GHz
$R_{\text {m, }}$, set l	$N_{v i}=4, N_{v}=1$	86Ω	58Ω	50Ω
$f_{r}, \operatorname{sct} 2$	$N_{x}=14, N_{y}=4$	0.624 GHz	1.865 GH 7	6.1 GHz
$R_{\text {in }}, \mathrm{sct} 2$	$N_{\mathrm{rr}}=14, N_{y}=4$	80Ω	50Ω	56Ω
f, set 3	15 subsections	0623 GHz	1.872 GHz	615 GHz
$R_{\text {rn }}$, set 3	15 subsections	86Ω	57Ω	58Ω

Table 3.1: Calculated resonant frequency f_{T} and input resstance $F_{4 n}$ for three sets of basis functions

- Anterta	$h_{2}(\mathrm{~mm})$	h_{2} / λ_{E}	$z_{F}(\mathrm{~mm})$	ε_{r}	$W_{u 1}(\mathrm{~mm})$	$W_{y 1}(\mathrm{~mm})$	$x_{s}(\mathrm{~mm})$
$1[56]$	3175	001	3.75	2.56	150	75	15
2 EUT	3.175	0.03	3.175	2.33	49.6	49.6	725
3 EUT	6.61	0.22	6.36	2.33	11.5	11.5	4.6

Table 3 2: Dimensions of antennas 1,2 and 3, with $h_{2}=x_{1}^{\prime}=z_{2}^{\prime}$ and $\tan \delta \approx 0.001$

The differences between the calculated resuits with the three types of patch basis functions arc in most cases smaller than the material tolerances of a typical microstrip structure and the expected error of the measurements. The resonant frequency can be calculated with a better accuracy than the resonant resistance. From an engineering pont of view we may conclude that each of the sets of basis functions of section 3.4 .1 gives acceptable results. From a computational
point of view, however, it is recommended to use the first set of basis functions given by (3,30) and (3.31). Usually only a few modes of this set are needed to obtain farly decurate result, From convergence tests in [19] and [57] it was also concluded that with the $\begin{aligned} \\ \text {-directed basis, }\end{aligned}$ functions with $\left(\pi_{i_{5}}, r_{i_{i}}\right)=(1,0),(3,0),(5,0),(7,0)$ and with the y-directed basts function with $\left(m_{y}, \pi_{4}\right)=(0,2)$ from set 1 , accurate results can be oblained for a lincarly polarised microstrap antenna or merostrip array This is especially important when arrays of microstrip antentas are considered (4ee chapter 4).

Antenna	$\mathrm{H}_{2}(\mathrm{~mm})$	h_{2} / λ.	5	$W_{w, 1}(\mathrm{~mm})$	$W_{v 1}(\mathrm{~mm})$	$x_{*}(\mathrm{~mm})$	Rif'
4	3175	007	2.33	11	17	4	[11]
5	21.8	0.09	205	67.9	67.9	22	6.1't [67]
6	1.27	0.01	102	20	30	3.5	[62]
7	1.27	006	10.2	9.5	15	155	[62]
8	2.34	0.06	102	19	30	3	[62]
9	0.79	0.01	2.22	25	40	8.5	[62]
10	0.79	002	222	12.5	20	425	[62]
11	1.52	0.02	2.22	25	40	85	[62]

Table 3.3 Dimensions of antennas 4 to H , with $i_{2}=-\because_{1}-\therefore$
We have compared our calculations with experimental data from several publications in the hterature [69]. In table 33 eight microstrip antentas with varyme thokness atre given All antennas are linearly polarised and are constructed on a single substrate layer ($t_{2}-z_{1} \quad$ z_{2}). Figure 327 shows the relative difference betwern the calculated and meabured resonaril frequencies of the antennas of table 32 and 33 In figure 328 the corresponding relative differences between the predicted and measured maximum value of the mput resstance R_{m} is shown The agrecment between the calculated and measured results is in almost all cases

Figure 327: Relative difference between calculated and mearured resonant frequency.

Figure 328 Relatwe difference belween calculated and measured resonant input reswitance $R_{i n}$.
qute acceptable. The calculated results of antenna 6 to 11 are in much better agrecment with the cxperiments of refercnce [62] than the calculated results presented in [62]. For example, the relative difference between the predicted resonant resistance (calculated with a method-of-
moments procedure) in [62| and the measured resonant resistance of antenna 11 is more than 46% : The relative differences in figures 3.27 and 3.28 are in most cases not larger than the total error which could be caused by matenal tolerances, construction errors, and cror made durng the mosasurements. The relative differences for the resonant resistance are tignificantly larger than the relative differences for the resonant frequency. One of the reasons for the larger difference is the lact that the measured resonant resistance $1 s$ more sensitive to etrors made during the measurements. In addition, from table 3.1 it was alrcady concluded that worne error In the predreted resonant resistance can be expected. Other authors [62] have observed the same phenomena. From an engineering point of wow, one may conclude that the nodel prosented in this chapter is very suitable for an elficient and accurate analysis of morostrip intennas with clectrically thin or with electrically thick substrates. Note that all the calculations wore done with the thick-substrate model On the patch sinusoidal cntire-doman basis functuons were used

3.9.2 Single-layer microstrip antennas

In chapter 1 of this thesis, it was concluded that for many applications of mictostrip antennas. a relative large impedance bandwidth is required It is therefore anteresting to inventigate the banduidth of a basic single-layer microstrip antenna. For that purposc, three configurations have been analysed constructed on three different substrates with a permittivity of s, .. 107 (foam), $\varepsilon_{r}=233$ (Duroid 5870) and $\varepsilon_{r}=105$ (Durod 6010), respectively lri edih configuration a square patch was used, se $W_{r i}=W_{y \mathrm{I}}$. The feeding coaxtal cable has a moner conductor with $a=0635 \mathrm{~mm}$ and an outcr conductor with $b=21 \mathrm{~mm}$ Figure 3.29 shows the calculated relative bandwidth verum clectrical substrate thickness h_{2} / λ, where λ is the wavelength in the delectre matcrial. The relative bandwath is defined as the frequency band relative to the centre frequency for which the VSWR is lower than 2 The exctation point is located on the $\%$-axis $(y,=0)$. The location of the coaxial cable on the r-axis ts chosen such that a maximum bandwidth is obtained The characteristic impedance of the codxal cable is $Z_{0}-502$ and the desgn frequency is approximately 5 GHL. From figure 3.29 it can be seen that the bardwidth increaser with increasnag substrate thekness. However, there appears to be a certan maximum bandwidth. This is caused by the fact that with increasing clectrical thickness of the substrate, the inductance also increases. The maximum bandwidth obtaned with foam is about 12% and is ohtaned for a substrate thickness of $h_{2} / \lambda-0.085$ If a substrate with $:=2.33$ used, a maximum bandwidth of approximately 15% can be obtained for $h_{2} / \lambda=0.15$ Microstrip antennas on a high-permitivity material with $\varepsilon_{T}=105$ are usually narrow band, except when very thick substrates are used.
Note that square patches were used, because they offer the opportunity to create a circularly polarised far-ficld pattern when the patch is excited with two coaxial cables. Circular polarisation

Figure 3.29: Relative bandwidth of single-layer microstrip antennes, with $Z_{0}=50 \Omega$
is discussed in section 4.6. Furthermore, the width of the patch (here denoted by W_{i}) has only a minor influence on the bandwidth of a microstrip antenna

3.93 Stacked microstrip antennas

A stacked microstrip antenna usually bas two closely spaced resonant frequencies. This results in a larger bandwidth or in dual-frequency operation. Two stacked mucrostrip configurations were bult and measured. The first antenna ts made on a Duroid 6002 diclectric substrate with design frequency of approxmately 3.1 GHz Figure 330 shows the calculated bandwidth of such a stacked microstrip antenna versus the thickness of the second layer (d_{2}) and versus the dimensions of the upper square patch ($W_{+1}=W_{y 1}$). The other dimensions of this antenna are given in table 3.4 The upper patch is located on top of the second layer, 1.e. $z_{2}=h_{2}=d_{1}+d_{2}$

Ant	$d_{1}=z_{1}^{\prime}(\mathrm{mm})$	ε_{r}	$\tan \delta$	$W_{r 1}(\mathrm{~mm})$	$\left(x_{*}, y_{s}\right)(\mathrm{mm})$
12	3.04	2.94	00012	253	$(8.5,0)$

Table 3.4 Dimensions of stacked microstrip antenna 12 with $W_{r 1}=W_{31}$ a $=0.635 \mathrm{~mm}$ and $b=21 \mathrm{~mm}$.

Figure 330: Contour plot of the relative bondwidth of a stacked mierostrip antennes, with $Z_{0}=50 \Omega$.

Note that linear intepolation was used between the calculated ponts in figure 3.30. With the configuration of table 34 a bandwidth ranging from 10% to 15% can casily be obtaned. The maximum bandwidth is approximately 165%. A stacked mocosirip antenna on Duroid 6002 was constructed with $d_{2}=3.04 \mathrm{~mm}$ and with $W_{u 2}=W_{y 2}=25 \mathrm{~mm}$. The other dimensions, are the same as in table 34. In figure 331 the calculated and measured input impedance of this anterna are ploted in a Smith chart The curl that appears in the Smith chart illustrates that the antenna has two closely spaced resonance, resulting in a relatively large bandwidth. Figures 3.32 and 333 show the corresponding plots of the measured and predicted amplitude and phase of the reflection coefficient The agrement between the measured and the predicted refection cocfficient is good The bandwidth of this stacked antenna 1 s approximately 13%. Figure 34 shows the corresponding measured and calculated radation pattern of thes antenna in the E-plane $\left(\phi-0^{\circ}\right)$ and in the $\mathrm{H}-\mathrm{plane}\left(\phi=90^{\circ}\right)$ for $f:=3 \mathrm{f} \mathrm{GHz}$. The agreement between the predicted and moasured H-plane far-field pattern is quite good, except for $\theta \approx 190^{\circ}$ The meabured pattern in the E-plane shows a certan fluctuation. In $[767$ the Uniform Theory of Diffaction (UTD) was used to show that these fluctuations in the measured far-field pattern of the antenna are caused by diffraction of the field at the edges of the ground plane. The influence of diffraction from the edges of the ground plane can also be seen from the relative large difference between the calculated and measured far-field paterns of iigure 334 for $\theta= \pm 90^{6}$. In our calculations an infinte ground plane and substrate are assumed. The size of the rectangular ground plane on

Figure 331 Measured and calculated input impedance of antenna 12 with $d_{2}=3.04 \mathrm{~mm}$ and with $W_{r 2}=W_{y 2}=25 \mathrm{~mm}$
which the antenna was made is $46 \mathrm{~cm} \times 3 \mathrm{I} \mathrm{cm}$ (length \times width).
Another stacked microstrip antenna which bas been bunlt consists of two different dielectric tayers The first dielectric laycr is made of Duroid 5870 with a relative permittivity of 2.33 . and the top layer is made of foam with a relative perrnittivity of approximately 1.07 . The other dimensrons of this configuration are given in table 3.5. Figure 3.35 shows the measured and

Ant	$h_{1}=z_{1}^{\prime}(\mathrm{mm})$	$h_{2}=z_{2}^{\prime}(\mathrm{mm})$	$\varepsilon_{y 1}$	ε_{+2}	$W_{n 1}(\mathrm{~mm})$	$W_{x 2}(\mathrm{~mm})$	$x_{s}(\mathrm{~mm})$
13	1.57	6.28	233	1.07	29.5	35.4	13

Table 3.5 Dimensions of stacked microstrip antenna 13 with $W_{x 1}=W_{y 1}, W_{x 2}=W_{32} x_{s}=y_{s}$ $\tan b_{1}=0.00 \mathrm{~L} 2, \tan \delta_{2}=00008, a=0635 \mathrm{~mm}$ and $b=2 \mathrm{I} \mathrm{mm}$
predicted reflection coefficient. The calculations were performed with the thick-substrate model of section 3.2.3 The agreement between the calculated data and the measured data is fairly good. There is a difference of 3% between the measured and calculated rcsonant frequency, which is probably due to material and fabrication tolerances. In addition, the model for the attachment mode will not be very accurate in this configuration, because the coaxial probe is connected

Figure 3 32: Measured and calctdated amplitude of the reflectom seeffeient of antenna 12 with $d_{2}=304 \mathrm{~mm}$ and with $W_{v 2}=W_{t,}=25 \mathrm{~mm}$

Figure 3.3.3 Measared and calculated phase of the reftechon velfotent of antenar i2: with $d_{2}=3.04 \mathrm{~mm}$ and widh $W_{r 2}-W_{32}-25 \mathrm{~mm}$

Figure 3.34. Measured and calculated far-ficld pattern in the E- and H-plane of antenna 12, with $d_{2}=304 \mathrm{~mm}$ and with $W_{x 2}=W_{t 2}=25 \mathrm{~mm}$ and $f=3.1 \mathrm{GHz}$

Figure 3 35: Meavared arul cuflulated reffection cofficicmt
near the edge of the lower patch. The antena was originally designed with the thon-wbstrate model of section 322 using only 2 entre-domain sinuoidal modes on cach petch, ie with $N_{31}=N_{1,1}-N_{42}=N_{y 2}-1[20]$ The predicted relative bandwidth with thas model wath approximately 19%, where the achieved (and also measured) bandwidth is appoxundtely 7%.

3.9.4 Broadband multilayer structures

The second stacked mucrostrip antenna presented in the previous section was made on a multildyer sructure with foan $\left(\varepsilon_{i} \approx 1\right)$ as a top luyer. The measured relatio binduidth of this antenna was about 7%, wheh is of course not very spectacular It is, however, posible to obtain a larger umpedance bandwadth with multalayer structures. In the literature wome deaga of broadband sacked multilayer microstrip antennas have been presented [39, 75], where a relatively thek foam layer was used A serous draback of these foam-based antennas is the fact that they have a high mutual-coupling level when used man array configuration Because of the low permitivity of foam, the length of the upper patch 14 approximately equal to $\lambda_{6} / 2$ This means that in an artaly conigguration, where usually an element spacing of $\lambda^{2} / 2$ is used. the distance between the edges of two adjacent array elements will be very small. This results in a high mutual coupling level We have stodred another multalayer configuration with broadband chadetersthes and with a low rhutual coupling level in an array configuration Figure 3.36 show, the sode vew of such a stacked two layer configuration. The botom layer ts made of Durond 6010 with a high relative

Figure 3 36: Stacked two-layer microstrip antenna.
permativity of $\varepsilon_{\mathrm{r} 1}=10.5$ and $\tan \delta_{1}=0.0023$. The top layer is made of Duroid 5880 with $\varepsilon_{r 2}=233$ and $\tan \delta_{2}=00012$. Duc to the high permettivity of the first layer, the dimensions of both the lower and the upper patch will be much smaller than $\lambda_{0} / 2$. Therefore, one could expect that this type of microstnp antenna will have a relatively low mutual coupling level in an aray configuration. A drawback of high-permittivity materials is that more power will be lost in surface waves. More details about arrays of multilayer microstrip clements can be found in chapter 4. Bandwidths ranging from 15% to 25% can easily be achieved with these microstrip antennas. The bandwidth can be maximsed of an optimal set of parameters is selected As an example we will take a closer look at the optimisation of an antenna with $d_{1}=127 \mathrm{~mm}, W_{x 1}=W_{y 1}=11$ mim and $x_{s}=y,=4 \mathrm{~mm}$, fed by a coaxial cable with dimensions $a=043 \mathrm{~mm}$ and $b=1.4$ mm Note that the antenna is fed on its diagonal, which reduces the cross-polarisation level of the antenna [35]. The first diclectric layer is electrically thin, so the length of the coaxial probe is small compared to the wavelength. The optimisation is done by varying the dimensions of the square upper patch $\left(W_{x 2}=W_{42}\right)$ and by changing the thickness of the second layer (d_{2}) Figure 3.37 shows a contour plot of the predicted bandwidth (VSWR <2) as a function of the thackness of the second layer (vertical axis) and as a function of the dimension of the upper patch (horizontal axis) The centre frequency is approximately 4.3 GHz . The maximum relative bandwidth is approximately 23% and is obtaned for $d_{2}=45 \mathrm{~mm}$ and for $W_{x 2}=W_{y 2}=187$ mm.

Note that the high-permituvily material with $\varepsilon_{r}=105$ could be replaced by a GaAs substrate

「1gure 3.37. Contour plot of the predicted relative bandwidth (VSWR 2 2t of a stacked maltilayer microstrip antenna with $Z_{i j}=50 \mathrm{~S}$.
with a relative permittivity of $\varepsilon_{r}-13$ and with a loss factor tan $b=0006$ The une of GaAs offers the opportunity to integrate the antenna with the transmitter and recever modules (l/R modules) if MMIC fabrication techniques are used This would result in a large reduction of the total production costs of a phased-array microstrip antenna

3.9.5 Dual-frequency/dual-polarisation microstrip antennas

Dual-frequency operation of a microstrip antenna can be obtained with at least two conligurations, The first configuration is a gacked microstrip antenna of which the dmensions of the lower and upper patches are chosen such that the antenna is matched to 50Ω in two different frequency bands. Another way to obtam dual-frequency operation is shown in figure 3.38 lri the case

4 nt	$h_{2}=r_{1}(\mathrm{~mm})$	*	$\tan \theta$	$W_{3}(\mathrm{~mm})$	$W_{3}(\mathrm{~mm})$	" ${ }^{(\mathrm{mmm} \text {) }}$	
14	2.36	233	00012	232	1465	25	5.25

Table 3.6 Dmensions of dual-frequency dial-polarsaton microstrip antenna i4 with a $=$ 0635 mm and $b=2.1 \mathrm{~mm}$

Figure 3.38: Dual-polarised microstrip antenna for dual-frequency operation
two coaxial cables are connected to a rectangular patch. This configuration can only be used if one wants to obtain both dual-frequency operation as well as dual polarisation. As an cxample, we will take a closer look at the single-layer configuration of table 3.6. Figure 3.39 shows the calculated VSWR at port 1 and at port 2 of the antenna The antenna is matched to $50 \Omega \mathrm{in}$ a frequency band of 26% around $f=4 \mathrm{GHz}$ and in a frequency band of 72% atound $f=6 \mathrm{GHz}$ With this type of microstrip antenna a dual-frequency, circularly polarised 2×2 subarray can be constructed Such subarays are investigated in section 4.8 .8 .

3.9.6 Broadband EMC microstrip antennas

The bandwidth of microstrip antennas can be improved if electrically thick substrates ate used This was already shown in chapter 1 , where the bandwidth of several microstrip antennas was given as a function of the electrical thickness $h_{2} / \lambda_{\varepsilon}$. A drawback of thick substrates is the fact that the inductive part of the input impedance is usually very high, which means that a good mpedance match with the feeding coaxial cable can only be achieved if a compensating input network is used. This input network increases the complcxity and the overall costs of the antenna. A solution for this problem could be the so-called electromagnetically coupled (EMC) mitrostrip structure The patch is now not physically connected to the coaxial cable. This configuration is shown in figure 32 . The dimensions of the EMC microstrip antenna that we have designed are given in table 3.7 The gap betwoen the top of the coaxial probe and the patch is 0.25 mm In figure 3.40 the calculated and measured mput mpedance of the EMC motrostrip antenna is shown. The calculations were done with 9 entire-domain basis functions on the patch and with 5 rootop basis functions on the coaxial probe The agrecment between calculated and measured

b) high frequency operation:

Figure 339 Calculated VSWR at port I and port 2 of a dual-frequency dual polarisation micros/rip antenna, with $Z_{0}=50 \Omega$

Ant	$h_{2}=z_{1}^{\prime}(\mathrm{mmr})$	$z_{1}(\mathrm{~mm})$	$\varepsilon_{,}$	$\tan \delta$	$W_{n 1}(\mathrm{~mm})$	$\left(x_{\left.s_{1}, y_{s}\right)(\mathrm{mm})}\right.$
15	6.61	6.36	2.33	0.0012	11.5	$(46,0)$

Table 3.7: Dimensions of an EMC microstrip antenna, with $a=0635 \mathrm{~mm}, b=2.1 \mathrm{~mm}$ and $W_{k 1}=W_{j 1}$
data is quite good. The relative bandwidth is approximately 50% (VSWR<2) Simolar results

Figure 340 Measured and calculated input mpedance of the EMC antenna, $Z_{0}=50 \Omega$.
have been reported in [42]. Thercfore, the EMC microstrip antenna seems to be an intercsting candidate for future broadband phased-array antennas. In chapter 4 , the behaviour of the EMC microstrip antenna in an aray environment will be investugated. The predicted and measured far-field pattern in the E-and H -plane are plotted in figure 341 , with $f=6 \mathrm{GHz}$ The fluctuations in the measured patterns are caused by constructive and destructive niterference of the diffracted fields from the edges of the ground plane [76]. The EMC microstrip antenna 1 s made on an electrically thek substrate It is therefore expected that the antenna efficiency will be reduced duc to the loss of power in surface waves. In [36] it was shown that about 22% of the total inpul power is lost in surface waves for the configuration of table 3.7. This cortesponds with an efficiency of about 78%.

Figure 3.41 Measured and calculated far-feld pattern in the E - and H plane of antenna 15, with $f-6 \mathrm{CHz}$

Chapter 4

Finite arrays of microstrip antennas

4.1 Introduction

In chapter 1 of this thesis several applications of microstrip antennas have been discussed. Table 1.1 shows the corresponding antenna requrements of these applications. From this table it is obvious that the gain requirement cannot be fulfilled if only a single microstrip element is used, because the gain of one microstrip anterna is usually in the range between 5 and 9 dB ln most applications it will therefore become necessary to use more antenna clements, 1 c , to use an array of merostrip antennas The more elements used in an aray, the higher the total antenna gain will be. To illustrate the principle of operation of an array antenna, the lincar phased-array antenna of figure 41 with K elements will be investigated in more detail. The array consists of K identical.

Figure 4.1: Linear phased-array antenna
isotropic, radialing cements equally spaced with a distance d_{m}. Note that in a real " macrostrip phased-array antenna, the clectromagnetre behaviour of the array elements will not be ndentical (duc to mutual coupling) and they will also not have an isotropic radiation patern. An incident wave arrives at an angle θ_{0} The feceived signal at element ℓ is then given by

$$
\begin{equation*}
s_{k}-\operatorname{cxp}\left[3 k_{0}(k-1) i_{m} \sin \theta_{0}\right]: \quad \text { with } k_{n}=2 \% / \lambda_{0} \tag{41}
\end{equation*}
$$

where the recoved signal at array element 1 is normalised to $s_{1}=1$. The recenved signals are multuplied in the network layer with a wo-called excitation vector [c] of which the elements ate given by

$$
\begin{equation*}
a_{k}=\left|a_{k}\right| \operatorname{cxp}\left(-y w_{k}\right) . \tag{4.2}
\end{equation*}
$$

The recesved signal after summation is now given by

$$
\begin{equation*}
s\left(\rho_{0}\right)=\sum_{k}^{k}\left|a_{k}\right| \operatorname{cxp}\left[\mu k _ { 0 } \left(k-1 j d_{s} \sin \theta_{k} \mid \operatorname{cxp}\left(-\jmath \psi_{k}\right)\right.\right. \tag{43}
\end{equation*}
$$

$S\left(\theta_{0}\right)$ is the so-ealled array lactor The array factor is a periodic functron of sin θ_{1}, with a period of λ_{0} / d_{π}. The array factor $S\left(\theta_{0}\right)$ can be maximised if the phase shift ψ_{t} of cach element equals the phate of the recerved signal:

$$
\begin{equation*}
\psi_{k}-h_{0}(k-1) d_{k} \sin \theta_{1} \tag{4,4}
\end{equation*}
$$

If not all the array elements have the same clectromagnetical propertics (due to mutual coupling for example) the received signal will deteriorate The linear array of figure 4.1 can , of course, also be used as a transmattieg anterna The angle of maxumum radiation is equal to θ_{0} of the elements of the excitation vector $|a|$ have the phatse given by (44) If the phase ψ_{k} is vaned, the man bean of the array will san. The array factor $S\left(\theta_{0}\right)$ can have more maximat for $-\pi / 2 \leq \theta_{0} \leq T / 2$, due to the periodic nature of $S\left(\theta_{0}\right)$ These additional maxma ate called grating lobes. Thcy occur whenever the aggument of $S\left(0_{n}\right)$ is a multiple of 2π 'The larger the spacing between the array elements, the smaller the separation between two grating lobes. Grating lobes are unwanted, whech implies that the element spacing has to be chosen such that gratang lobes do not oceur. Grating lobes can be avoided if the following condition is satisfied

$$
\begin{equation*}
i_{i} / \lambda_{1} \leq \frac{1}{1+\left|\sin \bar{o}_{0}^{n n}\right|} \tag{4.5}
\end{equation*}
$$

In which $0_{\mathrm{f}}^{\mathrm{raz}}$ is the maximum angle to which the main beam of the antenna can be soanned without causing the appearance of a grating lobe
I he theory of linear arrays can easily be extended to the colbe of a wo-dimensonas planar phased arraty. Figure 4.2 shows a planar array of radiating elements, along with the notation to be used The clements are placed on a rectangular grid The distance between two array clements in the

Figure 4.2: Planar $K \times L$ phased-array antenna, with $k=1,2, \quad K$ elements in the x-direction and $l=1,2, \quad L$ elements in the y-direction and with $)=(l-1) K+k$
x and y-direction is d_{x} and \dot{d}_{y}, respectively. When the main beam of the array is directed to a certain angle $\left(\theta_{0}, \phi_{0}\right)$, the elements of the excitation vector $[a]$ should have the form

$$
\begin{equation*}
a_{3}=\left|a_{j}\right| \exp \left\{-\jmath k_{n}\left[(k-1) d_{x} x+(1-1) d_{y} y^{\prime}\right]\right\} \tag{46}
\end{equation*}
$$

with

$$
i=\sin \theta_{0} \cos \phi_{0}, \quad n=\sin \theta_{0} \sin \phi_{0}, \quad \jmath=(l-1) \Gamma+k
$$

Often a so-called uniform amplitude taper is used to excite the artay, which means that the amplitudes of the input signals of the array elements are all the same, so $\left|a_{j}\right|=1$ for $\jmath=$ $\mathrm{I}, 2, K \times L[8] \mathrm{It}$ is, of course, also possible to use different amplitudes for each array element, in which case one speaks of an amplitude tapering or weighted illumination The sidelobe level of an array can be lowered if a properly chosen amplitude taper is uscd. With an amplitude taper not all the elements are fed with the same energy, which results in a loss of anterna gain. Some frequently used tapers are the cosine-squared welgthing the tapered-Taylor weighting and the Dolph-Chebyshev weighting [8]. A special form of tapering is space tapering In this method,
every active aray element is fod with full power ($\left|x_{j}\right|=1$), but now not all the array elements are made active, some are made passive (dummy clements)
There are several ways to design microstrip phased-array antennas The first and comimonly used design procedure is to use radating elements which have been oplimised with one of the models for isolated microstrip antennas By doing thus, rutual coupling effects between array elements are neglected. Mutnal coupling deteriotates the (active) inpul mpedance of exch elcinent and affects the radiation pattern and the polarisation charactenstics of the total array. Ths becomes even more important if electrically thick, ic broadband, microstrip antennas are used, because it is expected that these thick elements will have a high mutual coupling level. A better way to design a microstrip phaseduarray antenna is by using a model that includes the murual coupling between aray elements Two approaches can be distinguished The first method as a very ngorous linite-array approach or element-by element approach and the second method in an infinute-array approach $[3,4,55,57,74]$ Small arrays and elements near the edge of ant array can only be properly analysed with a ngorous finite-artay approach.
In this chapter, the model of chapter 2 for the analysis of isolated antennas is extended to the Case of a linite microstrip phased-array antenna with $K^{\circ} \times L$ clements The arrity clementh are placed on a rectangular grid and can be linearly or circularly polarised (see section 4 6) The array elements are fed with coaxial cables. The thick-substrate model of section 32.3 rs used, wheh means that the magnetic current distributions (3.3) in the coaxtal apertures are used as sources Finally, in section 49 another type of antennas is investigated, namely finte array of monopoles embedded in a grounded delectric slab This type of array antenna can ako be andysed with the methods presented in this thesis,

4.2 Configuration

The geometry of a finte array of identical microstrap elements 15 shown in figure 4.3 , along with the notation to be used Figure 44 shows a cross section of the configuration The array clements are placed on a rectangular grd, and the array elements are unformly spaced by distanocs d_{3} in the r-drection and d_{y} in the i-direction The structure consists of two dielectre ayers backed by a perfectly conducting infinite ground plane. Each array clement may have two rectangular patches (stacked configuration), which are both located in laycr 2, wo $h_{1}<x_{1}^{\prime} \leq x_{2}$ The geonetry of a single array element is the same as the condiguration shown in tigure 31 . So, the x - and y-dimensions of the lower patches are denoted by $W_{r 1}$ and $W_{y 1}$, respectively, and the x - and ψ-dimensions of the upper patches denoted by $W_{x y}$ and $W_{y 2}$ The number of array clements in the x - and the $;$-direction is K and L, respectively. j is the array element index with $j-(i-1) \times N+k$ The centres of both the lower and upper patch of antenna element t ($h=i=1$ are located at the coordinates $(x, y)=(0,0)$. Each array clement is fed by a coaxial

Figure 4.3: Geometry of a finite microstrip array with $K \times L$ elements.

Figure 4.4 Side view of the array configuration
cable placed at the coordinates (x_{s}, y_{s}) relative to the centre of each array element. In this way, the far-field pattern will be linearly polarised. Circular polarisation is discussed in section 4.6 . The feeding coaxial cables are modelled according to the thick-substrate model of section 3.2.3

4.3 Method-of-moments formulation

The same method as discussed in section 33 will be used in this chapter to find a solution for the unknown current distribution on each element of the finite microstrip array Each array element
will be treated an the same way So, on every array element the same number of bass functons will be lised to approximate the current distribution. The rragnetic current distributions in the coaxied apertures act as sources. which corresponds to the thick-substrate model presented in section 323 . The thin-substrate model can, of course, also be used to describe the feeding coaxial cables. More detals about the implementation of the thin-substrate model to the case of a merostrip array can be found in references [3, 68]. The boundary conditions on all the patches and on all the coaxial probes are now used to oblain a systern of integral ecpuatons for the unknown currents on each array element. These integral cquations can be transformed into a set of linear equations by applying the method of moments. The only difference with the loolated rmerostre-antenna problern of chapter 3 is the number of unknowns We wall again stat with the boundary condition that on cach patch and on cach coaxial probe the total tangental electre field has to be zero

$$
\begin{equation*}
\overrightarrow{r_{1}} \times\left(\vec{\varepsilon} r(\vec{r})+\vec{\varepsilon}^{*}(\vec{r})-\overrightarrow{0} \quad \vec{r} S_{u}\right. \tag{4.7}
\end{equation*}
$$

where the surfice S_{n} denotes the surface of the patches and the probes and where $\varepsilon^{*}(3)$ is the excitation field which 18 generared by the magnetic current distribution at the coaxial apertures The vector ${ }^{\wedge}$, is the unit normal vector on the surface S_{0}. The term $\vec{\varepsilon}^{\wedge}\left({ }^{\prime \prime}\right)$ represents the scettered field that results trom the moduced currents on all the parches and probes of the array Simular to the cate of an isolated mocrostrp antenna, the unknown currents on each array element are expanded into a set of basis functions. The unknown current distribution on the array is then glven by

$$
\begin{align*}
& -\sum_{i=1}^{n \times i}\left\{I_{i+1} \vec{J}_{1}^{n}(r, y z)+\sum_{n=2}^{n_{2}+1} i_{r n} \vec{J}_{m, n}^{\prime}(x, i j, z)\right. \tag{48}\\
& \left.+\sum_{n=12}^{1+N_{1}+N_{1}+N_{2}} I_{i n} \vec{J}_{i n}^{f}\left(T, i_{i}, z_{n}\right)\right\}
\end{align*}
$$

with

$$
s_{: t}= \begin{cases}z_{1} & N_{v}+2 \leq n \leq N_{s}+1+N_{1} \\ z_{2}>N_{s}+1+N_{1}\end{cases}
$$

where basis function \vec{T}_{3}^{*} represents the atachment mode on atray element, \vec{F}_{11}^{f} is a bash function on the feeding coaxial probe of array clement a and $J_{1,}$ represents one of the basis
functions on the lower patch or on the upper patch of array element 2 . On each array element we will use 1 attachment mode, N_{2} basis functions on the coaxial probe, N_{1} basis functions on the lower patch, and N_{2} basis functions on the upper patch. The total number of basis functions is $N_{\text {matr }}=K \times L \times\left(1+N_{z}+N_{1}+N_{2}\right)$ Possible types of basis functions that can be used have already been discussed in section 34 With the procedure described in section 33 we fikally obtan a set of tinear equatrons of the form

$$
\begin{equation*}
[Z][I]+\left[V^{\sim s i}\right]\left[V^{P}\right]=[0] \tag{49}
\end{equation*}
$$

in which the elements of the matnces $\{Z]$ and $\left[V^{e x}\right\}$ are given by

$$
\begin{align*}
& Z_{, \cdots, m}=4 \pi^{2} / \int_{S_{; m}} \overrightarrow{\mathcal{E}}_{z i}^{*}(x, y, z) \cdot \vec{J}_{j m}(x, y, z) d S, \\
& V_{j m,}^{\infty}=\frac{4 \pi^{2}}{V_{i}^{p}} \iint_{S_{j m}} \vec{E}_{i}(x, y, z) \cdot \vec{J}_{y m}(y, y, z) d S \tag{4.10}\\
& =-4 \pi^{2} \iint_{j r i a l} \overrightarrow{\mathcal{H}}_{j \mathrm{~m}}^{s}(x, y, 0) \cdot \vec{M}_{i n j i l}(x, y, 0) d r d y,
\end{align*}
$$

where $S_{1 m}$ denotes the surface on which basis function m on array element g in nonzero and where $\vec{M}_{I r u},(x, y, 0)$ is the magnetic current distribution in the coaxial aperture of array clement ?. given by expression (33). $\vec{\varepsilon}_{\text {in }}(\alpha, y, z)$ is the electne field due to the n-th current basis function on array element i and $\overline{\mathcal{F}}_{j}(3, y, 0)$ is the magnetic field caused by the m-th basis function on antenna clement ; The symmetric matrix $|Z|$ contans $N_{\text {ruas }} \times N_{\text {mas }}$ elements, $[I]$ is a vector with the $N_{\text {max }}$ unknown mode coefficients, $\left.\mid V^{e x}\right]$ is a $N_{\text {max }} \times\left(K^{r} \times L\right)$ matrix and $\left[V^{r} \mid\right.$ is the $K \times L$-element vector of port voltages The general structure of the method-oi-moments matrices $[Z]$ and $\left[V^{* \pi}\right]$ is similar to that of (3.17) and (3.18):

$$
[Z]=\left(\begin{array}{ccc}
{\left[Z^{a n}\right]} & {\left[Z^{n f} \mid\right.} & \left.\mid Z^{* p}\right] \tag{411}\\
{\left[Z^{\prime n}\right]} & {\left[Z^{f f}\right]} & \left.\mid Z^{f v}\right] \\
{\left[Z^{p n}\right]} & {\left[Z^{p f}\right]} & {\left[Z^{p v}\right]}
\end{array}\right)
$$

and

$$
\left[V^{s s}\right]=\left(\begin{array}{c}
{\left[V^{\wedge x a}\right]} \tag{4.12}\\
{\left[V^{c r} f\right]} \\
{\left[V^{c r p}\right]}
\end{array}\right)
$$

where the superscript odenotes an attachment mode, f a basis function on one of the coaxiat probes, and p a basis function on one of the patches The elements or $[Z]$ and $\left[V^{\prime \prime}\right]$ can agan be expressed in terms of the spectral-domain dyade Green's functions \bar{Q}_{p}^{2} and $\bar{Q}^{2 /}$, of chapter 2 We finally obtain the following expressions for the elements of $[Z]$ (extensions of exprestions (3 19) and (3.20))

$$
\begin{aligned}
& C_{0}^{\prime \prime}, \quad-\int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{0}^{x_{1}} \int_{0}^{z_{1}}\left[\bar{Q}_{x}^{i}\left(k_{2}, i_{,}, z_{1}, z_{i}\right) \cdot \overrightarrow{1}_{1}^{x_{1}}\left(i_{x}, k_{y}, z_{0}\right)\right] d z_{0}
\end{aligned}
$$

with

$$
\begin{aligned}
& v=1, \quad \text { if } 0 \leq z \leq h_{1} \\
& v=2, \quad \text { if } h_{1} \leq z \leq h_{2}
\end{aligned}
$$

and the elements of the matrix $\left[V^{*} ;\right.$ can be rewniten to the following form:

$$
\begin{align*}
& V_{1 i}^{e x a}=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\int_{0}^{x_{1}} Q_{1}^{H}\left(k_{x,} k_{k}, 0, z_{0}\right) \cdot \vec{J}_{j}^{b}\left(k_{x,}, k_{y,}, z_{0}\right) d z_{0}\right]-\vec{M}_{f r i u}^{*}\left(k_{x}, k_{y}\right) d k_{x} d k_{y} \\
& =-\int_{-\infty}^{-\infty} \int_{\infty}^{\infty}\left[\int_{0}^{\infty} \bar{Q}_{1}^{H}\left(k_{x}, k_{y}, 0, z_{0}\right)-\vec{J}_{1}^{2}\left(k_{k}, k_{y}, z_{0}\right) d z_{0}\right] \\
& \vec{M}_{j r i b 1}^{*}\left(k_{x}, k_{y}\right) e^{k_{s} S_{x y} e^{\prime k_{x}} S_{x j_{x}} d k_{x} d k_{y} ; ~} \tag{4.14}
\end{align*}
$$

$$
\begin{aligned}
& V_{j m b}^{m, n}=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\bar{Q}_{t}^{H}\left(k_{5}, k_{k}, 0, z_{m}\right) \cdot \vec{y}_{1 m}^{\prime}\left(k_{N}, k_{i}, z_{m}\right)\right] \\
& \vec{M}_{f r i l}^{*}\left(k_{x:} \dot{k}_{y}\right) e^{k_{i}, S_{x j}, e^{k_{y}, S_{j}}, d k_{x} d h_{v}},
\end{aligned}
$$

where $\vec{J}_{1}^{c}\left(k_{2}, k_{y}, z\right)$ is the Fourier transform of the attachment mode on antenta element 1 , $\vec{J}_{n}\left(k_{k}, i_{2}, s\right)$ is the Fourier transform of the n-th basis function on the probe of antenna clement $1, \vec{f}_{1 \pi n}\left(k_{x}, k_{i n}, z_{7 n}\right)$ is the Fourter transform of a basis function on one of the patches of antenna element 1 , and $\vec{M}_{\text {frui } 1}\left(k_{x} ; k_{y}\right)$ is the Founter transform of the magnetic current distribution in the couxtal aperture of antenna element 1 , given by (322) $S_{x, 1}$ and $S_{y ;}$ are the distances in the x and the y-direction between the centres of antenna element y and antenna element ℓ, respectively The integrations over z and z_{0} in (4.13) and (4.14) can be carned out analytically. It can also be
 be reduced to a single, one-dimensional integral. The detaled expressions for the elements of the matrix $[Z]$ and of the matrix [$\left.V^{v e}\right]$ are given in appendix A and appendix B, respectively. The computational and numerical details are discussed in section 47

Figute $4.5 K \times L$-port network.

4.4 Port admittance matrix and scattering matrix

One of the advantages of a rigorous finte-array approach is the fact that the complete port admittance matrix $\left[Y^{p}\right]$ and the port scattering matrix $[S]$ are known once the elements of the method-of-moments matrices $|\angle|$ and $\left[V^{e r}\right]$ have been determined. This means that the array is characterised for all scan angle. If, on the other hand, an infinte-array approach as used [3, 57], the method-of-moments procedure has to be camed out for cach possible scan angle. Гigure 45 shows the innte $\mathbb{K}^{\times} \times l$-element array represented by a $K^{*} \times L$-port microwave network. The theory presented in this section is an extension of the thcory of section 36 The relation between the port curtents $[F]$ and port voltages $|V /\rangle$ is defined by

$$
\begin{equation*}
\left[I^{P}\right]=\left[Y^{p}\right]\left[V^{p}\right] \tag{4.15}
\end{equation*}
$$

The relation between port current I_{3}^{p} and port voltage $V_{i}^{\prime \prime}$ can also be charactersed by [32, p . 39.3] (see section 3.6)

$$
\begin{equation*}
I_{r}^{F}=\frac{I_{\mathrm{in}}^{p^{*}}}{V_{i}^{p^{4}}}--\iint_{5 \text { r, }, 4,} \vec{H} \vec{M}_{f \text { reit }}^{*} d S \tag{416}
\end{equation*}
$$

in which \vec{H} is the total magnetce field and $\overrightarrow{\mathcal{M}_{j}}{ }_{\text {aiii }}$, is the complex conugate of the magnctic current distribution in the coaxial aperture of array element in $P_{\text {in }}$ is the total complex power supplicd by source 2. Note that $\overrightarrow{\mathcal{H}}$ is the magnetic field due to the currente on all the patches and probes of the array. We can therefore write the magnetuc ficld \vec{F} in term of the $N_{\text {saw }}$ unknown
mode coefficients $[I]$:

$$
\begin{align*}
& \overrightarrow{\mathcal{H}}(x, y, z)= \sum_{j=1}^{K \times L}\{ \tag{417}\\
&\left\{I_{j 1} \overrightarrow{\mathcal{H}}_{j}^{\mathrm{a}}(x, y, z)+\sum_{\mathrm{m}=2}^{1+N_{x}} I_{y^{m}} \overrightarrow{\mathcal{H}}_{j m}^{f}(x, y, z)\right. \\
&\left.+\sum_{m-N_{\mathrm{z}}+2}^{1+N_{z}+N_{1}+N_{2}} I_{j m} \overrightarrow{\mathcal{H}}_{g m}^{p}(x, y, z)\right\}
\end{align*}
$$

in which $\overrightarrow{\mathcal{H}}_{j}^{p}, \overrightarrow{\mathcal{F}}_{j=m}^{f}$ and $\overrightarrow{\mathcal{H}}_{j \text { m }}^{p}$ arc the magnetic fields due to the attachment mode, an expansion function on the coaxial probe, and a mode on one of the patches of array element $\}$, respectively Substitution of (4.17) in (4 16) gives the relation

$$
\begin{equation*}
\left[I^{p}\right]=\frac{1}{4 \pi^{2}}\left[V^{a r}\right]^{T}[I]=-\frac{1}{4 \pi^{2}}\left[V^{* *}\right]^{T}[Z]^{-1}\left[V^{* s}\right]\left[V^{p}\right] \tag{4.18}
\end{equation*}
$$

where matrix equation (4.9) was used. The port admuttance matrix can now be calculated from

$$
\begin{equation*}
\left[Y^{n \prime}\right]=-\frac{1}{4 \pi^{2}}\left[V^{\varepsilon x}\right]^{I}[Z]^{-1}\left[V^{e s i}\right] \tag{419}
\end{equation*}
$$

Note that expression (4.19) has the same form as (3.49) when the number of aray clements is equal to 1 The scatering matrix [5] can be calculated by means of the well-known relation [2]

$$
\begin{equation*}
[S]=\left\{Y_{0}[U]-\left[Y^{P}\right]\right\}\left\{Y_{0}[J]+\left[Y^{p}\right]\right\}^{-1} \tag{420}
\end{equation*}
$$

where $[U]$ is the unity malrix and where Y_{0} is the characteristic admittance of the coaxial cables. Usually $Y_{0}=1 / Z_{0}=1 / 50\left(\Omega^{-1}\right)$. Another mportant parameter of a phased-array antenna is the so-called active reflection coefficient The active reflection coefficient R_{i} is defined as the reflection cocfficient at the terminals of array element a when the main beam of the array is scanned at a certain scan angle (θ_{0}, ϕ_{0}). The active reflection coefficient can be written in terms of the clements of the scattering matrix $[S]$ and the elements of the excitation vector $[a]$ (see (4.6) as

$$
\begin{equation*}
R_{2}\left(\theta_{0}, \phi_{0}\right)=\sum_{j=1}^{K \times L} S_{1 j} a_{j} \tag{421}
\end{equation*}
$$

The active reflection coefficient R, will be different for each array element in a finite array, because the array elements are not affected by mutual coupling in the same way.

4.5 Radiation characteristics

The far-field pattern of an array of microstrip antennas can be calculated with the same method as discussed in section 3.7 for isolated microstnp antennas. The only difference with the situation of section 3.7 is that we now have to sum all the contributions to the total far-field pattern of the
currents on the $K \times I$ array elements. The man beam of the array can be scamed a a certan direction $\left(\theta_{n}, \phi_{n}\right)$ by adjusting the amplitude and phase of the mput signals. The far-ficld pattern of an artay can according to formula (3.64) be written in terms of the spectral-domain electric field at the surface $z-h_{2}$, with $h_{n}=k_{0} \sin 0 \cos \phi$ and $k_{3}=k_{0} \sin \theta \sin \phi$, as

In which $\vec{E}\left(k_{x}, k_{y}, h_{2}\right)$ is the spectral-domain electric ficld at the moterface between regon 2 and region 3 , due to the currents on all the $K \times L$ array elements, so

$$
\begin{align*}
& \vec{L}\left(k_{x}, k_{y}, h_{2}\right)=\sum_{i=1}^{n \times i}\left\{I_{3} \int_{n}^{x_{1}} \bar{Q}_{2}^{r}\left(k_{k}, k_{y}, h_{2}, z_{0}\right) \quad \vec{j}_{j}^{u_{j}}\left(k_{5}: k_{y}, z_{0}\right) d L_{0}\right. \\
& +\sum_{m=2}^{N_{s}-1} I_{y m} \int_{0}^{x_{1}} \ddot{Q}_{2}^{p_{2}}\left(k_{s}, k_{k}, h_{2}, z_{0}\right) \cdot \vec{J}_{y m}^{\prime}\left(k_{n}, k_{z}, z_{0}\right) d z_{0} \tag{423}\\
& \left.1 \sum_{m=N_{s}+2}^{1+N_{x}+N_{1}+N_{2}} I_{i m} \bar{Q}_{2}^{\prime}\left(k_{x}, k_{j}, h_{2}, z_{n 1}\right)-\vec{F}_{j m}^{j}\left(k_{r}, I_{i j}, z_{m 1}\right)\right\}
\end{align*}
$$

with

$$
z_{m}- \begin{cases}z_{1}, & \text { if } N_{z}+2 \leq m \leq N_{z}+1+N_{1} \\ z_{2}, & \text { if } m>N_{z}+1+N_{1}\end{cases}
$$

The integrations over z_{0} in (423) carn be carred out analytically (in the same way as done in appendix A) The mode coefficients of the basis functions, te. the vector (J], can be determmed from the matrix equation (4.9), in which the input port voltage vector $\left\langle V^{p}\right|$ is gren by

$$
\begin{equation*}
\left.\mid V^{W}\right]=\{|U|+|s|\}|a|, \tag{424}
\end{equation*}
$$

where $[U]$ is agan the unty matrix The elements of the exctation vector [ff are given by (4.6) and depend on the required scan angle $\left(O_{0}, \psi_{0}\right)$. The gan of an array, when the man beam 14 directed to the angle $\left(\theta_{0}, \psi_{0}\right)$, can be calculated with formula (370) in whech the electric fietd is guen by exprestion (4.22) The gain of an array can be approximated with the formula

$$
\begin{equation*}
G_{1}-10 \log _{10}(K \times L)+G_{\pi} \quad(\mathrm{dB}) \tag{425}
\end{equation*}
$$

In which $G_{\text {. }}$ is the gain of a single array element. The above approximation is exact it atl array elements are identical and if there is no mutual coupleng between the array clements

4.6 Circular polarisation

Many practical antenta applications require circularly polarised antennas. In mobile satellite communications, for example, a convenient way to maintain communication between the mobile user and the satellite under all circumstances is to use circularly polarised receive and transmit antennas. In radar applications, circular polansation is often used during periods of rain. The electric field of a circularly polarised field can be divided into two components, i e. a Right-Hand-Circularly (RHC) polarised wave and a left-Hand-Circularly ($\mathrm{L} H \mathrm{HC}$) polarised wave. So, the total electric ficld is divided into the following two components

$$
\begin{equation*}
\vec{\varepsilon}=\varepsilon_{\theta} \vec{\epsilon}_{\theta}+\varepsilon_{\phi} \vec{e}_{\phi}=\varepsilon_{\varepsilon} \vec{e}_{L}+\varepsilon_{R} \vec{\epsilon}_{R} \tag{4.26}
\end{equation*}
$$

in which the unit vectors \vec{e}_{L} and \vec{c}_{f} are defined as

$$
\begin{align*}
& \vec{\epsilon}_{L}=\frac{1}{\sqrt{2}}\left(\vec{e}_{6}+j \vec{e}_{\phi}\right), \tag{4.27}\\
& \vec{e}_{h}=\frac{1}{\sqrt{2}}\left(\vec{e}_{0}-j \vec{e}_{\phi}\right)
\end{align*}
$$

and where the LHC- and RHC-components \vec{E}_{l} and \vec{E}_{n}, respectively, are given by

$$
\begin{align*}
& \varepsilon_{\theta}=\frac{1}{\sqrt{2}}\left(\varepsilon_{\theta}-\jmath \varepsilon_{\phi}\right)_{1} \tag{4.28}\\
& \varepsilon_{R}=\frac{1}{\sqrt{2}}\left(\varepsilon_{\theta}+\jmath \varepsilon_{\phi}\right)
\end{align*}
$$

If one of these two components vanishes, the far held will be perfectly circularly polarised. Practical antenna systems, however, will always transmit or receive power from the unwanted component Therefore, a quantity called axial ratio (AR) is introduced to describe the polarisation mismatch of the far field The axial ratio is defined by

$$
\begin{equation*}
\mathrm{AR}=\left|\frac{\left|\mathcal{E}_{L}\right|+\left|E_{n}\right|}{\left|\mathcal{E}_{L}\right|-\left|\mathcal{E}_{R}\right|}\right| \tag{4.29}
\end{equation*}
$$

So if $\mathrm{AR}=1(=0 \mathrm{~dB})$, the fields are perfectly circularly polarised A circularly polarised far-field patern can be created with one of the two microstrip configurations shown in figure 4.6. The most common method to create a circularly polarised field with square microstrip patches is shown in figure 46 a , where two coaxial cables are connected to the microstrip antenna. The input signals have a relative phase difference of 90° If such an element is placed in an array of which the beam
is seanned to an angle (θ_{0}, ϕ_{0}), the excitation vector $[a]$ should have the following form

$$
a_{j k}=\left|a_{3}\right| \begin{cases}\operatorname{cxp}\left\{-j k_{0}\left[(k-1) d_{v} z+(l-1) d_{x} v\right]\right\}, & \text { if } \psi-1 \tag{4.30}\\ \exp \left\{-j k_{0}\left[(k-1) d_{x} u+(l-1) d_{y} v\right\}+3 \frac{\pi}{2}\right\}, & \text { if } j-2\end{cases}
$$

with $\pi=\sin \theta_{0} \cos \phi_{h}$ and $\gamma=\sin \theta_{0} \sin \phi_{0}$ The second configuration of figure $4.6 \mathrm{ks} 2 \times 2$ subarray of which the elements and the phases of the input signals are sequentially rotated 137] Each element of the subarray is fed with only ote coaxial cable, wath onentation and phasing according to figure 4.6 b The distance between the elements in both the r and y driceton is d : When ewch a subarray is placed in arn array conlguration with scan angle (θ_{0}; ϕ_{0}), the excitation vector [9] should have the form

$$
\begin{align*}
& a_{1,}-\left|a_{j}\right| \exp \left\{-k_{0}\left|(k-1) 2 d_{\mathrm{r}}^{2}+(i-1) 2 d_{r} n\right|\right\} \\
& \times \begin{cases}1, & \text { if } y=1, \\
\exp \left(j k_{n} d_{v} t+j \frac{\pi}{2}\right), & \text { if } y=2, \\
\operatorname{cxp}\left(-j k_{n} d_{r} y+j \frac{3 \pi}{2}\right), & \text { if } \nu=3, \\
\operatorname{cxp}\left(-j k_{n}\left[d_{v} u+d_{n} v\right]+j \pi\right), & \text { if } v=4,\end{cases} \tag{431}
\end{align*}
$$

where the : and w-coordinates of subarray are $(k-1) 2 d_{k}$ and $(1-1) 2 t_{n=\prime}$, respectively A combination of the two technques of figure 46 is also possible. Thus configuration is shown in figure 4.7. Due to the symmetry of this configuration, the influence of mutual coupling (between the egght input ports) on the polarisation charatenstios for $\theta_{0}-0^{\circ}$ is climinated, resulting in a 0 dB axial ratio for $A_{0}=0^{\circ}$.

4.7 Computational and numerical details

The expressions for the elements of the method-ofumoments matrix $|Z|$ and matrix $\left|V^{\prime \prime}\right|$ are given in appendix \wedge and appendix B, respectively. They have a similar form as the expressons for $|Z|$ and $\left|V^{* *}\right|$ in the case of an isolated microstrip element. So mot of the numerical techniques presented in section 38 can also be applicd here. The only difference is an extrat function in the integrand, which depends on the distances in the r - and the y-direction, 1 c. $s_{y, y}^{\prime}$ and $s_{y, y}^{\prime \prime}$ belween

Figure 4.6: Cincularly polarised microstrip configurations

Frgure 4.7. Sequentually rotated subarray with two coaxial cables for each array element.
array element, and array element, As an example, let us take a cloyer look at an clement of the submatrix $\left[Z^{a a}\right]$ According to (A.2), an element of $\left[Z^{a x}\right]$ is given by

$$
\begin{equation*}
Z_{s:}^{s u}=\int_{0}^{\infty} f^{s v}(i) J_{0}\left(k_{\mathrm{c}} /\left(R_{j}\right) d i j\right. \tag{4.32}
\end{equation*}
$$

in which $R_{y 2}=\sqrt{S_{k y}^{2}+S_{p y}^{2}}$, the distance between the centre of array element $/$ and the centre of array element $/$ and where $f^{v e v}(\beta)$ is the β-mtegrand in the case of an isolated merostrip antenna ($\left.R_{j \mathrm{~s}}=0\right)$. Four important observations can be made from expression (4.32)
i Numerical problems due to surface waves and other singularities on f** (3) can be elminated with the analytical techniques prosented in section 382
ii An clement $Z_{i, 2}^{2,}$ depends only on the absolute distance between array element γ and array element?. This implies that the submatrix $\left\{Z^{n a}\right]$ has a foeplitz structure. Thes saves a lot of computation time, because only the elements of the first row of [$\left.Z^{\text {a/ }}\right]$ need to be calculated.
iii Computation time can be saved if all elements of the matrix $\left|Z^{a n}\right|$ are calculated smultaneously, because the function $f^{i s o}(\beta)$ then needs to be evaluated only once
iv A s the distance R_{3}, between the array elements becomes larger, it will take more computation time to calculate the integral over β in (4.32) by direct numerical integration, because the number of oscillations for a certain β interval ($0, A_{\text {mita }}$) in the Bessel function $J_{0}\left(h_{0} ; R_{2}\right)$ increases with incredsing R_{3}. A convenient way to avord numerical difficultes for latge values of R_{y}, ts by ung the asymptotic-form extraction technique, introduced in section 383

The above observations are also vald for the other elements of the matrix $|Z|$ and also for the elements of $[\mathrm{V}=\mathrm{r}]$. Item iv) leads to the conclusion that an efficent and accurate analysis of finute microstrip arrays is only possible of the asymptotic-form cxtracton techncque is used to calculate the intcgrals with infinte boundanes This technique is now even more important than it was for the isolated mictostrip antenna casc. Sımilar to (390), an element of $[Z]$ a written in the following form

$$
\begin{aligned}
& =\left(\bar{Z}_{y m m}-\bar{Z}_{\rho m, m}\right)+\bar{Z}_{j m m},
\end{aligned}
$$

in which $\hat{Z}_{y m \text { m }}$ is the extracted asymptotic part with

$$
\tilde{Z}_{\mathrm{m}: n}=\int_{0}^{\infty} \bar{g}_{J m n n i}(\beta) d \beta
$$

We have found a way to evaluate the extracted part analytically for each of the elements of the matrices $[Z]$ and $\left[V^{* x}\right]$. To that end, we have used similar analytical techniques as presented in section 3.8 .3 . The remaning integral in (433) can be evaluated numerically with a standard integration routine for complex functions. More detals about the asymptotic-form extraction technique for finte microstrip aftays can be found in references [68, 71]
The electromagnetical coupling between two array elements decreases rapidly as the distance between hoth aray clements increases This phenomenon can be used to speed up the numerical calculations when the direct coupling between array elements which are located far away from each other is neglected. In this way the mothod-of-moments matrices $[Z]$ and $\left[V^{e x}\right]$ become sparse matrocs. Three sets of parameters will be distinguished:

- $\left(h_{v}, h_{v}\right)$ All interactions in the matrix $\left[V^{* x}\right]$ between modes and sources for which the distance in the x - and the y-direction is larger than $k_{k} \times d_{x}$ and $l_{v} \times d_{y}$, respectively, are zero. This affects $\left\{V^{a r a}\right],\left[V^{c z}\right]$ and $\left[V^{e x P}\right]$.
 attachment mode for which the distance in the x - and the y-direction is larger than $k_{\pi}^{f+a} \times d_{t}$ and $l_{t}^{f+a} \times d_{y}$, respectively, are made zero. This affects the submatrices $\left[Z^{a \alpha}\right],\left[Z^{f a}\right],\left[Z^{a f}\right]$, $\left[Z^{p=1}\right],\left[Z^{* F^{*}}\right],\left[Z^{x f}\right],\left[Z^{i v}\right]$ and $\left[Z^{f f}\right]$.
- ($\left.\|_{2}^{3}, \neq l_{2}\right)$: All interactions in the matrix $[Z \mid$ with a mode on one of the patches for which the distance in the r and the y-direction is larger than $k_{s}^{p} \times d_{\mathrm{r}}$-and $l_{s}^{\nu} \times d_{t}$, respectively, are made zero. This only affects the submatrix $\left[Z^{p P}\right]$

The above technique was tested for an L-band, single-layer, 7×7 microstrip aray antenna The element spacing is approximately $05 \lambda_{0}$. The dimensions of the array are given in table 41 . Figures 4.8 .49 and 410 show the calculated mutual coupling cocfficient $\left|S_{j z}\right|$ between the centre element of the array $(\jmath=25)$ and array elements $t=24, z=18$ and $t=I$ when one of the three sets of parameters is varied, while the other paramelers are all equal to 7. From these three figures it is clear that a considerable amount of CPU time can be saved il not all the direct interactions between the basis functions are calculated ln most cases it will suffice to use $\left(k_{2}, l_{2}\right)=(1,1)$.
 element and the other elements of a 7×7 array If one is only interested in the coupling between adjacent array elements, even $\left(k_{v}, l_{v}\right)=(1,1),\left(k_{2}^{f \mid a}, l_{r}^{f+a}\right)=(1,1)$ and $\left(k_{s}^{p}, l_{v}^{y}\right)=(2,2)$ can be used This method therefore results in a large reduction of the required computation time.

Array	$h_{2}=z_{1}(\mathrm{~mm})$	${ }_{5}$	$\tan 6$	$W_{T}($ mirir $)$		d^{4} (mum)
1	10	1.07	00008	97.5	(26,0)	1153

Table 41 Dimensions of microstrip array l_{y} with $W_{x}=W_{y,} d_{x}=d_{3}, a=15 \mathrm{~mm}$ and $b=5$ mm

Гigure 4.8 Calculated S_{25} for various (k_{v}, l_{v}) values. $f-13$ GIIz.

In this way laxge arrays can be analysed while the overall computation time remains relatively
 $\left(R_{*}^{*},[s)=(4,4)\right.$, the total number of elements of $[7]$ and $\left[V^{*}\right]$ that have to he calculated 1 m reduced from approximately $49\left(2+2 N_{s}+N_{z}^{2}+2\left(N_{1}+N_{2}\right)+N_{s}\left(N_{1}+N_{2}\right)+\left(N_{1}+N_{2}\right)^{2}\right)$ to $2+2 N_{z}+N_{4}^{2}+2\left(N_{1}+N_{2}\right)+N_{2}\left(N_{1}+N_{2}\right)+16\left(N_{1}+N_{2}\right)^{2}$. With $N_{z}=3, N_{1}=5$ and $N_{2}=0$, this corresponds to a reduction of the total number of non-7ero elements in $|Z|$ and $\{V / \pi$ by a factor of $3283 / 442 \approx 75$ The CPU tume needed to calculate the elements of $|\gamma|$ and $\left\{V^{\prime \prime}{ }^{\circ} \mid\right.$, for a 7×7 array with the configuration of table 4 f , takes about 3 monutes and 50 seconds for a single frequency point on a 486 PC computer
Once the elements of $|Z|$ and $\left|V^{s x}\right|$ are known, the admittance matrix and the scatcenng matrix can be determited from (4.19). The inverse of the complex symmetric matrix $|Z|$ s culculated with a routine from the LINPACK library [21] When small or medium-cized array are analysed,

Figure 4.9: Calculated $S_{25 s}$ for various $\left(k_{z}^{f+a}, l_{s}^{f+a}\right)$ values. $f=13 \mathrm{GHz}$

Figure 4.10 Calculated S_{25} for various $\left(k_{2}^{p}, \xi_{2}\right)$ values $f=1.3 \mathrm{GHz}$
the CPU time required to calculate the elements of $[Z]$ and $\left\{V^{* *}\right\}$ will be much longer than the CPU time required for the inversion of $[Z]$. However, il a large number of array elements is used, the inversion of $[Z]$ could require more attention. In that case an iterative method, such as the conjugate gradient method [34], can be employed for the solution of the method-of-moments matrix equation Mutual coupling in very large microstrip arrays can be analysed by truncating
the number of array elements which are used m the analysis In this way, mutual coupling between artay elements wheh are located relatively close to each other can be calculated with a reasonable accuracy In most practical array configurations thes will be no real limitation, because of the very low mutual coupleng between elements which are located far away from each otherAnother way to handle very large mictostrip arrays is the infinte-array approach $14,55,57,74$] It should be noted, however, that the behtriour of array clements near the edges of a very barge array cannot be handed with an infinite-aray approach Therefore the best way to desgn a very large microstrip array antenna is probably a combination of the finte-arraty approach and the infinite-array approach [3]

4.8 Results

In this section some microstrip array designs, obtained with the finite-array model, will be presented In addition, the accuracy of the model is checked by comparing the calculated results with experimental data Note that our finite-array approach and the corresponding software have also been verificd in [3], In [3] the calculated results from an infinite-array approach were compared with the results from our finite-array approach.

4.8.1 Introduction

When an isolated microstrip element is placed in an array environment, its electromagnetical behaviour 15 influenced by the presence of the other microstrip elements. The element distance in an array is usually somewhere between $05 \lambda_{0}$ and $0.9 \lambda_{0}$, depending on the maximum scan angle. So, the array elements are tocated close to each other in terms of the wavelengeh. In section 3.9 the handwidth of several microstrip configurations was investigated. It was shown that rolated microstrip antennas with a large bandwidth can be constructed. An important question is now: how much wrll the bandwidth of such a microstrip antenna change if this antenna is placed in an aray? Furthermore, cach array element will have, in general, a different environment, which implies that each array element will behave differently. In this section our attention will be focused at the following three array charactentstics:

- the mutual coupling $S_{j i}$ between the array elements,
- the active reflection cocfficient $R_{3}\left(\theta_{0}, \phi_{0}\right)$ of each array element,
- the radratron pattern of the array.

Mutual coupling causes the reflection coefficient of an element to differ from its isolated-element value, and to depend on the phasing of the array and on the location of the element in the array. Furthermore, the radiation pattern and the polansation characteristics deteriorate because of the mutual coupling between the array clements The bandwith of an artay could be defined as the frequency band for which the active reflection coefficient $R_{j}\left(\theta_{0}, \phi_{0}\right)$ is smaller than a certain value $R_{\text {rasio }}$, for a specified scan volume $0 \leq \theta_{0} \leq \theta_{\text {maks }}$ and $0 \leq \phi_{0} \leq \phi_{\text {max }}$. Throughout this thesis a value of $\left|R_{\text {riax }}\right|=1 / 3$ is used, which cortesponds to a VSWR ≤ 2.
The organsation of thes section is as follows. In section 4.8 .2 three single-layer mocrostrip arrays will be investrgated and the numerical results will be compared with experments Next, in section 4.8 .3 stacked microstrip arrays are discussed. The broadband multilayer structure with a high-permittivity substrate, presented in section 3.9 .4 , will be investigated in section 4.8 .4 In section 4.85 arrays of broadband EMC microstrip antennas are analysed and the results are compared with expermental data. In section 48.6 the far-field pattern of finte microstrip arrays
is investgated. Microstrip antennas and arralys with a circularly polanced far-field pattern are discussed in section 48 .7. Finally, in section 48.8 , a new type of dual-frequency wubarrays with a circularly polarised far field is presented.
It should be noted that all mutual-coupling metsurements were performed in an anechoic chamber, whie the measurements were made with a Hewlett Packard HP85108 network anaty ser. In this way the effect of reflections against objects in the envimment is minimised While measuring the mutual coupling between two array clements, all the other arday elements were termmated with 50Ω loads.

Figure 4 11- Photograph of the 7×7 test array

4.8.2 Single-layer microstrip arrays

The first microstrip artay that will be investigated is a linearly polarnsed, L-band, 7×7 array made on a foam substrate with $\varepsilon_{,}-107$ Гoam-based nicrostrip array are easy to manutacture, mexpensive and have a light welght. The dimensions of the 7×7 mucrostrep array which wats
designed and constructed were given in table 4.1. The distance between the centres of the aray

Figure 4 12: Measured and calculated coupling coefficients hetween the centre element ($]=25$) and the elements of the $i=4$ and $l=3$ row of 7×7 array l, with $j=(i-1) K+k$ and $f=1.3$ GHz
elements is in both directions approximately $\lambda_{0} / 2$ Due to the low relative permuttivity of foam, the length and width of the patches are also approximately equal to $\lambda_{0} / 2$. The spacing between the edges of two adjacent patches is therefore very emall, which results in a high mutual-coupling level. Figure 4.11 shows a photograph of the 7×7 test array The overall size of the array is $1 \mathrm{~m} \times 1 \mathrm{~m}$. Figure 412 shows the predieted and measured mutual-coupling coefficients at $f=13 \mathrm{GHz}$, betwecn the centre element ($k=l=4, j=25$) and the elements along the $i=3$ and $l=4$ row. The measured resonant frequency is approximately $f=132 \mathrm{GHz}$, while the predicted resonant frequency as $f=135 \mathrm{GHz}$ The calculations were performed with 5 entre-domain sinusordal basis functions on cach patch and 2 subdomain rooftop basss functions on each coaxial probe. So the total number of basis functions on cach array element is equal to 8 The agreement between the measured and the calculated coupling cocfficients is faidy good. The disagreement is probably due to the finite size of the ground plane and due to the mismatch in resonant frequency (caused by material tolerances). Furthermore, the inaccuracy of the pormittivity and the inaccuracy of the patch dimensions could be a potential source of errors Figure 4.12 also shows that the coupling between two adjacent array elements, which are located in the same row, is very high. For example $S_{25: 24} \approx-9 \mathrm{~dB}$ This implics that the active reflection coefficient of each array element will also be very high. We may therefore conclude that mucrostrip antennas made on a single foam layer are not a good choice for constructing a microstrip phased-array antenna with an element spacing equal or almost equal to $\lambda_{0} / 2$. Another

Artay	$h_{1}(\mathrm{~mm})$	$h_{2}=z_{1}^{\prime}(\mathrm{mm})$	$\varepsilon_{\mathrm{rl}}$	$\varepsilon_{\cdot 2}$	$W_{r \mid}(\mathrm{mm})$	$\left(x_{4}, y_{*}\right)(\mathrm{mm})$	$d_{s}(\mathrm{~mm})$
2	635	6.85	1.03	2.17	31.9	(11.0)	60

Table 42 Dimension of linear microstrip array 2, with $W_{y 1}=W_{41}: a=063$ mmand $\quad 二 21$ mm.

Figure 4.13 Measured and calculated coupling coefficients between element () - 8) and the other elements of Incar array 2 with $f-33$ GHz
microstrip array fabricated on a foam substrate a presented in [51] This Incar array consmbs of 8 single-later microstrip elements ($K=8: L=1$). The 8 patches are mounted on a thin top layer with $\varepsilon_{\mathrm{r} 2}-217$ and with $\dot{d}_{2}=05 \mathrm{~mm}$. The other dimensions are given th table 42 . Figure 4.13 shows a plot of the calculated and measured coupling coelficent between the last eiement (1) - 8) and the other 7 elements of the lincar array The frequency is $f-33 \mathrm{GHz}$ Again 8 basis functons on each array element were used the agreement between the calculations and measurements is excellent 'The mutual couphng is lower than the mutual coupling in array I (higure 4 12), because a larger element spating is used, namely $a_{i} \approx 066 \lambda_{0}$.
Next, a single-layer mocrosirip array on a Durod 5870 substrate wither -233 was designed The thacknest of the substrate is $h_{2}=2$ mm and the centre design frequenty is $/-54 \mathrm{GH} / \mathrm{So}$. aweording to figure 3.29 of section 3.92 , the relative bandwidth of an isolated microstrip anterna on this substrate with $h_{1} / \lambda=0.055$ would be approximately 43% The other array dimentions

Array	$h_{2}=z_{1}^{\prime}(\mathrm{mm})$	4	$\tan \delta$	$W_{r 1}(\mathrm{~mm})$	$\left(x_{s}, y_{s}\right)(\mathrm{mm})$	$d_{\text {a }}(\mathrm{mm})$
3	2	2.33	0.0012	17	(35,0)	28.3

Table 4 3: Dinensions of microstrip array 3. with $W_{x 1}=W_{y i}, d_{4}=d_{y,} a=0.635 \mathrm{~mm}$ and $t=21 \mathrm{~mm}$
are specified in table 43 . The element spacing is approximately $\dot{d}_{n}=d_{i j}=05 \lambda_{0}$. The maximum scan angle in the E-and H-plane is therefore $\theta_{0}^{\max }=\arcsin \left(\lambda_{0} / d_{x}-1\right)=90^{\circ}$. In figure 4.14 the input impedance of the centre element is shown for various array sizes, when the main beam of the array is drected at broadside $\left(\theta_{0}=\phi_{0}=0^{0}\right)$ The dependence of the input impedance on the number of array elements shows the influence of mutual coupling. Another interesting observation from figure 4.14 is that the input impedatice of the centre element converges to a certan value as the number of array elements increases. This agrecs with the results obtaned in [3], where finte arrays were compared with infinile arrays of microstrip antennas In figures 4.15 and 4.16 the coupling coefficients between the contre element ($k=l=4, j=25$) and the other elements in a 7×7 array are ploted for $f=5.4 \mathrm{GHz}$ Figures $4.17,4.18$ and 4.19 show the corresponding active reflection coefficient of the centre element versus scan angle θ_{0} for varous frequencies, for the $\phi_{0}=0^{0}$ plane, the $\phi_{0}=45^{\circ}$ plane and the $\phi_{0}=90^{\circ}$ plane At this point, it is interesting to take a closer look at the bandwidth of the array. To that end, the active reflection coefficient of the centre element in a 7×7 array is mivestigated in three planes, namely in the $\psi_{0}=0^{\circ}$ plane, the $\phi_{0}=45^{\circ}$ plane and the $\phi_{0}=90^{\circ}$ plane. The relative bandwidth (BW) with $\left|R_{2.5}\right| \leq \mathrm{I} / 3$, is now:

- $B W=63 \%$. if $\phi_{0}=0^{\circ}$ and maximum scan angle $\theta_{0}=0^{\circ}$,
- $B W=57 \%$, if $\phi_{0}=0^{\circ}$ and maximum scan angle $\theta_{0}=30^{\circ}$,
- $B W=32 \%$, if $\phi_{0}=0^{\circ}$ and maximum scan angle $\theta_{0}=60^{\circ}$,
- $\mathrm{BW}=5.6 \%$, if $\phi_{0}=45^{\circ}$ and maximum scan angle $\theta_{0}=30^{\circ}$,
- $\mathrm{BW}=5 \%$, if $\phi_{0}=45^{\circ}$ and maximum scan angle $\theta_{0}=60^{\circ}$,
- $\mathrm{BW}=57 \%$, if $\phi_{0}=90^{\circ}$ and maximurn scan angle $\theta_{0}=30^{\circ}$,
- $\mathrm{BW}=0 \%$, if $\phi_{0}=90^{\circ}$ and maximum scan angle $\theta_{0}=60^{\circ}$.

a) real part Z,

bi) maghary parl 2 .

Figure 4 14: Centre-element inpat impedance for various array sazes for the confoguraton of array $3_{\text {: }}$ with $\theta_{n}=\phi_{n}=0^{\circ}$

As expected, the bandwidth decreases with mereasing scan angle Futhermore, the bandurdrh at brodside $\left(\theta_{0}-0^{2}\right)$ is larger than the bandwidth of a single element. This is a positive effect of the mutual coupling.

Figure 4.15: Mutaal coupling in $\alpha 7 \times 7$ single-layer array with dimensions of array 3 and $f=5.4$ GHz

Figure 4.16. Three-dimensional representation of mutual coupling $\left(\left|S_{25}\right|\right.$ in $\left.d B\right)$ in a 7×7 single-foyer array with domenstons of array 3 and $f=54 \mathrm{GHz}$

Figure 4.17: Centre-element astive reflection coeffcient in a 7×7, ungle-layer array with dimensom of array 3 and $t=0^{\circ}$ (E-plone).

Wigure 4.18: Centre-element active reflection coefficient in a 7×7 ungle-iayer array with dmensions of array 3 and $\phi=45^{\circ}$ (D-plane).

Figure 4.19: Gentre-element active reflection coefficient in a 7×7 single-layer array with dimensions of array 3 and $\phi=90^{\circ}$ (H-plane).

4.8.3 Stacked microstrip arrays

A stacked microstrip antenna has two resonances, that can be used to obtan a larger bandwidth of to obtan dual-frequency operation. In this section a finite array of atacked microstrip antennas with a relarive large bandwidth will be investugated. The antenna design of secton $39.3 \mathrm{w}_{\text {th }}$ a bandwidth of 13% on Duroud 6002 substrate with $\varepsilon_{\mathrm{r}}=294$ is used as a starting point the array dimensions are given in table 4 4. Figure 420 shows the calculated coupling cocfficient between

Array	$z_{1}^{\prime}(\mathrm{mm})$	$h_{2}-z(\mathrm{~mm})$	ε_{r}	$\tan 6$	$W_{-1}(\mathrm{mrm})$	$W_{2}(\mathrm{~mm})$	$A_{*}(\mathrm{~mm})$	$d_{n}(\mathrm{~mm})$
4	304	608	294	0.0012	25.3	25	8.5	485

 $n=0635 \mathrm{~mm}$ and $b-21 \mathrm{~mm}$
the centre element and the other clements in a 7×7 artay configuration The $\mathrm{H}-\mathrm{plane}$ coupling (column $l=4$) seems to be much stronger than the Erplane coupting (row $;-4$) for the tracked wonfiguration. In figures $4.21,4.22$ and 4.23 the corresponding active reflection coeffigent in the three proncipal planes of the centre element in a 7×7 array is ploted for various frequencies The relative bandwidth of the centre element is in the three principal planes with $\left|N_{\mathrm{c}}\right|<1 / 3$

- $B W=12.4 \%$, if $\phi_{0}=0^{n}$ and maximum scan angle $\theta_{0}=0^{1}$,
- $\mathrm{BW}=12.4 \%$, if $40-0^{6}$ and maximum scan angle $a_{0}=30^{\circ}$,
- $\mathrm{BW}=37 \%$, if $\phi_{0}-0^{\circ}$ and maxmum scan angle $\theta_{0}=60^{\circ}$,
- $B W=124 \%$, if $\phi_{0}=45^{\circ}$ ard maximum scan angle $\theta_{0}=30^{\circ}$.
- $\mathrm{BW}=11.6 \%$, if $\phi_{n}=45^{\circ}$ and maximum scan angle $\theta_{0}-60^{\circ}$,
- BW=1156, $11 \phi_{0}=90^{i 1}$ and maxumum scan angle $\theta_{0}-30^{\circ}$,
- $\mathrm{BW}=0 \%$, if $\phi_{0}=90^{\circ}$ and maximum scan angle $\theta_{0}-60^{10}$

Figure 4 20: Mutual coupling in the 7×7 stacked mucrostrip array 4 with $f=3.1 \mathrm{GHz}$.

Figure 4.21: Centre-element active reffection coefficient in the 7×7 stacked mucrostrip array 4 with $\phi=0^{1}$ (E-plane).

 with $\phi-45^{\circ}$ (D-picne).

Figure 423 . Centre-element active refiection coeffachi in a 7×7 stacked mid mitrip array 4 with $\%=90^{\circ}$ (H -plane)

4.8.4 Multilayer microstrip arrays

In section 3.94 a two-layer microstrip antenna with a high-permittivity substrate was investigated. It was shown that with such microstrip antennas bandwidths up to 25% could easily be obtained Figure 424 shows the top view of a linearly polarised aray of $K \times L$ multilayer microstrip clements, which are fed on their diagonal with a coaxial cable. The onentation of the array clements is somewhat different than in a conventional microstrip amay, due to the location of the Feed point A. 7×7 atray with centre frequency $f=41 \mathrm{GHz}$ was investigated Table 4.5 shows

Fugure 4.24: Geometry of a finte array of multilayer stacked microstrip antennas, with $k-$ $1,2, \ldots, K, l=1,2, \ldots, L$ and $j=(l-1) \times K+k$
the dimensions of this array The calculated coupling cocfficients between the centre element and the elements of the $l=1, l-2, l=3$ and $l=4$ row are plotted in figure 425 , with $f=4 \mathrm{lGHz}$ The maximum coupling cocficient is $S_{25} 18=-177 \mathrm{~dB}$. This maximum mutual-coupling level is much lower than the mutual-coupling level between multilayer microstrip antennas with a foam layer [75] The coupling coefficicnts can be used to determine the active reffection coefficient. The centre-element active reflection coefficient versus scan angle θ_{0} is plotted in figures 4.26, 427 and 4.28 for the planes $\phi_{0}=0^{\circ}, \phi_{0}=45^{\circ}$ and $\phi_{0}=90^{\circ}$, respectively. The corresponding relative bandwidth of the centre element of this array in thesc three planes is $\left(\left|R_{2}\right| \leq 1 / 3\right)$.

- $\mathrm{BW}=18 \%$, if $\phi_{n}=0^{\circ}$ and maximum scan angle $\theta_{0}=0^{\circ}$,
- $\mathrm{BW}=13 \%$, if $\phi_{0}=0^{\circ}$ and maximum scan anglc $\theta_{0}=30^{\circ}$.
- $\mathrm{BW}=8 \%$, if $\phi_{0}=0^{0}$ and maximum scan angle $\theta_{0}=60^{\circ}$,

Aпay	$t_{1}-z_{1}^{\prime}(\mathrm{mm})$	$h_{2}-x_{2}^{\prime}(\mathrm{mm})$	$\varepsilon_{\mathrm{rl}}$	ε_{52}	$W_{x 1}(\mathrm{~mm})$	$W_{c z}(\mathrm{~mm})$	$x_{\text {, }}$ (mm)	$d_{x}(\mathrm{~mm})$
5	127	6.27	10.5	233	11	182	4	35

Table 45 Dimensions of microstrip array 5. with tand $=0.0023$, tand $-0.0012 W_{r 1}=W_{y 1}$ $W_{s 2}=W_{v, 2} d_{s:}=d_{y ;} \alpha_{s}=y_{v,}, a=065 \mathrm{~mm}$ cand $b=21 \mathrm{~mm}$

Гigure 425 : Mutual coupling in a 7×7 array of broadband stacked muitilayer mis matrip antennas (aray 5), witio $f-41 \mathrm{GHz}$

- BW $=16.5 \%$, if $\phi_{n}=45^{\circ}$ and maximum san angle $\theta_{0}=30^{\circ}$.
- $\mathrm{BW}=10 \%$, if $\phi_{n}=45^{\circ}$ and maximum scan angle $\theta_{0}=60^{\circ}$.
- $\mathrm{BW}=11 \%$, if $\mathrm{m}_{0}-90^{\circ}$ and maximum scan angle $\theta_{n}=30^{\circ}$,
- $\mathrm{BW}=3.5 \%$, if $\phi_{0}-90^{19}$ and maximum scan angle $\theta_{0}-60^{\circ}$

Compared with the bandwidth of an isolated multilayer microstrip antema, the bandwidth is reduced significantly. At broadside the avalable relative bandwidth is atill 18%, but when the main beam of the array is scanned to an angle of 60 degrees the available relative bandwidth is reduced to 3.5% in the H -plane The active rellection coefficient of an array element near the edge of an array will usually differ from the centre-clement active reffection cocfficient This phenomenon is illustrated in figure 4.29 , where the active refles thon coefficient of an edge

Figure 426 Centre-element active reflection coefficient of a 7×7 multilayer microstrip array (array 5) $\phi=0^{\circ}$ (E-plane)

Figure 4.27. Centre-element active reflection coefficient of a 7×7 multiloyer microstrip array (array 5), $\phi=45^{\circ}$ (D-plone).
element ($n=l=1, \gamma=1$) is compared with the active reflection coefficient of the centre element $(k-l=4,=25)$ in a 7×7 array. The influcnce of mutual coupling on the electromagnetical behtviour of ari edge element of this array appears to be less strong than the influence on the centre element.

Figure 428 . Centre-element active reftection coefficient of a 7×7 multilaver mocrostrip array (array 5) $\phi=90^{\circ}$ (H-pliane)

Figure 4.29: Active reftecion coefficient in a 7×7 multilayer microvipip array (array 5): $\%=0^{\prime}$ (F-platme) and $f=41 \mathrm{GHz}$

4.8.5 Array of broadband EMC microstrip antennas

Electromagnetically coupled (FMC) microstrip antennas have broadband input chatactersithes (see section 3.9) In these antennas the inner conductor of the feeding coaxal cable ts not connected to the patch (see figure 32) The measured and predicted relative bundwidth of the
configuration discussed in section 3.9.6 is approximately 50%. It is interesting to investigate whether these elements can be used in a practical array antenna. For that purpose, two linear arrays with 7 EMC microstrip elements were designed and built. Both arrays were designed to operate at broadside $\left(\theta_{0}=\phi_{0}=0^{\circ}\right)$. A photograph of both antennas is shown in figure 4.30. The array on the left in figure 4.30 has a so-called E-plane configuration of the patches,

Figure 4.30: Two linear arrays of EMC microstrip elements.
i.e. $(K=7, L=1)$ and $y_{s}=0$, and the array on the right of this photograph has a H-plane configuration of the patches, i.e. $(K=1, L=7)$ and $y_{s}=0$. The dimensions of both arrays are specified in table 4.6. In figure 4.31 and figure 4.32 the measured and predicted mutual coupling coefficients $S_{\mathrm{I} i}$ are plotted for both linear arrays with $f=5.5 \mathrm{GHz}$. This is the worst-case situation, because the mutual coupling in both arrays decreases with increasing frequency [72]. The difference between the calculated and measured data is probably due to the finite size of the ground plane. The mutual-coupling level is in both arrays lower than -19 dB over a large

Aray	$h_{2}=z_{1}^{\prime}(\mathrm{mm})$	$y_{r}(\mathrm{~mm})$	ε_{v}	$\tan \theta^{\prime}$	$W_{11}(\mathrm{~mm})$	$x_{x}(\mathrm{~mm})$	$d(\mathrm{~mm})$
6	661	6.36	2.33	0.0012	11.5	4.6	32

Table 4 6: Dimension. of microstrip array 6, with $: / \mathrm{s}=0 W_{s i}=W_{p 1} d_{,}:=i_{n}$ it -0635 mm and $b=2.1 \mathrm{~mm}$
frequency band Compared with the single-layer microstrip array of table 43 , the decrease of

Figure 4.31 E-plane coupling in a inear 7×1 aray of EMC nic mostrip clements (array 6).
mutual coupling in figure 4.3 with respect to the distance between the clements in the E-plane is much emaller I his is a direct tesult of the fact that more input power is going into surtace wave in case of an electrically thick microstrup configuration Figure 4.33 show, the centre-element reflecton codificient for vartou array sizes, when the man beam of the array st drected to broadside $\left(\theta_{0}=\phi_{0}=0^{\circ}\right.$). The infinte-array calculatons were done with the ninnite-atray model presented in [74] This nimate-array model is based on the model described in this thess so, the magnetic frill in the coaxial opening is used as at source, the uriknown curtent on the coaxal probe th a unit cell is expanded in rooftop basis functions, and the currents on the patches are written in terms of enture-doman smusodal basis functions. In case of an intinute atray, the dealable relative bandw idth is reduced to approximately 23%

Figure 432 H-plane coupling in a linear 1×7 array of EMC microstrip elements (array 6)

Figure 4.33: Centre-element reflection coefficient at broadside $\left(\theta_{0}=\phi_{0}=0^{\circ}\right.$) of array configuration 6 for various array sizes, with $5 \leq f<7.75 \mathrm{GHz}$ and $\Delta f=025 \mathrm{GHz}$.

4.8.6 Far-field pattern of a finite microstrip array

In thes sectron two different approaches are discussed to determine the far-field pattem of an array of microstrip antennas. These two approaches are:
i An approach which includes mutual coupling and edge effects. The current distribution on all array elements is calculated and used to determine the radiation pattern of the array.
ii An approach which neglects mutual coupling The current dstribution and the corresponding element pattern of an isolated microstrip antenna are determined. The element pattern is multiplied with the array factor (=radiation pattern of an array of identical, tsotropic radutors) in order to calculate the radiation pattern of the arraly.

In approach ii), on each array element the same current distribution is used in order to determine the radiation pattern. In approach i) a different current distribution is used for cach array clement. This is therefore the most rigorous and accurate way to detcrmine the radiation characteristics of finte microstnp arrays. A thurd approach is discussed in [70], where a periodn-aray method (infintearray approach) was mestigated and compared with the results obtained from the approaches 1) and 11). As an example, the radation pattern of the single-kayer merostrip configuration of table 43 will be investigated The antenna is fabricated on a substrate with $\varepsilon_{r}=233$. In figure 434 the E-plane ($\beta-0^{\prime \prime}$) radation pattern is plotted when scannong the array at broadside $\left(\theta_{0}-0^{\circ}: \phi_{0}=0^{\prime}\right.$, calculated with approach i) and ii) The array consiste of 11×11 clements. A uniform amplitude taper was used The influcnec of mutual coupling on the radiation

Higure 434 Radiation puttern of a 11×11 microstriparray scanned al broadside $1 \theta_{n}=0^{0}$, 0_{1} 0^{9}), with dimensions of array 3 and $f=54 \mathrm{GHz}$
characteristics of a microstrip array is far less than the onlluence of mutual coupling on the active refection cocficient 'Therefore, during the design of a microstrip array, the attention has to be focussed on the optimnsation of the active reffection coefficient of cach array tement. The radiation pattern of the array can be optimised by chosing a proper amplitude and phase taper. In figure 4.35 the E-plane pattern of the 11×11 array is shown when the main beam of the antenna
is scanned to the angle ($\theta_{0}=-30^{\circ}, \phi_{0}=0^{\circ}$). Again, the array is illumunted with a uniform amplitude taper

Figure 4.35: Radiation pattern of a $11 \times 1 \mathrm{t}$ microstrip array scanned at $\left(\theta_{0}=-30^{\circ}, \phi_{0}=0^{\circ}\right)$, with dimensions of array 3 and $f=54 \mathrm{GHz}$.

4.8.7 Circular polarisation

In section 4.6 of this thesis three rincrostrip configurations have been presented that gencrate a circularly polarised far-ficld pattern. Each configuration will be discussed in more detail in this section. A circularly polarised stacked microstrip antenna, fed by two coaxial probes with a phase difference of 90° (see configuration a of figure 4 6), was designed and built. The dimensions of this antenna are shown in table 4.7. In figure 436 the calculated and measured scattering coefficients

Ant	$z_{1}^{\prime}(\mathrm{mm})$	$\mu_{2}=z_{2}^{\prime}(\mathrm{mm})$	ε_{v}	$\tan \phi$	$W_{n 1}(\mathrm{~mm})$	$W_{x 2}(\mathrm{~mm})$	$z_{s}(\mathrm{~mm})$
16	3.04	6.08	2.94	0.0012	25.3	25	8.5

Table 4.7: Dimensions of circularly polarised microstrip antenna 16 with $W_{i t 1}=W_{y 1}, W_{w 2}=$ $W_{y 2,} a=0635 \mathrm{~mm}$ and $b=21 \mathrm{~mm}$
S_{11} and S_{12} are ploted versus frequency The agreement between theory and experiment turns out to be quite good. The coupling between both input ports is lower than -19.5 dB in the trequency band of interest The predicted and measured axial ratio of this antenna in the E-plane ($\phi=0$)

Figure 436 Meaxured and calculated S_{11} and S_{12} of the corcularly polarised mic mostrip antenna 16 fed with 2 coaxial cabies
can be found in figure 437 , wilh $!=31 \mathrm{GHz}$ Measurenents were made in the Compact Antenna Test Range at EUT. Note that the axial ratio for $\theta=0^{\circ}$ is not equal to scro, due to the asymmetric onentation of the two coaxial cables. The axial ratio of this anlenna can be improved if 4 coaxial cables are used to feed the antenna [6] The dimensions of the ground plane on which the antenna was built is length \times height $=31 \mathrm{~cm} \times 46 \mathrm{~cm}$ Ihe asymmetncal ground plane is probably one of the causes of the difference between the measured and calculated axial ratoo Next. a 2×2 subarray was investigated with a sequentially rotated orjentation of the patches (configuration of figure 4.6 b). Circular polarisation is obtaned with 4 linearly polarised elements The dimensions of the subarray are given in table 4.8. The predeced coupling coefficients between

 and $b=21 \mathrm{~mm}$.
the 4 mput ports are plotted in figure 438 . Figure 439 shows a plot of the axal rato of thas

Figure 4 37. Measured and calculated axial ratio of the circularly polarised microstrip antenna 16 fed with 2 coaxial cables and with $f=3.1 \mathrm{GHz}$

Figurc 4.38 Calculated coupling coefficients in a 2×2 subarray with sequentially rotated linearly polarised microstrip elements (array 7)
subarray in the E-plane, in the diagonal plane and in the H-plane. Nole that the scan angle $\partial_{0}=\phi_{0}=0^{0}$. The E-and H -plane patterns are cxactly the same Due to the symmetry of this sequentially rotated configuration, the axial ratio for $\theta=0^{0}$ is equal to 0 dB .
The axtal rato can be improved somewhat if circularly polarised elements are used in the subarray. This corresponds to the configuration shown in figure $47 \mathrm{~A} .2 \times 2$ array was constructed [70] on

Figure 4.39 Calculated axial ratio of a 2×2 subarray with sequentially rotatedincarly poiarised microstrip elements (array 7), with $f=154 \mathrm{GHz}$

Rexolite 1422 substrate with $E=253$ The remaining array dimensons are the same as those of array 7 The feeding network of this subarray was mounted on the backside of the ground plane, with Wilkinson sphtters serving as power dividers Figure 440 and 4.41 show the measured co-polarisation level and the corresponding axial ratio in the Enplane ($\phi=0^{\prime \prime}$), compared with calculations The measurements were made an the Compact Antenna Test Range at EUT The predicted axtal rato for $\theta-0^{0}$ in equal to 0 dB , which is due to the symmetry in the 2×2 array

4.8.8 Dual-frequency circularly polarised microstrip subarray

In section 3.95 a dual-frequency, dual-polansation, microstrip antenna was presented When such an clement is placed in a 2×2 ヶubarray with sequentially rotatedelements, a dual-frequericy circularly polarised subarray can be constructed. Figure 4.42 shows this configuration along with the phasing of the ioput ports. The main beam is directed to broadside, $1 . e, t_{0} \cdots, \phi^{10}$ Antenna 14 (table 36) was used to construct a 2×2 subaray with an elemen spacing of $d_{v}=35$ $\mathrm{mm}\left(\approx 07 \lambda_{0}\right.$ for $f=6 \mathrm{GHz}$). Figure 4.43 shows the coupling coefficents between input port 1 and the other ports for low-frequency operation (a-ports). Figure 443 shows the corresponding coupling coefficients at the higher frequency bend (b-ports) Finally, in figure 4.45 the prodicted axial ratio in the E-plane is ploted for $f=4 \mathrm{GHz}$ and $f=6 \mathrm{GH} \angle$ The axal ratio for $f=4 \mathrm{GH} 7$ 14 lower than the axial ratio for $f-6 \mathrm{GHL} z$ The dualfrequency circularly polanted subarray is an interesting concept that can be used in future mobile satellite communication [22].

Figure 4.40- Measured and calculated co-polarisation level ($\phi=0^{\circ}$) of the 2×2 subarray with sequentially rotated circularly polarised microstrip elements. $f=15 \mathrm{GHz}$

Figure 4.41 Measured and calculated axiol ratio of a 2×2 subarray with sequentially rotated circularly polarised microstrip elements, $f=1.5 \mathrm{GHz}$

Figure 442: Dual-frequency circularly polarised 2×2 subarray with sequentially rotated elements.

Figure 443: Calculated couping coeffuients in a dial-frequenty circularly polarised 2×2 subarray low-frequency operation (a ports).

Figure 444 Calculated coupling coefficients in a dual-frequency circularly polarised 2×2 subarray, high frequency operation (b-ports)

Figure 445 Calculated axial ratio in the E-plane of a dual-frequency circularly polarised 2×2 subarray

4.9 Finite array of monopoles embedded in a grounded dielectric slab

A finite aray of monopoles cmbedded in a delectric slab is studied ' using a ngorous yet efficient spectral-domain moment method Computed input impedance data are compared with data from an infinite-array analysis Significant differences are observed, even for relatively large arrays.

Introduction

In this section a mothod is presented for the analysit of finite two-dimensional araty of vertical monopoles embedded in a grounded delectric slab. The radiation pattern of such in array has a null at broadside Previously, this type of arrays has been inveatigated by Pocill [58], who analysed an infinite array of monopoles. Fenn [23] studied a dinte array of monopoles in free space We have investigated finite arrays of monopoles embedded in a dielectric blab by using a spectral-doman moment method. A sophisticated magnetuc-irill source model is used m order to account for the fecding coaxial cables. Both Pozar [58] and Fenn [23] use a more simple and less accurate source model.

Theory

In figure 446 the geometry of a finte two-dimensional aray of monopote cmbedded in a grounded diclectric slab is shown. The length of a monopole is d
An antenna element is represented by a cylinder with radus a and with perfectly conducting walls. It is assumed that the z-directed surface current on this cylinder only depends on the *-coordinate "The fields correspondmg to the TEM-mode in the coaxial aperture act as a source The electric field in the coaxial aperture of antenat element l then takes the form $[32,67]$:

$$
\begin{equation*}
\vec{E}_{\mathrm{T}}^{\prime}(\vec{r})=\frac{V_{1}^{p}}{q \ln (b / a)} \overrightarrow{\mathrm{r}}_{\mathrm{r},}^{\prime} \quad a<\leq \leq b \tag{434}
\end{equation*}
$$

where V_{i}^{b} represents the impressed port voltage at monopole 1 (=port 1) The unknown currents on the antenna elements, can be found by applying the well known method of moments The problem is formulated in the spectral domain, ie all quantitus are transformed according to $\{x, y\} \rightarrow\left\{h_{x}, h_{v}\right\}$ Ths finally results in the matrix equation:

$$
\begin{equation*}
[Z][I],\left[V^{n r}\right]\left[V^{v}\right]-[0] \tag{435}
\end{equation*}
$$

[^0]

Figure 446: Geometry of a finite array of vertical monopoles embedded in a grounded dielectric slab
with

$$
Q_{x_{2}}^{E}\left(\beta, z, z_{0}\right)=\frac{j+\mu \mu_{0}}{s_{\mathrm{r}} k_{0}^{2}} \phi\left(z-z_{0}\right)
$$

$$
-\frac{j_{1} \mu_{n} j^{2}}{\varepsilon_{r} k_{1} T_{m}} \begin{cases}\cos \left(k_{1} z_{0}\right)\left[\varepsilon_{r} k_{2} \sin k_{1}(d-z)-j k_{1} \cos k_{1}(d-z)\right] & z_{0} \leq z \\ \cos \left(k_{1} z\right)\left[\varepsilon_{1} k_{2} \sin k_{1}\left(d-z_{0}\right)-j k_{1} \cos k_{1}\left(d-z_{0}\right)\right] & z_{0} \geq z_{1}\end{cases}
$$

$$
\begin{aligned}
& Z_{2 m i n}=2 \pi \int_{0}^{\infty} R_{0}^{2} \sigma J_{0}\left(k_{0} \beta R_{y^{i}}\right) J_{0}^{2}\left(k_{0} \theta a\right) . \\
& \int_{x}\left[\int_{t_{0}} Q_{z \Sigma}^{E}\left(\theta, z, z_{0}\right) q_{m}\left(z_{0}\right) d z_{0}\right] g_{j m}(z) d z d \beta_{,} \\
& V_{j \pi i}^{\prime x}=-\frac{4 \pi^{2} k_{0}^{2}}{\ln (h / a)} \int_{0}^{\infty} \frac{\beta}{k_{1} T_{T n}} J_{0}\left(k_{0} \beta R_{y_{2}}\right) J_{0}\left(k_{0} \beta a\right)\left[J_{0}\left(k_{0} \beta b\right)-J_{0}\left(k_{0} \beta a\right)\right] . \\
& \int_{z_{0}} g_{y^{m}}\left(z_{0}\right)\left[\varepsilon_{r} k_{2} \sin k_{1}\left(d-z_{0}\right)-2 k_{1} \cos k_{1}\left(d-z_{0}\right)\right] d z_{0} d / \sigma_{1},
\end{aligned}
$$

$$
\begin{aligned}
& T_{r_{2}}=k_{2} r_{r} \cos k_{1} d+j k_{1} \sin k_{1} d \\
& k_{1}^{2}=e_{i} k_{0}^{2}-k_{\pi}^{2}-k_{z}^{2}, \\
& k_{2}^{2}=k_{0}^{2}-k_{i}^{2} k_{v^{\prime}}^{2} \\
& k_{0}^{2} ; j^{2}=\hbar_{i x}^{2}+\dot{k}_{y}^{2} \quad k_{0}^{2}=\omega^{2} \varepsilon_{0} \mu_{0} .
\end{aligned}
$$

R_{g} is the distance between monopole ρ and $3 . g_{y m}(z)$ represents the z-dependent part of the πr-th basis function on monopole y. Subdomain rooftop basis functions are used. The two integrations over z can be performed analytically for this lype of basis function. The mode coefficients $\mid I\}$ are found by solving equation (4.35) The man disadvantage of the spectral-domain moment method for the analysis of finite arrays is the long computation time needed to cvaluate the elements of $[7]$ and $[V=x]$, especially when the distance between monopole $]$ and ? is large. This problem is manly duc to the numencal evaluation of infinite integrals over slowly decayng and strongly oscillatung functions fortunately, we have found a way to rewrite these infinite integralh as a sum of a closed-form expression and a relatively fast converging integral In Smolders [72] thas approach was used for the analysis of mocrostrip patch antennas. By using this analytucal method, the computation time can be reduced significantly. Once the elements of $[Z]$ and $|\sqrt{* S}|$ are known, the port admattance matrix $\left.\mid Y^{\prime p}\right]$ can easily be calculated. An element of the port admitance mattix is given by

$$
\begin{equation*}
Y_{i}-\frac{I_{j}^{\prime \prime}}{V_{i}^{n}}, \quad \text { with } V_{v}^{*}=0 \text { for } i<t \tag{436}
\end{equation*}
$$

where I_{j}^{p} is the current at the base of monopole y and is calculated with (4.36), $V_{i}^{\prime \mu}$ in the impressed port voltage at monopole 4 . Once the port admittance matrix is known, the scatterng matrix $|S|$ and the actrve reflection coefficient can be determuned Note that with the infinute-atraty approach of [58], the scattering matrix cannot be calculated.

Results

We have checked our method and computer program with the results obtained by Fenn [23], who analysed finite arrays of monopoles in free pace ($\varepsilon_{r}=1$) The agreement between our calculations and the measurements of Fenn [23] is excellent Next we considered the array
 mim and $\phi_{0}-45^{\circ}$. Pozar [58] medsured the input impednce wing a wavegude smulator
in the TM_{11} mode, with $\theta_{0}=\arcsin \left[\lambda /\left(\sqrt{2} d_{n}\right)\right]$. In figure 4.47 the calculated centre-element reflection coefficent against frequency for this configuration is shown for three array sizes. The characteristic impedance is 50Ω. Note that the reflection coefficient of the centre element can become larger than 1 for a finite array.
A significant difference can be observed between the calculated reflection coefficient of figure 4.47 and the results obtanned by Pozar ([58], fig. 4) using an infinite-array approach, even for relatively large arrays. In figure 4.48 , the corresponding calculated coupling coefficients between the centre element and the elements of row 5 (see fig 4.46) of a 9×9 array are given

Conclusion

A rigorous yet efficient method is presented for the analysis of a finite array of monopoles embedded in a dielectnc slab. Significant differences in calculated input impedance data between our finite-array method and the infinite-array approach of Pozar [58] arc observed, even for relatively large arrays

Figure 4 47: Caiculated centre-element veflection coeffrent magnitude versus frequency for three finite arrays of monopole s embedded in a dielectric slab

Higure 4.48 Coupling cocffciont of centre element and the elementr of row 5 in a 9×9 artay of monopoles embedded in a dielectric siab $f=4 \mathrm{GHz}$

Chapter 5

Summary and conclusions

Microstrip antentias and morostrip phasedearray antennas have several practical features, including light weight, conformability and low production costs, which make them interesting candidates for several (future) telecommunication applications and radar systems. Accurate theor retical models and corresponding software are critical, since experimental design approaches are usually too time-consuming and expensive. In this thessa an accurate theoretical model is developed for both isolated microstrip elements as well as finite arrays of microstrip antennas. Most applications require a large bandwidth. We have developed our model such that electrically thick, and therefore broadband, microstrip configutations can be analysed. The current distribution on a morostrip array antenna s found by solving the integral equation for the currents with the method of moments. The method of moments transforms an integral equation into a matrix equation by cxpanding the unknown current distnbution on the anterma into a set of basis functions and by werghting the integral equation with a get of testing functions. The resulting matrix equation can be solved with standard numencal techniques. The electromagnetuc field which appears in the integral equation is writen in terms of the spectral-domain dyadie Green's function of the layered medumin on which the microstrip antenna is fabricated. In this way, mutual coupling between array clements and surface-wave effects are accounted for in a rigorous manner

In chopter 2, the exact spectral-doman dyadic Green's function ws determined for the point-source problem for a grounded three-layer medium. Vertical as well as horizontal electric dipoles are investigated. First, the magnetic vector potential is calculated. The general solution in cach of the three regions is written ats a sum of an upgoing wave and a downgoing wave. The amplitudes of these waves can be found by applying the boundary conditions at the interfaces between the layers Once the magnetic vector potential is known, the elcctric field and the magnetic field in each region can be determined

Chapter 3 deals with the analysis of molated linearly polarised microstrip antennas. The antenna is constructed on a grounded two-layer substrate, and has one or two (stacked configuration) rectangular metallic patches The antenna is led with a coaxtal cable ithe current distribution on the patches and on the coaxial cable m determined by applying a Galerkin-type method-ofmoments procedure The cicctromagnetic fields are expressed in terms of the spectral-doman dyadic Green's functions of chapter 2 . Once the current distribution on the antenna is known, the input impedance and the radation pattorn can be determined. A sophistucated model for the fecding coaxial cable is used, which accounts for the vatiation of the current along the coxial probe, and ensures continuity of the current at the patch-probe transtion. In this way electrically thick microstrip antennas can be analysed. The current distribution on the coaxial probe 1 s expanded into subdomain rooftop basis functions. On the patches, teveral typer of basis functions have been investigated It is shown that by choosing a proper ect of entire-domam basis functions, only a few of such functions are needed in the analy sis to obtain accurate results. Sorne analytical and numerical techniques to mprove the numencal accuracy and to reduce the required CPU tume have been discussed One of these technques is the asymptotic-form extraction technique presented in section 3.8 It in shown that the integration over the extracted part can be evaluated in closed forms. This analytical technique reduces the required CPU time by a factor 20 or more The theorctical model and the corresponding software were validated by comparing calculated results with measured data from several experiments in all cases considered good agreement between theory and experiment was obtaned, for electrically then as well as electrically thack substrates, In addition, the bandwidth of several microstrip configurations wath invesugated With single layer mictostrip antennas a relative bandwidth upto 15% can be realised. whereas with a multilayer conifguration a relative bandwidth of 25% can be obtaned The largest bandwadrh was acheved with a new concept, namely the ElectroMagnetically Coupled (EMC) microstrip) antenna We have achicved a (measured and calculated) relative bandwidh of approximately 50% with an EMC microstrip antenna A dual-frequency dual-polarsation microstrip anternd can be obtaned if two coaxial cables are used to feed a rectangular patch

In chapter 4, the model of chapter 3 is extended to the case of a finite array of lincurly or circularly polarised microstrip antennas. Mutual coupling and surlace waves are ngorous accounted tor in the model. In general, there are two ways to analyse microstrep arrays with a rnethod-of-moments procedure (1) element-by-clement approach (finite-atraty approach) and (2) mfinite-array approach However, elements near the edge of an arraty or clement in small drays can only be properly analysed with an element-by-element approach In this thesis we have therefore used the element-by-element dpproach The requred CPU tume can be teduced by usne the analytucal and numerical technoques of chapter 3 In thes way, arrays with hundred element* or more can be analysed within acceptable CPU times Several designs of fimte mocrostrip arrays
are discussed in chapter 4. Calculated mutua-coupling coefficients are compared with measured data The measurements showed good agreement with theoretically predicted results. The effect of mutual coupling on the active reffection coeflicient of each array clement and the influence on the radiation pattern were mestigated for varrous array sizes. The active reflection coefficient is strongly affected by mutual coupling whereas mutual coupling has only a minor effect on the radiation pattem of the total array. One of the configurations which 1 s investigated in chapter 4 is a two-layer stacked microstrip array of which the lower layer is made of a high-permittivity material. If this configuration is used to construct an isolated microstrip antenna, a rclative bandwidth of approximately 23% can be obtained. However, in an array environment the avalable bandwidth of this configuration is reduced significantly, especially at large scan angles. At broadside, the avalable relative bandwidth in a 7×7 array is still 18%, but when the main beam of the array is scanned to an angle of 60 degrecs the available bandwidth is reduced to 3.5%. Another 7×7 aray configuration, constructed on a singlc substrate layer, showed an improvement of the available bandwidth compared with the bandwidth of an isolated microstrip antenna. This is a positive cffect of mutual coupling. It is therefore concluded that an optimal finite microstrip phased-array antenna can only be designed when mutual coupling is included in the analysis.
Some methods to obtain a circularly polarised far field with a microstrep antenna or with a subaray of microstrip antennas are discussed It is shown that mutual coupling between the input ports detenorates the axial ratio. A new dual-frequency circularly polarised 2×2 subarray 1 s presented with a bandwidth of a few percent around both resonant frequencies (4 GHz and 6 GHz).

Appendix A

Expressions for the elements of $[Z]$

In this appendix the expressions for the elements of the method-of-moments matrix $[Z]$ are given for the case of an array of stacked microstrip antennas fed by coaxial cables. If the antay indices j and z are both equal to 1 , we obtan the expressions for a single, isolated, stacked microstrip antenna, with $S_{x y i}=S_{y, j}=0$ The general structure of the symmetric matrix $[Z]$ is given by (3 17) and (4 11) for the casc of an ssolated microstrip antenna and for the case of an array of morostrip antennas, respectively. The matrix [$Z]$ has a Toeplitz-type symmetry (see section 4.7), so only a limuted number of elements need to be evaluated It is assumed that all patches are located in layer 2 and that the length of the coaxial probes is not longer than the height of the first diclectric layer (see figure 3 . I) , so $z_{1}^{\prime}=h_{1}$ Extension to the more general case with $z_{1}^{\prime} \geq h_{1}$ is straghtforward.
The clements of $[Z]$ can be calculated from (3.19) and (3.20) or from (4.13), depending on whether an isolated microstrip antenna or an aray of microstrip antennas is considered The electric-field dyadic Green's function $\overline{\bar{Q}}_{\nu}^{E}$ that appears in these expressions is given in chapter 2 by (2.59). All intcgrations over z and z_{0} can be carricd out analytically. Furthermore, a change to cylindrical coordinates is introduced with

$$
\begin{align*}
& k_{T}=k_{0} j \cos \alpha, \\
& k_{y}=k_{0} \beta \sin \alpha, \tag{A,I}\\
& \text { with } 0 \leq \beta \leq \infty \text { and }-\pi \leq a \leq \pi
\end{align*}
$$

The absolute distance between the centres of two array elements is cqual to R_{17}, with $R_{y t}=$ $\sqrt{S_{n y z}^{2}+S_{b j}^{2}}$ So if only isolated microstrip antennas are considered $\left(j=1=1\right.$), we have $R_{y}=$ 0 Note that j and \imath are armay-element counters with $\jmath=1,2, \quad, K \times I$ and $:=1,2, \quad K \times I$
(sce figure 4.3). After some algebrac manipulations, we obtain the following expressions for the elements of the matrix $|Z|$

Elements of the submatrox [$Z^{u u}$]

$$
\begin{align*}
& Z_{j i}^{\infty}-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{x_{1}} \int_{1}^{x_{1}}\left[Q_{1}^{E}\left(k_{i}, k_{k}, z_{i}, z_{0}\right) \quad \vec{J}_{1}\left(k_{x}, k_{y}, z_{0}\right)\right] d i_{0} \\
& \vec{j}_{1}^{2 \psi}\left(k_{x}, k_{y}, z\right) d z e^{-k_{x} S_{n y} e^{-j k_{y}} s_{y y i} d k_{x} d k_{y}} \\
& =2 \pi \int_{0}^{m ;}\left\{\frac{-j \omega / \mu_{1}}{\varepsilon_{r 2}} G_{p,}^{2}\left|j b^{2} \partial_{2} g_{4}+g_{2}\left(\varepsilon_{r 2} \quad b^{2}\right)\right|_{2-s_{0}-h_{1}}\right. \tag{A.2}
\end{align*}
$$

$$
\begin{aligned}
& J_{0}\left(h_{0} / / R_{j}\right) k_{0}^{2} \beta d D
\end{aligned}
$$

for $z_{1}^{\prime}=h_{1}$, with

$$
\begin{aligned}
& \left(-\frac{h \cos \left[k_{1}\left(h_{1}-h_{1 / 2}\right)\right]}{k_{1}}+\sin \left(k_{1} h / 2\right) \cos \left[k_{1}\left(h_{1}-h / 2\right)\right]\right. \\
& \left.1 \frac{h_{1} \cos \left(k_{1} h_{1}\right)}{2 h_{1}}+\frac{h^{2} \sin \left(h_{1} h_{1}\right)}{4}\right) \\
& -j k_{1}\left(k_{2} \varepsilon_{r 2} \cos \left(k_{2} t_{2}\right)+j k_{9} \varepsilon_{r 2}^{2} \sin \left(k_{2} d_{2}\right)\right)\left(-\frac{2 \cos \left(k_{1}\left(h_{1}-h_{1} / 2\right)\right)}{k_{1}^{2}}\right) \\
& \left.\left.+\frac{\cos \left(k_{1} h_{1} / 2\right) \cos \left[k_{1}\left(h_{1}-h_{/ 2}\right)\right]}{k_{1}^{2}}+\frac{h_{1} \sin \left(h_{1} h_{1}\right)}{2 h_{1}}+\frac{\cos \left(i_{1} h_{1}\right)}{h_{1}^{2}}\right)\right\},
\end{aligned}
$$

where G_{p} is defined by

$$
G_{m, i}=\hat{k}_{0} \beta\left[\begin{array}{cc}
2 J_{1}\left(b_{0} j b_{n}\right) \tag{A3}\\
b_{3} k_{0} \beta & J_{0}\left(i_{0} \beta a\right)
\end{array}\right]
$$

and where h is the height of a subdoman on the probe (see figure 3 .8).

In the derivation of (A.2) the following relation was used

$$
\begin{equation*}
\int_{\pi}^{\pi} e^{2 k_{10} \beta R_{j 3} \sin \alpha} d \alpha=2 \int_{0}^{\pi} \cos \left(k_{0} \beta R_{j_{2}} \sin \alpha\right) d \alpha=2 \pi J_{0}\left(k_{0} \beta R_{j i}\right) \tag{A.4}
\end{equation*}
$$

Elements of the submatrix $\quad Z^{f a}$

$$
\begin{align*}
& z_{j+n, 2}^{f_{a}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{x_{1}} \int_{0}^{z_{1}^{\prime}}\left[\bar{Q}_{1}^{E}\left(k_{x}, k_{2}, z, z_{0}\right) \cdot \vec{J}_{1}^{u}\left(k_{x}, k_{y}, z_{0}\right)\right] d z_{0} \\
& \vec{J}_{1 m i}^{F}\left(k_{x}, k_{y}, z\right) d z e^{-j k_{w} S_{x j i} e^{-j k_{y}} S_{y i} d k_{x} d k_{y}} \tag{A.5}\\
& =2 \pi \int_{0}^{\infty} J_{0}\left(k_{0} \beta R_{r t}\right) J_{0}\left(k_{0} \beta a\right)\left(I_{s q}^{f a p}(\beta)+I_{m}^{f u f}(\beta) J_{0}\left(k_{0} \beta a\right)\right) k_{0}^{2} B d B,
\end{align*}
$$

with $m=1,2, \quad, N_{z}$ and with

$$
\begin{align*}
I_{\mathrm{rn}}^{f a p}(B)= & \frac{\jmath \mu \mu_{0} \beta k_{2}}{h_{0} T_{\mathrm{nn}}}\left[\varepsilon_{r_{2}} k_{3} \cos \left(k_{2} d_{2}\right)+\rho k_{2} \sin \left(k_{2} d_{2}\right)\right] G_{p \hat{a}} \tag{A.6}\\
& \frac{2}{h k_{1}^{2}}\left[2 \cos \left(k_{1} z_{k_{k}}\right)-\cos \left(k_{1} z_{\mathrm{m}+1}\right)-\cos \left(k_{1} z_{n \mathrm{n}-1}\right)\right],
\end{align*}
$$

and for $m \leq N_{s}-1$

$$
\begin{align*}
& T_{r n}^{f a f}(\beta)=\frac{-2 \jmath \omega / \mu_{0} \beta^{2}}{k_{r 1} h^{2} k_{1}^{4} T_{m}}\left\{\varepsilon_{r 1} k_{2}\left(k_{3} \varepsilon_{r 2} \cos \left(k_{2} d_{2}\right)+\rho k_{2} \sin \left(k_{2} d_{2}\right)\right)\left[h-\frac{2 \sin \left(k_{1} h_{1} / 2\right)}{k_{1}}\right]\right. \\
& \quad+j k_{1}\left(k_{2} \varepsilon_{m 2} \cos \left(k_{2} d_{2}\right)+j k_{3} \varepsilon_{r 2}^{2} \sin \left(k_{2} d_{2}\right)\left[-\frac{2}{k_{1}}+\frac{2 \cos \left(k_{1} h / 2\right)}{k_{1}}\right]\right\} \tag{1}\\
& \quad\left[2 \cos \left(k_{1} z_{m}\right)-\cos \left(k_{1} z_{m+1}\right)-\cos \left(k_{1} z_{m_{m}-1}\right)\right]
\end{align*}
$$

and for $m_{2}=N_{z}$ (overlap belween feed mode m and the attachment mode)

$$
\begin{align*}
& \left(r_{1} h_{2}\left(h_{2} k_{2} \cos \left(k_{2} d\right)+k_{2} \sin \left(k_{2} d_{2}\right)\right)\right. \\
& \left(2 \cos \left[h_{1}\left(z_{1}^{\prime}-h\right)\right] \sin \left(h_{1} h / 2\right) \quad 4 \cos \left[h_{1}\left(z_{1}^{\prime}-h_{1}\right)\right] \sin \left(k_{1} h_{h} / 2\right)\right. \\
& \left.-h_{1} h \cos \left(k_{1}\left(\alpha_{1}-h_{1}\right)\right]+2 k_{1} h \cos \left[k_{1}\left(z_{1}^{\prime}-h / 2\right)\right]\right) \tag{A8}\\
& -k_{1}\left(k_{2} \varepsilon_{2} \cos \left(k_{2} d_{2}\right)+k_{3} \varepsilon_{r 2}^{2} \sin \left(k_{2} d_{2}\right)\right)\left(-2 \cos \left(k_{1} z_{1}\right)\right. \\
& +2 \cos \left[h_{1}\left(z_{1}-h_{j}\right)\right] \cos \left(h_{1} h_{/ 2}\right)-4 \cos \left|h_{1}\left(z_{1}-h_{h} / 2\right)\right| \cos \left(h_{1} h_{1} / 2\right) \\
& \left.\left.\left.-h_{1} h \sin \left(h_{1} z_{1}\right)-2 \cos \left[h_{1}\left(z_{1}-h\right)\right]+6 \cos \left[h_{1}\left(z_{1}-h / 2\right)\right]\right)\right]\right\} .
\end{align*}
$$

 i (see sechon 34.2) If $m-1$ and $N_{s}>1$ then $z_{\text {ri }}$ and $z_{: ~}$, should be made cero m (A 6) and in (A 7), and $z_{n+1}-1 / 2$ Il ri: $-N_{z}-1$ then $z_{1}^{\prime}-h$ and $z_{1}-1 / 2$ should be set to zero in the (A 8).

Elcments of the vibmatrix [Z/f]
Note that $\left[7^{\prime f}\right]$ is ia symmetrical matrix More information about the notation can be found in figure 38

$$
\begin{align*}
& -2 \pi \int_{0}^{\infty} J_{0}\left(k_{\omega} \beta R_{\Delta i}\right) J_{0}^{2}\left(\alpha_{v} \beta \alpha h_{0}^{2} \beta I_{m \pi}^{J J}(B) d \Omega,\right. \tag{A9}
\end{align*}
$$

with $m=1,2, \quad, N_{z}$ and $n-1,2, \quad, N_{z}$ and where $I_{m} / \lambda(h)$ depends on m and n If $m-r$,
then $I_{m} f_{n}(\beta)$ is given by

$$
\begin{align*}
& I_{m m}^{f j}=\frac{\mu \psi \mu_{0}}{\varepsilon_{r 1}}\left\{\left(-\frac{h \varepsilon_{r l}}{3 k_{0}^{2}\left(\beta^{2}-\varepsilon_{r 1}\right)}+\frac{4 \beta^{2}}{h k_{1}^{4}}\right) \epsilon_{m}\right. \\
& -\frac{4 \beta^{2}}{h^{2} k_{1}^{5} T_{\mathrm{m}}}\left[\varepsilon_{\mathrm{r} 1} k_{2}\left(k_{3} E_{\mathrm{r} 2} \cos \left(k_{2} d_{2}\right)+j k_{2} \sin \left(k_{2} d_{2}\right)\right) \times\right. \\
& \left(\cos \left(k_{1} z_{m-1}\right) \sin \left[k_{1}\left(h_{1}-z_{m-1}\right)\right]-4 \cos \left(k_{1} z_{m-1}\right) \sin \left[k_{1}\left(h_{1}-z_{m}\right)\right]\right. \\
& +2 \cos \left(k_{1} z_{m, 1}\right) \sin \left[k_{1}\left(h_{1}-z_{r m+1}\right)\right]+4 \cos \left(k_{1} z_{m}\right) \sin k_{1}\left(h_{1}-z_{m}\right) \\
& \left.-4 \cos \left(k_{1} z_{m}\right) \sin \left[k_{1}\left(h_{1}-z_{\mathrm{T}+\mathrm{i}}\right)\right]+\cos \left(k_{1 z_{m+1}}\right) \sin \left[k_{1}\left(h_{\mathrm{t}}-z_{\mathrm{m}+1}\right)\right]\right) \tag{A.10}\\
& -j k_{1}\left(k_{2} \varepsilon_{r_{2}} \cos \left(k_{2} d_{2}\right)+\jmath k_{3} \varepsilon_{-2}^{2} \sin \left(k_{2} d_{2}\right)\right) \times \\
& \left(\cos \left(k_{1} z_{m_{1}-1}\right) \cos \left[k_{1}\left(h_{1}-z_{m \cdot 1}\right)\right]-4 \cos \left(k_{1} z_{n-1}\right) \cos \left[k_{1}\left(h_{1}-z_{m}\right)\right]\right. \\
& +2 \cos \left(k_{1} z_{m-1}\right) \cos \left[k_{1}\left(h_{1}-z_{m+1}\right)\right]+4 \cos \left(k_{1} z_{m 2}\right) \cos \left[k_{1}\left(h_{1}-z_{m}\right)\right] \\
& \left.\left.\left.-4 \cos \left(k_{1} z_{n}\right) \cos \left[h_{1}\left(h_{1}-z_{m+1}\right)\right]+\cos \left(k_{1} z_{\mathrm{rw}+1}\right) \cos \left[k_{1}\left(h_{1}-z_{m+1}\right)\right]\right)\right]\right\},
\end{align*}
$$

function m, i c , if $n-m-1$, $I_{\text {rin }}^{j f}$ is given by

$$
\begin{align*}
& \frac{4 \beta^{2}}{h^{2} k_{1}^{5} T_{p 1}}\left[k_{1} k_{2}\left(k_{2} \varepsilon_{r 2} \cos \left(k_{2} t_{2}\right)+9 k_{2} \sin \left(k_{2} d_{2}\right)\right) \times\right. \\
& \left(\cos \left(k_{1} z_{x_{22}}\right) \sin \left[k_{1}\left(h_{1}-z_{r 1}-1\right)\right]-2 \cos \left(k_{1} z_{\pi 1-2}\right) \sin \left[k_{1}\left(h_{1}-z_{m}\right)\right]\right. \\
& \mid \cos \left(k_{1} z_{n-2}\right) \sin \left[k_{1}\left(k_{1}-z_{n_{i}+1}\right) \mid+5 \cos \left(k_{1} z_{\mathrm{m}}\right) \sin \left[k_{1}\left(h_{1} \quad z_{m} i\right]\right.\right. \\
& -2 \cos \left(k_{1} z_{r i-1}\right) \sin \left[k_{1}\left(k_{1}-z_{r 1}-1\right)\right]-2 \cos \left(k_{1} z_{n_{2}-1}\right) \sin \left[k_{1}\left(h_{1}-z_{m+1}\right)\right] \\
& \left.-2 \cos \left(k_{1} z_{\mathrm{m}_{1}}\right) \sin \left[h_{1}\left(h_{1}-z_{\mathrm{m}}\right)\right]+\cos \left(k_{1} z_{m 1}\right) \sin \left[h_{1}\left(h_{1}-z_{\mathrm{m}+1}\right)\right]\right) \tag{A.11}\\
& \mu_{1}\left(k_{2} \varepsilon_{2} \cos \left(k_{2} d_{2}\right)+7 k_{4} \varepsilon_{\mathrm{r} 2}^{2} \sin \left(k_{2}\left(d_{2}\right)\right) \times\right. \\
& \left(\cos \left(k_{1}-m_{m-2}\right) \cos \left|k_{1}\left(h_{1}-z_{m 1-1}\right)\right|-2 \cos \left(k_{1} z_{m} 2\right) \cos \mid k_{1}\left(h_{1} z_{m_{2}} \mid\right]\right. \\
& \left.+\cos \left(k_{1} z_{n-2}\right) \cos \mid k_{1}\left(k_{1}-z_{m+1}\right)\right]+5 \cos \left(k_{1} z_{m-1}\right) \cos \left|k_{1}\left(h_{1}-z_{m}\right)\right| \\
& -2 \cos \left(h_{1} z_{n-1}\right) \cos \left[k_{1}\left(h_{1}-z_{m-1}\right)\right]-2 \cos \left(h_{1} z_{m} 1\right) \cos \left[k_{1}\left(h_{1} \quad z_{m, 11}\right)\right] \\
& \left.\left.-2 \cos \left(k_{1} x_{m}\right) \cos \left[k_{1}\left(h_{1}-z_{r}\right)\right]+\cos \left(k_{1} z_{n}\right) \cos \left[k_{1}\left(h_{4}-z_{r u}+1\right)\right]\right)\right]
\end{align*}
$$

If $m-1=1$, ic. $m=2, z_{m} 2$ and z_{m}, should be set to zero in ($\mathrm{A} \mid \mathrm{l}$) Finally, if the two basis functions do not overlap, i.e if $n<m \cdot 2$, we get

$$
\begin{align*}
& I_{r n}^{L f}--\frac{j \omega / L_{0}}{\varepsilon_{r 1}} \frac{4 g^{2}}{\delta_{1}^{2} K_{1}^{5} 7_{i n}^{1}}\left[2 \cos \left(k_{1} z_{n}\right)-\cos \left(k_{1} z_{n} 1\right)-\cos \left(h_{1}, z_{n+1}\right)\right] \\
& {\left[-r_{1} k_{2}\left(h_{2} r_{2} \cos \left(k_{2} d_{2}\right)+j^{k} \sin \left(h_{2} d_{2}\right) \times\right.\right.} \\
& \left(2 \sin \left[k_{1}\left(h_{1} \cdots z_{\mathrm{m}}\right)\right] \quad \sin \left[k_{1}\left(h_{1} \quad z_{\mathrm{m}-1}\right)\right]-\sin \left[\begin{array}{ll}
h_{1}\left(l_{1}\right. & \left.z_{m}+1\right)
\end{array}\right) \cdot\right. \\
& -\mu k_{1}\left(k_{2} \xi_{r 2} \cos \left(k_{2} d_{2}\right)+J k_{1} \varepsilon_{r_{2}}^{2} \sin \left(k_{2} d_{2}\right)\right) \times \\
& \left(2 \cos \left[h_{1}\left(h_{1} \cdots z_{m_{2}}\right)\right]-\cos \left[k_{1}\left(h_{1}-z_{m} 1\right)\right] \quad \cos \left[k_{1}\left(h_{1}-z_{n+1}\right)\right]\right]_{1} .
\end{align*}
$$

If $n=1, z_{n}$ and z_{n-1} should be made zero in (A 12)

Elements of the submatrix $\underline{\left[Z^{p P}\right]}$

The numbering of the elements of the submatrix $\left[Z^{p P Y}\right]$ is now $m=1,2, \quad, N_{1}+N_{2}$ and $n=1,2, \ldots, N_{1}+N_{2}$. If entire-domain basis functions are used on the patches, we get

$$
\begin{aligned}
& Z_{j m_{i}, n}^{p}=\int_{n=-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\overline{\bar{Q}}_{2}^{E}\left(k_{x}, k_{13}, z_{\pi v}, z_{\pi v}\right) \quad \bar{J}_{1 \pi}^{p}\left(k_{v,}, k_{u}, z_{n n}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& =\int_{0}^{\frac{\alpha}{2}} \int_{0}^{\infty}\left[\bar{Q}_{2}^{b}\left(\beta, \alpha, z_{n 2}, z_{n}\right) \overrightarrow{J_{1}}\left(\beta, \alpha, z_{\pi}\right)\right] \tag{A.13}\\
& \vec{F}_{m}^{*}\left(\beta, \alpha, z_{m}\right) S_{p p}(m, j, \pi, \varepsilon, \beta, \alpha) k_{o}^{2} \beta d \beta d \sigma .
\end{align*}
$$

with

$$
z_{n}= \begin{cases}z_{1}, & \text { if doman } m \text { on lower patch }, \\ z_{2}, & \text { if doman } m \text { on upper patcl },\end{cases}
$$

and where $\vec{J}_{1 m}^{\prime}\left(\beta, \alpha, z_{m}\right)$ is the Fourier transform of the m-th basis function on antenna element 1 (see section 3.4). The function $S_{p p}(m, \eta, n, u, \beta, \alpha)$ is given by

$$
\begin{equation*}
S_{r: w}\left(m, \lambda, n_{1}, B_{1} a\right)=\Psi_{p p}\left(k_{7}, S_{x j i}, m_{p}, \eta_{p}\right) \Psi_{p p}\left(k_{y}, S_{j j i}, m_{4}, \pi_{q}\right), \tag{A.14}
\end{equation*}
$$

with

$$
\Psi_{p p}\left(k_{x}, S_{y_{1},}, n_{k} ; n_{p}\right)= \begin{cases}2 \cos \left(k_{x} S_{x j}\right), & \bmod \left(n_{F}, n_{p}\right)=0 \\ -2 \jmath \sin \left(k_{x} S_{x j}\right), & \bmod \left(m_{F}, n_{p}\right) \neq 0\end{cases}
$$

Note that the combination (m_{p}, m_{9}) corresponds with the m-th basis function and the combination (n_{p}, n_{q}) corresponds with the n-th basis function on one of the patches (sec section 3.4 1) If rooftop subdomain basis functions are used on the patches, we obtain

$$
\begin{equation*}
Z_{j m, n}^{\alpha p} \cdots \int_{0}^{\overline{2}} \int_{0}^{\infty}\left[\overline{Q_{2}}\left(\beta, \alpha_{1} z_{m}, z_{n}\right) \cdot \hat{e}_{m n}\right] S_{p p}\left(m_{2}, j, n, 2, \beta, \alpha\right) k_{0}^{2} \beta d \beta d \alpha \tag{5}
\end{equation*}
$$

where

The Iourier transform of a subdoman rooftop basis function is given by (3 36) and (3 37). $S_{\text {pp }}(m, j, n, 2, G, \alpha)$ therefore takes the form

$$
\begin{aligned}
& S_{p m}(m, n, n, B, 0)
\end{aligned}
$$

$$
\begin{aligned}
& -4 \sin \left(k_{8} \Delta_{x \rightarrow n}\right) \sin \left(k_{4} \Delta_{y} m_{n}\right) \operatorname{sinc}^{7}\left(h_{x} a_{s} / 2\right) \operatorname{sinc}^{7}\left(k_{3} b_{4} / 2\right) \text { : } \\
& \text { basis function } m \text { ridirected, } \pi y \text {-directed, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { basw function } n \text { if-directed, } n x \text {-directed, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bashs function } m \text { and } n \text { both } y \text {-directed, }
\end{aligned}
$$

where $\Delta_{* r i n}$ and $\Delta_{V_{m a n}}$ represent the distance in the α - and the :-direction, respectively, between
the centres of subdomain m on antenna element γ and of subdomain n on antenna element $?$
Elements of the submatrix $\left[Z^{p a}\right]$

$$
\begin{aligned}
& Z_{j m i}^{p_{m}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\pi}\left[Q_{2}^{E}\left(k_{x}, k_{w}, z_{n}, z_{0}\right) \quad \vec{j}_{1}^{a}\left(k_{x}, k_{y}, z_{0}\right)\right] d z_{0}
\end{aligned}
$$

$$
\begin{align*}
& =\omega \mu_{0} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty}\left\{\left.\frac{-\beta G_{m}}{\epsilon_{2}}\left[h_{2}^{2} g_{2}+j k_{0}^{2} \beta^{2} \partial_{2} g_{4}\right]\right|_{x=x_{n 2}, x_{2}=h_{1}}\right. \\
& +\frac{2 k_{0} k_{2} \beta^{2}}{h k_{1} T_{m 2}}\left(\frac{h}{2} \sin \left(k_{1} h_{1}\right)+\frac{\cos \left(k_{1} h_{1}\right)}{k_{1}}-\frac{\cos \left[k_{1}\left(h_{1}-h / 2\right)\right]}{k_{1}}\right) J_{0}\left(k_{0} / \beta a\right) \\
& \left.\left(k_{3} E_{r_{2}} \cos \left[k_{2}\left(k_{2}-z_{\mathrm{T}}\right)\right]+\mu_{2} \sin \left[k_{2}\left(h_{2}-z_{m}\right)\right]\right)\right\} S_{v j}\left(m_{,}, \lambda_{1}, \beta, \sigma\right) d \beta d \alpha,
\end{align*}
$$

with $m=1,2, \ldots, N_{1}+N_{2}$ and with

$$
z_{i n}= \begin{cases}z_{1}, & \text { if domain } m \text { on lower patch } \\ z_{2}, & \text { if domain } m \text { on upper patch }\end{cases}
$$

and where $G_{p: 2}$ is given by (A.3) and the functions g_{2} and g_{4} are given in (2.35). The function $S_{p f}(m, j, i, h, \alpha)$ depends on the type of basis function that is being used. In the case of entiredomain basis functions this functions is given by
for $\%$-directed basis functions,
for i-directed basis functions.
with

$$
\Psi_{m}\left(k_{p}, S_{\mathrm{r} j}, m_{p}\right)= \begin{cases}2 \jmath \sin \left[k_{x}\left(r_{s}-S_{j j i}\right)\right], & \text { if } m_{p} \text { odd } \\ 2 \cos \left[k_{7}\left(s_{s}-S_{x j}\right)\right], & \text { if } m_{p} \text { even }\end{cases}
$$

If subdomain rooftop basis functions are used on the patches, $S_{p f}\left(p_{i}, \lambda, \eta, \beta_{,} a\right)$ takes the form

$$
\begin{align*}
& S_{k r}\left(n, j, 2, \theta_{0} \alpha\right)=4 \gamma \cos c a_{k} b_{s} \operatorname{sinc}\left(k_{x} a_{s} / 2\right) \operatorname{sinc}\left(k_{k} b_{s} / 2\right) \times \tag{A.19}\\
& \quad \sin \left[k_{x}\left(x_{s}-S_{x y^{2}}-x_{k_{m}}\right)\right] \cos \left[k_{y}\left(y_{s}-S_{y / 2}-3 h_{m}+b_{s} / 2\right)\right]^{2}
\end{align*}
$$

for the case of x-directed rooftop basis functions and

$$
\begin{align*}
& S_{n f}\left(m_{1}, h_{1}, \beta, \alpha\right)=4 y \sin \alpha a_{4} b_{9} \operatorname{sinc}\left(k_{7} a_{6} / 2\right) \operatorname{sinc}^{2}\left(k_{y} b_{,} / 2\right) \times \tag{A20}\\
& \cos \left[k_{\mathrm{T}}\left(x_{s}-S_{\mathrm{x}_{2}}-x_{k_{\mathrm{m}}}+a, / 2\right)\right] \sin \left|k_{y}\left(y_{y}-S_{y j \mathrm{r}}-y_{\mathrm{trm}_{2}}\right)\right|,
\end{align*}
$$

for the case of η-directed rooftop bass functions. The x-and ψ-dimensons of a subdomain are denoted by a_{s} and b_{s}, respectively. The coordinates of subdomain m, denoted by $s_{k_{n}}$ and m_{n}, are shown in figure 37.

Elcments of the submarrix $\left\lfloor\left\lfloor^{L^{p}}\right\rfloor\right.$

$$
\begin{align*}
& -\int_{0}^{\pi} \int_{0}^{\infty} \frac{2 \omega_{0} \mu_{0} k_{0} \theta^{2} k_{2}}{h_{i} k_{1}^{2} h_{n}}\left(k_{1} \varepsilon_{2}, \cos \left[h_{2}\left(h_{2}-z_{m}\right)\right\}+h_{2} \sin \left[h_{2}\left(h_{2} \quad z_{m_{2}}\right)\right]\right) J_{0}\left(h_{0} / h_{0}\right) \times \tag{A.2t}\\
& S_{n j}\left(m, j, i, \beta_{i} \alpha\right) \times \begin{cases}{\left[1-\cos \left(k_{1} h_{i} / 2\right)\right] d i j d \alpha,} & n-1, \\
{\left[2 \cos \left(i_{1} z_{n}\right) \cdot \cos \left(h_{1} z_{n}, 1\right)-\cos \left(l_{1} z_{n+1}\right)\right] d / j d \alpha} & n \geq 2,\end{cases}
\end{align*}
$$

with $m_{1}=1,2, \quad, N_{1}+N_{2}$ and where $m=1,2, \quad N_{s}$ and where

$$
z_{m}- \begin{cases}z_{1}, & \text { if domann on on lower patch, } \\ z_{2}, & \text { if domun } m \text { on upper patch }\end{cases}
$$

 and (A 20) (subsectional basis functions).

Appendix B

Expressions for the elements of [$V^{e x}$]

In this appendix the expressions for the clements of the excitation matrix [$V^{e x}$] are given for an array of stacked microstrip antennas, fed by coaxial cables. The final expressions for the case of an isolated microstrip antenna can be obtained by substituting $\}=1=1$ and inserting $S_{1 j:}=S_{y, n}=0$ in the formulas. The gencral structure of $\left[V^{r a m}\right]$ is given by (3.18), if the thicksubstrate model of section 3.2 .3 is used. The matrix $\left\{V^{a x}\right\}$ has a Toeplitz-type of sy mmetry, so not all the elements need to be calculated More detals about this symmetry can be found in section 4. 7. The elements of $\left[V^{n-r}\right]$ can be calculated from (321) or from (4 14). The magnetic-field dyadic Green's function \bar{Q}_{1}^{A} that appears in these expressions is given in chapter 2 by (2.60). The integration over z in the intcgral representation of $V_{m}^{c r}$ can be carried out analytucally Again, a change to cylindrical coordinates (A.1) is introduced. We will also assume that the length of the coaxial probes is not longer than the height of the first diclectric layer, i.e. $z_{F} \leq h_{1}$. The numbering of the array elements is $\jmath=1,2, \ldots, K \times L$ and $u=1,2, \ldots K \times L$ (see figure 4.3). This results in the following expressions for the elements of [Ver)

Elements of the submatrxx $\left[V^{* *}\right.$ a $]$
An element of the submatrix $\left[V^{e x}{ }^{\omega}\right]$ is according to expression (4.14) given by

$$
\begin{align*}
& V_{j i}^{e x u}=-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\int_{n}^{z_{1}^{\prime}} \bar{Q}_{1}^{H}\left(k_{x}, k_{y}, 0, z_{0}\right) \quad \vec{J}_{1}^{a}\left(k_{5}, k_{y}, z_{0}\right) d z_{0}\right] \tag{B1}
\end{align*}
$$

After some algebraic mampulations, one finally gets:

$$
\begin{aligned}
& V_{i=}^{* \alpha}-\frac{4 \pi^{2} k_{0}}{\ln (b / a)} \int_{0}^{\infty} \frac{J_{0}\left(h_{0} \beta R_{i b}\right)}{T_{\pi_{*}}}\left[J_{0}\left(k_{0} \beta b\right)-J_{0}\left(k_{0} \beta a\right)\right] \times \\
& {\left[\frac{-2 b k_{0} \rho_{0}\left(k_{0} / a\right)}{k_{1}^{3} h}\left\{\varepsilon_{r 1} k_{2}\left(k_{3} r_{2} \cos \left(k_{\gamma} d_{3}\right)+k_{2} \sin \left(k_{2} d_{2}\right)\right) \mid h_{1} / 2-\sin \left(k_{1} h / 2\right)\right]\right.} \\
& \left.j h_{1}\left(k_{2} \varepsilon_{r 2} \cos \left(k_{2} d_{2}\right)+j k_{7} \varepsilon_{2}^{2} \sin \left(k_{2} d_{2}\right)\right)\left[1-\cos \left(k_{1} h_{2} / 2\right)\right]\right\} \\
& \left.+\left\{\frac{-2 \eta J_{1}\left(k_{0} \dot{\theta} k_{n}\right)}{b_{a} k_{0}^{2} / \sigma^{2}}+\frac{j J_{0}\left(k_{0} \beta_{0}\right)}{k_{0} \beta}\right\}\left\{\frac{\alpha_{0} T_{m} N_{e 1}\left(h_{\mathrm{t}}\right)-j k_{0}^{2} \beta^{2} N_{e 2}\left(h_{0}\right)}{T_{e}}\right\}\right] d i \beta,
\end{aligned}
$$

where relation (A.4) has been used and where the functions $N_{n 1}$ and $N_{n 2}$ are given by

$$
\begin{align*}
N_{N 1}(z)= & k_{2} \cos \left[k_{2}\left(h_{2}-z\right)\right]+j k_{7} \sin \left[k_{2}\left(h_{2}-z\right)\right] \\
N_{e 2}(z)= & \left.\varepsilon_{1} k_{7}\left[-k_{2} \sin \left(h_{1} h_{1}\right) \cos \mid k_{2}\left(h_{1}-z\right)\right]+k_{1} \cos \left(k_{1} h_{1}\right) \sin \left[k_{2}\left(h_{1} \quad z\right)\right]\right]\left(1-\varepsilon_{r 2}\right) \tag{B2}\\
& -\left(-\left(\sigma_{n 1} \quad s_{r 2}\right)\left[k_{2} \cos \left(k_{2} d_{2}\right)+j \varepsilon_{r 2} k_{7} \sin \left(k_{2} d_{2}\right)\right]\right. \\
& {\left[j k_{7} \sin \left[k_{2}\left(h_{2}-z\right)\right]+k_{2} \cos \left[k_{2}\left(h_{2}-z\right)\right]\right] \sin \left(k_{1} h_{1}\right) }
\end{align*}
$$

Elements of the submatrix [${ }^{* * *}$]

The numbering of the basis functions on cach probe is $m=1,2, \quad, \quad N_{2}$. For basss functions on the coaxial probes for which $m \geq 2$ we get

$$
\begin{align*}
& =-\frac{4 \pi^{2} k_{0}^{2}}{\ln (b / a)} \int_{0}^{\infty} \frac{2 \beta J_{0}\left(k_{0} \beta a\right) J_{0}\left(k_{0} \beta R_{j x}\right)}{h_{1}^{3} T_{r k}}\left[J_{0}\left(k_{0}(\beta b)-J_{0}\left(k_{0} \beta a\right)\right] \times\right. \\
& \left\{\varepsilon_{\tau_{1}} k_{2}\left(k_{3} \xi_{r 2} \cos \left(k_{2} d_{2}\right)+j k_{2} \sin \left(k_{2} d_{2}\right)\right) \times\right. \tag{B.3}\\
& {\left[2 \sin \left[h_{1}\left(h_{1}-z_{m}\right)\right]-\sin \left[k_{1}\left(h_{1}-z_{m}\right)\right]-\sin \left[k_{1}\left(h_{1}-z_{m+1}\right)\right] \mid\right.} \\
& -j k_{1}\left(k_{2} \varepsilon_{r 2} \cos \left(k_{2} d_{2}\right)+j k_{2} \varepsilon_{+2}^{2} \sin \left(k_{2} d_{2}\right)\right) \times \\
& \left.\left[2 \cos \left[k_{1}\left(h_{1}-z_{m}\right)\right]-\cos \left[h_{1}\left(h_{1}-z_{m-1}\right)\right]-\cos \left[k_{1}\left(h_{1}-z_{m+1}\right)\right]\right]\right\} d B_{1}
\end{align*}
$$

and for $m=1$ we obtain

$$
\begin{align*}
& V_{y I_{i}^{2 x}}^{n}=-\frac{4 \pi^{2} k_{0}^{2}}{\ln (b / a)} \int_{0}^{\infty} \frac{\beta J_{0}\left(k_{0} \beta a\right) J_{0}\left(k_{0} \beta R_{f^{2}}\right)}{k_{1}^{2}}\left\{J_{0}\left(k_{0} \beta b\right)-J_{0}\left(k_{0} \beta a\right)\right] \times \\
& \left\{-1+\frac{2}{k_{1} h T_{m}^{\prime}}\left(\varepsilon_{\mathrm{r} 1} \dot{k}_{2}\left(k_{9} \varepsilon_{r 2} \cos \left(k_{2} d_{2}\right)+\lambda k_{2} \sin \left(k_{2} d_{2}\right)\right) \times\right.\right. \tag{B.4}\\
& \left(\sin \left(k_{1} i_{1}\right)-\sin \left[k_{1}\left(h_{1}-h / 2\right)\right]\right)-j k_{1}\left(k_{2} \varepsilon_{r 2} \cos \left(k_{2} d_{2}\right)+j k_{2} \varepsilon_{r 2}^{2} \sin \left(k_{2} d_{2}\right)\right) \times \\
& \left.\left(\cos \left(h_{1} h_{1}\right)-\cos \left[h_{1}\left(h_{1}-h_{1} / 2\right)\right]\right)\right) d b_{2}
\end{align*}
$$

where $z_{m, ~} z_{7,-1}$ and z_{m+1} arc the z coordnates of subdomain m (see figure 38).
Elements of the submatrix $\left|V^{\sim n}\right\rangle$

$$
\begin{aligned}
& \times\left\{\frac{k_{1} T_{m} N_{n \mid}\left|z_{n 2}\right|-j k_{0}^{2} \beta^{2} N_{c 2}\left(z_{m 1}\right)}{T_{n} T_{r n}}\right\} d \alpha d B,
\end{aligned}
$$

with $m=1,2 ; \quad, \quad N_{i}+N_{2}$ and with

$$
i_{m}= \begin{cases}z_{1}, & \text { if doman } \% \text { on lower patch }, \\ z_{2}, & \text { if domain } m \text { on upper patch. }\end{cases}
$$

The function $S_{R f}(m, j, a, a)$ is given by (A 18) or by (A.19) and (A 20) The functions N_{n} and N_{a} are defined in ($B, 2$)

If the thin-substrate model of section 322 is used, we only have to calculate the interaction between the sources, ie the probes, and the basis functions on the patches. An clement of the matrix $\left|V_{:}^{* \pi}\right|$ can now be calculated from (3.26). Performing the integration over $\&$ analytically and using a change to cylindrical coordinates, finally gives
wilh $m=1,2,, N_{1}+N_{2}$ and where

$$
z_{71}- \begin{cases}z_{1}, & \text { if domain } m \text { on lower patch } \\ z_{2}^{\prime}, & \text { if domain } m \text { on upper patch } .\end{cases}
$$

Bibliography

[1] Alexopoulos, N.G. and D.R. Jackson
FUNDAMENTAL SUPERSTRATE (COVER) EFFECTS ON PRINTED CIRCUTT ANTENNAS.
IEEE Transactions on Antennas and Propagation, Vol. AP-32 (1984), p.807-816.
[2] Altman, J.L.
MICROWAVE CIRCUTTS.
New York: Van Nostrand, 1964
[3] Arts. M J. and A.B Smolders
STUDY OF STACKED MICROSTRIP PHASED ARRAYS
Microwave and Optical Technology Letters, vol 6 (1993), p.466-471.
[4] Ants, M.J.
ANALYSE VAN EEN ONEINDIG ARRAY BESTAANDE UTT MEERLAGEN MICROSTRIPANTENNES
M.Sc Thesis, Eindhoven University of Technology, Department of Electrical Engineering, Electromagnetics Division, 1992, no. EM-14-92 (in Dutch).
[5] Bailey, D.M. and M D Deshpande
INTEGRAL EQUATION FORMULATION OF MICROSTRIP ANTENNAS
IEEE Transactions on Antennas and Propagation, Vol. AP-30 (1982), p 651-656
[6] Bauer, R L. and J J. Schuss
AXIAL RATIO OF BALANCED AND UNBALANCED FED CIRCULARLY POLARISEO PATCH RADIATOR ARRAYS
Proc. IEEE Int. Conference on Antennas and Propagation 1987, Blacksburg, p 286-289.
[7] Boersma, J.
Private communication, 28-9-1991.
[8] Brookner, E.
PRACTICAL PHASEO ARRAY ANTENNA SYSTEMS.
Norwood Attech House, 1991.
[9] Capelle, A vari de
TRANSMISSION-LINE MODEL FOR RECTANGULAR MICROSTRIP ANTENNAS.
ln Handbook of microstrip antennas, Vol 1, Edited by J.R James and PS Hall.
London: Peregrinus, 1989, p.527-578.
[10] Carver, K R. and J.W. Mink
MICROSTRIP ANTENNA TECHNOLOGY
IELE Transactions on Antennas and Propagation, Vol AP-29 (1981), p 2-24
[11] Chang, E and S A Long, W.F Richards
AN EXPERIMENTAL INVESTIGATION OF ELECTRICALLY THICK RECTANGULAR MICROSTRIP ANTENNAS.
IEEE Transactions on Antennas and Propagation, Vol. AP-34 (1986), p. 767-772.
[12] Chew, W.C
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA.
New York: Van Nostrand Reinhold, 1990.
[13] Collin, R E
FIELD THEORY OF GUIDED WAVES.
New York: IEEE Press (2nd ed), 1991.
[14] Da Silva Curiet, A.
INMARSAT'S PRESENT AND FUTURE MARITIME COMMUNICATIONS SYSTEMS Tydschrift van hel NERG, Vol. 51 (1986), p 128.
[15] Davidoyitz, M D. and YT. Lo
INPUT IMPEDANCE OF A PROBE-FED CIRCULAR MICROSTRIP ANTENNA WITH THCK SUBSTRATE

IF.EE Transactions on Antennas and Propagation, Vol. AP-34 (1986), p 905-911
[16] Derneryd, AG. and I Karlsson
BROADBAND MICROSTRIP ANTENNA ELEMENTS AND ARRAY
IEEE Transactions on Antennas and Propagation, Vol AP-29 (1981), p. 140 . 141
[17] Derneryd, A G
A THEORETICAL INVESTYGATION OF THE RLCTANGULAR MICROSTRIP AN-

TENNA ELEMENT
IEEE Transactions on Antennas and Propagation, VoI AP-26 (1978), p.532-535
[18] Deschamps, G. A
MICROSTRIP MICROWAVE ANTENNAS.
Third U.S.A.F Symposium on antennas, USA, 1953.
[19] Deshpande, MD and PD Rufus Prabhakar
ANALYSIS OF DIELECTRIC COVERED INFINITE ARRAY OF RECTANGLLAR MICROSTRIP ANTENNAS.
IEEE Transactions on Antemnas and Propagation, Vol. AP-35 (1987), p. $732-736$.
[20] Dolpaans, WM.C.
STACKED MICROSTRIP ANTENNAS EMBEDDED IN A TWQ-LAYER SUBSTRATE
M.Sc. Thesis, Eindhoven University of Technology, Department of Electrical Engmeering. Electromagnetics Division, 1992, no. EM-11-92.
[21] Dongara, JJ. and C.B Moler, J.R. Bunch
LINPACK USERS' GUIDE
Fhiladelphia: SIAM, 1984
[22] Estabrook, P and $y_{\text {Huang, W. Rafferty, M K Sue }}$
A $20 / 30$ GHZ PERSONAL ACCESS SATELLITE SYSTEM DESIGN
Proc IEEE Int Conference on Communications Boston, 1989, p 216-222.
[23] Fenn, A.J
THEORETICAL AND EXPERIMENTAL STUDY OF MONOPOLE PHASED ARRAY ANTENNAS
IEEE Transactions on Antennas and Propagation, Vol. AP-33 (1985). p 1118-1126.
[24] Ejtch, J P.
SYNTHETIC APERTURE RADAR.
New York: Springer-Verlag, 1988.
[25] Fong, K.S. and H.F Pues, M.J. Withers
WIDEBAND MULTILAYER COAXIAL-FED MICROSTRIP ANTENNA ELEMENT
Electronics Letters, VoI 21 (1985), p.497-498.
[26] Goyal, R
MONOLITHIC MICROWAVE INTEGRATED CIRCUITS TECHNOLOGY AND DE SIGN
Norwood: Artech House, 1989
[271 Gradsteyn, IS and I M. Ryzhk
TABLE OF INTEGRALS, SERIES AND PRODUCTS.
Ncw York: Academic Press. 1965.
[28] Gronau, G
THEORETISCHE UND EXPERIMENTELLE UNTERSUCHUNG DER VERKOPPLUNG IN STREIFENLEITUNGSANTENNEN.
Ph D. Thesis, Duisburg University, 1987.
[29] Hall, Ps.
PROBE COMPENSATION IN THICK MICROSTRIP PATCHES.
Electronics Letters, Vol. 23 (1987), p. 606-607
[30] Hall R.C and J.R Mosig
THE ANALYSIS OF COAXIALIY FFD MICROSTRIP ANTENNAS WITH FI ECTRI-
CALLJY THICK SUBSTRATES
Electromagnetics, vol 9 (1989), p 367-384.
[31] Harrington, RF
FIELD COMPUTATION BY MOMENT METHODS
New York ILEL Press, 1993
[32] Harrinyton, R F
TiME HARMONIC FIELDS
New York McGraw-Kill, 1961
[33] Hertz, H
GESAMMELTE WERKE VON HEINRICH HERTZ.
Lerpzig. J A Barth, 1895
134] Hestenes, M.R. and L Stelel
METHOD OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTHMS
Journal Res Nat. Bur Standards, Vol 49 (1952), p.409-436
[35] Hooijen, OG
DF DUBBEL GEVOEOE MICROSTRYPANTENNE MET RECHTHOEKIGE PATCH
Report of Traming Work, Eindhoven Universty of Technology, Department of Electrical Lingineering, Electromagnetucs Diviston, I 992 , no EM-6-92 (in Outch)

1361 Hosca, E
OPPERVLAKTEGOLVEN IN EEN MICROSTRIPSTRUCTUUR

Report of Training Work, Eindhoven University of Technology, Department of Electrical Engineering, Electromagnetics Division, 1993, no. EM-79-3 (in Dutch)
[37] Huang, J.
A TECHNIQUE FOR AN ARRAY TO GENERATE CIRCULARLY POLARISATION WITH LINEARLY POLARISED ELEMENTS.
IEEE Transactions on Antennas and Propagation, Vol. AP-34 (1986), p. 1113-I124.
[38) Kong, J.A.
ELECTROMAGNETIC WAVE THEORY
New York: John Wiley and Sons, 1986.
[39] Kossiavas, G. and F Crog, D.L Sun Luk, A Papiernik
LARGE BANDWIDTH L-BANO RADIATING ELEMENT.
Archive Electronische Ubertragungen, Vol 45 (1991), p 191-193.
[40] Krier, P.
MICROSTRIP PATCH ANTENNAS ON GALLIUM ARSENIDE SUBSTRATES
Ph D. Thesis, University of Leeds, 1990.
[41] Kumar, A
FIXED AND MOBILE TERMINAL ANTENNAS.
Norwood Artech House, 1991
[42] Laheurte, J.M and J.R. Mosig
EFFECTS OF PROBE FEED AND SOLDERING POINT ON THICK MICROSTRIP ANTENNAS.
In. Proc. 21th European Microwave Conf,, Stuttgart University of Stuttgart, 1991, p.11791184.
[43] Levinc, E and G. Malamud, D. Treves
HIGH GAIN MODULAR MICROSTRIP ANTENNAS
Proccedings European Microwave Conference 1986, p.665-660.
[44] Liu. C.C. and A Hessel, J Shmoys
PLANE WAVE REFLECTION FROM MICROSTRPP-PATCH ARRAYS THEORY AND EXPERIMENTT.
IEEE Transactions on Antennas and Propagation, Vol. AP-33 (1985), P 426-435
[45] Lo. YT and D. Solomon, WF Richards
THEORY AND EXPERIMENT ON MICROSTRIP ANTENNAS.
IEEE Transactions on Antennas and Propagation, Vol. AP-27 (1979), p. 137-145
[46] Marconi, D
MY FATHER, MARCONI
London: McGraw-Hill, 1962
[47] Mcixner, I.
THE BEHAVIOUR OF ELECTROMAGNETIC FIELDS $\triangle T$ EDGES
IEEE Transactions on Antennas and Propagation, Vol. AP-20 (1972), p.442-446
[48] Montecchia, Γ
MICROSTRIP-ANTENNA DESIGN FOR HYPERTHERMIA TREATMENT OF SUPERFICIAL TUMORS.
IEEE Trancactions on Biomedical Engmeering. Vol 39 (1992), p 580-588
[49] Mosig IR and FE Gardiol
A DXNAMICAL RADIATION MODEL FOR MICROSTRIP ANTENNAS
In" Advances in Electronics and Electron Physics, edited by P Hawkes, Now York. Academe Press, 1982, Vol 59, p. 139-237.
[50] More, J. J and B.S Carbow, K.E Hillstrom
IISER GUIDE FOR MINPACK- 1
Aggonte Argonne National Laboratory, ANL-80-74
[51] Nauwelears, B and A van de Capelle
DEVELOPMENT OF AN ANALYSIS TOOL FOR MICROSTRIP (PGASED) ARRAY ANTENNAS WITH RECTANGULAR ELEMENTS.
Report of FSA Contracl No 8593/89/NL/PB(SC), 1991
[52] Plessens, R and E de Doncker-Kapenga, CW. Uberhuber, D. K. Kahaner QUADPACK
Berlin. Springer Veriag, 1983
[53] Pinhas, S. and S Shtrikman, D Treves
MOMENT-MFTHOD SOLUTION OF THE CENTER-FED MICROSTRIP DISK ANTENNA INVOKING FEED AND EDGE CURRENT SINGULARITILS
IEEE Transactions on Antennas and Propagation, Vol AP-37 (1989), p. 15I6-1522.
[54] Popovic, B D. and M.B. Dragovic, A.R Djordjevic
ANALYSIS AND SYNTHESIS OF WIRE ANTENNAS
Chichester John Wilcy and Sons, 1982.
[55] Pouwels, A.J H.
ANALYSIS OF AN INIINITE MICROSTRIP ARRAY
M.Sc. Thesis, Eindhoven University of Technology, Department of Electrical Engineenng, Electromagnetics Division, 1992, no. EM-2-92.
[56] Pozar, D M
INPUT IMPEDANCE AND MUTUAL COUPLING OF RECTANGULAR MICROSTRIP ANTENNAS.
IEEE Transactions on Antennas and Propagation, Vol. AP-30 (1982), p. 1191-1196.
[57] Pozar, D M.
ANALYSIS OF INFINITE ARRAYS OF PROBE-FED RECTANGULAR MICROSTRIP ANTENNAS USING A RIGOROUS FEED MODEL.
IEE Proceedings-H, Vol 136 (1989), p.110-119.
[58] Pozar, DM.
PERFORMANCE OF AN INFINITE ARRAY OF MONOPOLES IN A GROUNDED DIELECTRIC SLAB
IEE Proceedings H, Vol. 137 (1990), p 117-120.
[59] Rumscy, VH
THE REACTION CONCEPT IN ELECTROMAGNETIC THEORY.
Physics Rev, Vol 94 (1954), p 1483-1491.
[60] Sabban, A
A NEW BROADBAND STACKED TWO LAYER MICROSTRIP ANTENNA.
Proc IEEE lnt Conference on Antennas and Propagation, 1983, Houston, p. 63 -66
[61] Schaik, H.J van
THEORY AND PERFORMANCE OF A SPACE-FED, PLANAR, PHASED ARRAY ANTENNA WITH 849 IRIS-LOADED REGTANGULAR WAVEGUIDE ELEMENTS AND EXTERNAL MATCHING SHEET.

Ph D Thesis, Delft Unversity of Technology, 1979
[62] Schaubert, D.H. and D.M. Pozar, A Adrian
EFFECT OF MICROSTRIP ANTENNA SUBSTRATE THICKNESS AND PERMITTIVITY COMPARISON OF THEORIES AND EXPERMENT

IEEE Transactions on Antennas and Propagation, Vol. AP-37 (1989), p.677-682
[63] Shaeffer, J.H. and L N. Medgyesi-Mitschang
RADIATION FROM WIRE ANTENNAS ATTACHED TO BODIES OF REVOLUTION THE JUNCTION PROBLEM
IEEE Transactions on Antennas and Propagation, Vol. AP-29 (1981), p.479-487
[64] Sommerleld, A.
PARIAL DIFFERENTIAL EQUATIONS IN PXIYSICS
Now York. Academe Press Inc, 1949.
[65] Smolders, A B and H.J. Visser
TRACKING PHASED-ARRAY ANTENNAS IN THE NETHERLANDS
Microwaves \& RF, Vol 33, no. 5 (may 1994), p. 65-75.
[66] Smolders, A.B
FINITL ARRAY OF MONOPOLES EMBEDDED IN A GROUNDLD DIELECTRIC SLAB

Electronics Letters, Vol 28 (1992), p 2079.2080
[67] Smolders, A B
RIGOROUS ANALYSIS OF THICK MICROSTRIP ANTENNAS AND WIRE ANTENNAS EMBEDOED IN A SUBSTRATE
Endhoven Faculty of Electrical Engmeering, Eindhoven Univeraty of Technology, 1992, EUT Report 92-E-263.
[68] Smoldets, A. B.
FINI I'E STACKED MICROSTRIP ARRAYS WITH THICK SUBSTRATES
Eindhoven.: Faculty of Electrical Eogineering, Eindhoven Unversity of Technology, 1993, EUT Report 93-E-273
[69] Smolders, A.B and M.E.J Jcuken
LFFICIENT AND RIGOROUS ANALYSIS OF BROADBAND MICROSTRIP PATCH ANTENNAS USING A SPECTRAL DOMAIN MOMENT METHOD.
Proc JINA'92 Int. Symp Antennas, Nice (France), Nice: Nice University, 1992, p 75-78
[70] Smolders, A.B.
RADIATION PATTERN OF ГINITE (STACKED) MICROSTRIP PHASED ARRAYS
Proc. Third Ynt Conf on Electromagnetics in Aerospace Applications, Torino (taly), Torino Politecnico di Torino, 1993, p. 355-358.
[71] Smolders, A.B
FFFICIENT ANALYSIS OF FINITE MICROSTRIP PHASED-ARRAY ANTENNAS
Proc. IEEE Int Conference on Antennas and Propagation 1994, Scattle, p. 1836-1839
[72] Smolders, A. B.
BROADBANO MICROSTRIP ARRAY ANTENNAS.
Proc IEEE Int Conference on Antennas and Propagation 1994, Seattle, p 1832-1835
[73] Smolders, A B
EFFICIENT ANALYSIS OF MICROSTRIP ANTENNAS USING A SPECTRAL DOMAIN MOMENT METHOD
Proc. COST 223 Workshop on Active antennas, Noordwijk (Netherlands), Noordwijk ESA-ESTEC, 1992, p.11.1-118.
[74] Tangdiongga, E.
ANALXSIS OF AN INFINITE ARRAY OF MICROSTRIP ANTENNAS EMBEDOED IN A THICK SUBSTRATE
M.Sc. Thesis, Eindhoven University of Technology, Department of Electrical Engineering. Electromagnetics Division, 1994, no EM-7-94
[75] Terret, C. and A. Edimo, A Papernik, G Kossiavas
PROBE-FED STACKED MICROSTRIP ANTENNAS: DESIGN AND MUTUAL COUPLING.
In Proc. COST 223 workshop on active antennas, Noordwijk (Netherlands) $11-12$ Junc 1992, Noordwijk: ESTEC, 1992, p. 8 1-8.5.
[76] Thomemans, PA.J.
INFLUENCE OF A FINITE GROUND PLANE ON THE RADIATION PROPERTIES OF MICROSTRIP ANTENNAS
M.Sc Thesss, Eindhoven University of Technology, Department of Electncal Engincering, Electromagnetics Division, 1994, no EM-8-94
[77] Visser, HJ.
PLANAIRE MICROSTRYPANTENNES VOOR MOBIELE SATELLIETCOMMUNICATIE. Tijdschrift van het NERG, Vol 54 (1989), p $61-69$ (in dutch)
[78] Watson, G.N.
COMPLEX INTEGRATION AND CAUCHY'S THEOREM
New York Hafner, 1914.

Samenvatting

Microstripantennes en array's van microstripantennes hebben verschillende voordelen to V , conventionele antennetypes, zods bijvoorbeeld zeer lage produktiekosten, een laag gewicht en een dunne en dus platte structuur Microstripantennes zijn daaromerg interessant voor een variëteit aan toepassingen, warvan mobicle (satellet-) communicatee en radar de belangrijkste zijn. Vooral mobiele (satelliet-) communicatie kan op termijn een zecr grote markt worden waar goedkoop en eenvoudig te produceren microstripantennes gebruikt kunnen worden. Door hun platte structuur is het bovendien erg eenvoudig om deze antennes te monteren op het dak van vrachtwagens, personenwagens of op vlegtuigen. Het grootste nadeel van de meeste microstripantennes is dat ze slechts bruikbaar zijn voor een kleme frequentreband. Het verbcteren ven deze bandbreedte is dan ook een van de belangrijkste doelstellingen van dit onderzock geweest In dit proefschrift wordt ent theoretisch model gepresenteerd waarmee op een nauwkcunge wije geisoleerde mincrostripantennes alsmede endige arkay's van microstripantennes geanaly secrd on ontwopen kunnen worden. De elgenschappen van een microstripantenne of van een microstriparray kunnen bepaald worden zodra de stroomverdeling op ieder arrayelement bekend is. Uit de randvoorwaarden voor het elektrische veld volgt ecn integraalvergelijking voor de stroomverdeling op de antenne. Deze integraalvergelijking kan opgelost worden met behulp van de momentenmethode. Hierbij worden de nog onbekende stromen ontwikkeld in zogenaamde basisfuncties en wordt het elektromagnetisch veld uitgedrukt in termen van de Greense functie van het gelaagde medium. De keuze van het soort basisfuncties dat gebruikt wordt is daarbij essentieel. Met de basisfuncties dic in drt procfschrift gcbruikt worden kunnen ook microstripconfiguraties met een elektrisch dik substraat geanalyseerd worden. Er worden to dit proefschtift een aantal neuwe analytische methodes gepresentecrd waardoor het mogelijk wordt om met de momentenmethode microstrip array's met cen groot anatal elementen te analyseren, warbij de benodigde CPU tijd beperkt blift.
Teneinde her ontwikkelde model inclusief de daarbij behorende programmatuar te verifiereft, zijn de berckende resultaten vergeleken met metingen van een groot aantal experimenten In het algemeen kan gesteld worden dat er zowel bij enkele microstripantennes alsmede bij microstriparray's een goede overeenstemmug was tussen theoric en experiment. De bandbreedte van verschillende microstripconliguraties is onderzocht. In het algemeen geldt dat de bandbreedte toeneernt naarmate een dikker substraat gebruikt wordt. Hieraan is echter een maximum verbon-
den, hetgeen voomamelyk komt door de toenemende probe-inductiviteit van de coaxiale kabels by cen toenembende substratdikte. Indien de antenne bestaat uit een enkele dielectrische laag met daarboven een enkele rechthockge pateh, kan ecn relatueve bandbredte tot maximath 15% gerealiseerd worden. Gestapelde structuren, waarbij twee dëlectrisehe lagen gebruikt worden, hebben breedbandigere eigenschappen. Hiermee kan gemakkelijk een relatieve bandbreedte tot 25% gercaliseerd worden. Voorwaarde herbij is wel dat de relatieve dielectrische constante van de onderste latg crg hoog moet ajn. Een nieuwe structum met een erg breedbandig karakter is de zogenaamde EMC-microstripantenne. De binnengeleider van de voedende coaxiale kabel is nu niet rechtstreeks verbonden met de patch, maar er is een kleine opening tuscen beide aangebracht Het capaciticve effect dat hicrdoor optreedt compenseert de inductiviteat van de coaxiale kabel Met dit type antenne kan een relatieve bandbreedte van ongeveer 50% behaald worden. Indren een mucrostnpantenne geplatst wordt in een array, zal it het algemeen de beschikbarc bandbrecdte afnemen door de mutuele koppelingen tusseri de array-elementen beze afname zal groter zijn naarmate de hoofdbundel van het array over een grotere hoek algebogen wordt Een goed ontwerp van een microstriparray is daarom alleen mogelijk door het gedrag van het totale array te optimaliseren, dus inclusief mutuele koppelingen. Het model dat in dit procfschrift beschreven is kan hiet voor gebruikt worden.
Verder worden er een aantal microstripeonfiguraties besproken warmee cen crroular gepolanseerd verre veld kan worden verkregen. Een van deze configuraties betreft een njeuw type subarray welke bij een twectal frequentrebanden (rond 4 GHz en rond 6 Gliz) tegelngertjid gebruikt kan worden.

Curriculum Vitae

Bart Smolders werd geboren op 1 december 1965 te Hilvarenbeek. Na het succesvol doorlopen van de lagere school slaagde hij in 1984 voor het examen Atheneum-B aan de Rijksscholengemeenschap Koning Willem II te Tılburg. Vervolgens studeerde hij elektrotechnick aan de Technische Universiteit Eindhoven, waar hij in 1989 afstudeerde als elektrotechnisch ingenicur. Tijdens zun studie was hif onder andere bestuurslid van de studentenorganisatie StIK en was hij twee jaar student-assistent bij het practicum Digitale Techneken Na zijn studie werd hij als Rescrve Officier van de Koninklijke Luchtmacht gedetacheerd bij FEL-TNO in Den Haag. Zijn werk aldaar betrof het ontwerpen van hoogfrequente analoge schakelingen (MMIC's) voor phased-array radars. Sinds 1 februari 1991 werkt hiy als toegevoegd onderzoeker bij de vakgroep Elektromagnetisme van de Technische Universiteit Eindhoven Dit werk is uitgevoerd in het kader van het project "Breedbandige microstripantcnnas" van de Strchting voor de Technische Wetenschappen (STW). Dit laatste onderzoek heeft gelend tot het schrijven van dit proefschrift.

Dankwoord

Alle leden en ex-studenten van de vakgroep Elektromagnetisme van de Technische Universiteit Endhoven, die hebben bijgedragen aan het tot stand komen van dit proefschnift, wil ik hierbij bedanken. Verder ben ik prof.dr. J Boersma van de facultent Wiskunde erkentelijk voor zijn bijdrage inzake ecn aantal wiskundige problemen. Ook wil ik ir. P. Giesselink van HSA bedanken voor de produktie van de antennes.
Mijn dank gaat uterard vooral wit naar dr. M.E.J Jeuken die behalve initiatiefnemer van dit onderzoek ook een zeer waardevolle begeleider en collega is geweest.

Stellingen behorende bij het procfschrift

Microstrip Phased-Artay Antennas:
A Finite-Array Approach
door
A.B. Smolders

Eindhoven, 5 oktober 1994

1 Ondanks hel feit dat mikrostripantennes goedkoop, licht en ecnvoudig produceerbarr fijn, worden ze nog mar op een zeer beperkte sehtal daadwerkelipk tongepast, ondat de meeste bednjen niet beschikken over voldoende furditmentele kennis atiake morostrapantennes
2. Het ontwerp van twekomstige generaties phased-atay antennes zal mocten gebeuren op basis van computersmulatues, tenconde te voorkomen dat net-optumede en dur te dure oplowingen worden gekozen en om de ontwikkelngstidd to beperken.

3 Hel vakgebued Elektromagnetrme cal ook in de computertechniek een steeds belangakere rol gian spelen indien de trend om steds hogere klokfrequenties te gebruiken zeh voortzet
4. Len ingenucur die beslut on te gaan promoveren verkleint darme chan mogehikheden om na $A y$ promote een baan te wnden op de Nederlandse urbeidmarkt.

5. De Jeugd-Werk Garantiewet (JWG) zal niet leaden tot ecn significante vergrotmg van de kansen van fongeren op de regulierc arbedsmarkt bolang de garamtuebanen fich voommmelijk in de collectieve setor bevinden
 /HG" 24 mant $19 / 4$

6 De discussie omtrent welke computer on bubehorend besturingssysteem het meeth ideal zou 7! \quad voor een onderzoeker wordt sterk veriroebeld doordat veel onder7oekers de computer net zien alm cen bulpmiddel maar als een doel op zich.

7 Het vaak gehoorde bezwaar tegen microstripantennes dat ze erg smabbandig zijn is onterecht ILet is zeer wel mogelijk om microstripantennes met een breedbandıg karakter te ontwerpen.

- A B Smolder Dreedibundige michotripantennes Tidschrff wan hat NERC ded 59 a at 1994: 127.32

8 Eventuele blinde scanhoeken in een phased array van rechthoekige golfpijpstraIcrs kunnen expermenteel al dudelijk wargenomen worden bij arrays bestaande unt 15×15 elementen
 H:deband wide-scan cingle res tanguiar wavegside phaved array : IEEE Antennas and Propuga Fion Sociery Symposium Deyest Vol 3. Ontwio Canada 1991 p 1724.1777
9. Microstripantemes op een substraal met een zeer lage relative permittivitet kun* nen met gebruikt worden alk element in cen breedbandige phated-array antenne met een groot scanbereik, omdat de onderlinge koppelingen tussen de elementen veel te groot zijn

- Dreprefochrift par 48

10. Echte kattclefhebbers zijn geduldige mensen

[^0]:
 $W_{T S S S}$

