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Abstract: Microstructural control during the solution processing of small-molecule semiconductors
(namely, soluble acene) is important for enhancing the performance of field-effect transistors (FET)
and sensors. This focused review introduces strategies to enhance the gas-sensing properties (sensi-
tivity, recovery, selectivity, and stability) of soluble acene FET sensors by considering their sensing
mechanism. Defects, such as grain boundaries and crystal edges, provide diffusion pathways for
target gas molecules to reach the semiconductor-dielectric interface, thereby enhancing sensitivity
and recovery. Representative studies on grain boundary engineering, patterning, and pore generation
in the formation of soluble acene crystals are reviewed. The phase separation and microstructure of
soluble acene/polymer blends for enhancing gas-sensing performance are also reviewed. Finally,
flexible gas sensors using soluble acenes and soluble acene/polymer blends are introduced, and
future research perspectives in this field are suggested.

Keywords: gas sensors; organic field-effect transistors; soluble acene crystals; microstructure;
sensitivity; selectivity

1. Introduction

Solution-processed small-molecule semiconductors (so-called soluble acenes) have
attracted much attention as alternative field-effect transistors (FETs) for flexible switching
elements in displays and sensors [1–8]. Control of the crystalline microstructure during
the solution processing of soluble acene is critical for its desired function in FETs and
sensors [9–15]. Typically, highly crystalline films are desirable for the effective π–π stacking
of conjugated acene moieties and the corresponding lateral transport of charge carriers in
FETs. Although the fabrication of uniform and large-area single-crystal films is a target goal
for achieving the best performance in FETs, solution processing of soluble acene typically
leads to a polycrystalline film with defects inside the film. Accordingly, the fine control
of solvent evaporation during the formation of crystals is necessary. Several well-written
review articles focusing on the microstructural and morphological control during solvent
evaporation in the casted soluble acene solution are available [9–11,16–21]. Strategies, such
as the control of solution composition, printing parameters (for example, spin speed in
spin-casting and jetting condition in inkjet printing), and surface energy of the substrate,
have been well documented in recent publications for high-performance soluble acene
FETs [9,16–18,22–24].

In addition to the performance of FETs (for example, field-effect mobility and on–off
current ratio threshold voltage), sensors require other performance parameters [25–31].
FET-based gas sensors particularly require a diffusion pathway for the active semiconductor
channel for gas molecules to reach the semiconductor-dielectric interface. Note that the
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semiconducting layer near the semiconductor-dielectric interface is the region where most
of the field-effect charge carriers pass through in a given gate bias of FETs. The gas
molecules affect these charge carriers at the interface, leading to a current change. The
current change is monitored at the constant source-drain bias condition in FETs, and
sensitivity, recovery, selectivity, and stability are the required performance parameters in
FET-based gas sensors [26,27,32–34].

In FET-based gas sensors, the formation of defects (such as grain boundaries, crys-
tal edges, and pores) is key to guaranteeing a diffusion pathway for sensitive gas de-
tection [15,23,26,35–37]. However, review articles focusing on the defect engineering of
soluble acene crystals with a particular focus on the employed strategies are currently
unavailable, although there have been many reports on controlling these defects in soluble
acene FET-based gas sensors. The use of soluble acene in the semiconducting layers of
FET-based gas sensors has several advantages. First, soluble acene FETs can be used for
detecting environmentally harmful gases (such as nitrogen dioxide and ammonia) and
healthcare-related exhaled gases (such as formaldehyde and acetone) with a detection
limit as low as ppb. Second, selectivity to the target gas is feasible when using a specific
soluble acene, which can be obtained by the synthesis of a new soluble acene. Here, the
manipulation of specific interactions between the soluble acene and target gas molecules
is required. Third, the printing technique can be utilized to fabricate large-area/flexible
gas sensors on plastic substrates as it is better than a vacuum-based evaporation tool for
reducing costs and increasing manufacturing speed [23,38–42]. Typically, a polymer binder
is added to a soluble acene solution to fabricate printing-based, flexible gas sensors. The
polymer can increase the solution viscosity while reducing the dewetting of soluble acene
crystals. Here, inducing vertical phase separation in soluble acene/polymer blends is also
necessary for fabricating FETs. Readers can read recent review papers focusing on obtaining
high field-effect mobility in FETs based on soluble acene/polymer blends [17,18,43–49].
Instead of introducing strategies for vertical phase separation, this review focuses on intro-
ducing key concepts in the microstructural control of soluble acene/polymer blends for
high-performance gas sensors.

This focused review paper introduces several representative works on the microstruc-
tural control in soluble acene and soluble acene/polymer blends for high-performance
FET-based gas sensors. Section 2 introduces the working principle of the soluble acene
FET-based gas sensor. Section 3 reviews the control of the soluble acene microstructure
to enhance the gas-sensing performance. Section 4 reviews the microstructural control of
soluble acene/polymer blends for improving the gas-sensing performance. Section 5 intro-
duces representative studies on flexible soluble acene gas sensors. Finally, the conclusions
and future research perspectives are presented.

2. Soluble Acene FET-based Gas Sensors: Working Principle

This review uses the word “soluble acene” to mention solution-processed small molec-
ular semiconductors. Typically, the semiconducting properties of organic molecules are
induced by extending conjugation in fused acenes or hetero-acenes [50,51]. However,
fused acene or hetero-acene (e.g., pentacene) are not soluble in common solvents, although
some studies solubilized pentacene with harsh chemical treatments [52–54]. The addition
of solubilizing groups to the six and 13 positions in pentacene can increase its solubil-
ity while changing the packing motif from herringbone stacking to co-facial brick wall
stacking (Figure 1a) [55]. Figure 1 shows the chemical structures of representative soluble
acenes, (e.g., 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)). In addition
to the commonly used spin-coating or inkjet printing, solution-shearing-assisted bar coat-
ing leads to a high-performance TIPS-pentacene FET with field-effect mobility exceeding
4.6 cm2/Vs [56–58]. The addition of triethylsilylethynyl groups to the anthradithiophene
backbone is also an effective method for increasing both solubility and solid-state ordering
(Figure 1b) [59]. Interestingly, a 5,11-bis(triethylsilylethynyl)anthradithiophene (TES-ADT)
film was crystallized by solvent vapor annealing, and millimeter-sized TES-ADT spherulites
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were easily fabricated using this method [60–62]. The further addition of fluorine atoms
to TES-ADT led to exceptionally small π–π stacking due to fluorine-fluorine interactions
(Figure 1c) [63]. Accordingly, 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene
(diF-TES-ADT) exhibited an ultrafast crystallization capability during solution process-
ing. High mobility exceeding 5 cm2/Vs has been reported in FETs based on diF-TES-
ADT/polymer blends [6,64–66]. Instead of bulky silylethynyl groups, alkyl chains (such
as hexyl and octyl) can also be attached to the edges of the acene backbone to enable
solution processability (Figure 1d,e). 2,7-Dihexyl-dithieno[2,3-d;2′,3′-d′]benzo[1,2-b;4,5-
b′]dithiophene (C6-DTBDT) and 2,7-dioctylbenzothieno[2,3-b]benzothiophene (C8-BTBT)
are examples that show excellent field-effect mobilities in the application of FETs [49,67–69].
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ally accumulated at the semiconducting layer. When gas molecules penetrate the semi-
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Figure 1. Chemical structures of prototypical soluble acenes:
(a) 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), (b) 5,11-
bis(triethylsilylethynyl)anthradithiophene (TES-ADT), (c) 2,8-difluoro-5,11-
bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT), (d) 2,7-dihexyl-dithieno[2,3-d;2′,3′-
d′]benzo[1,2-b;4,5-b′]dithiophene, and (e) 2,7-dioctylbenzothieno[2,3-b]benzothiophene (C8-BTBT).

Figure 2 illustrates the gas-sensing mechanism when these soluble acenes are used as
the active layer in FET gas sensors. When a gate bias is applied in FETs, the polarization
of the insulator leads to an accumulation of charge carriers at the semiconducting layer
near the semiconductor-insulator interface. Because all the soluble acenes in Figure 1
are operated in the p-type mode, a negative gate bias is applied, and hole carriers are
generally accumulated at the semiconducting layer. When gas molecules penetrate the
semiconducting layer near the semiconductor-insulator interface, hole carriers increase (or
decrease) depending on the type of gas molecules [25,70–72]. In the case of oxidizing gases,
such as NO2, the electron-withdrawing character of the gas induces hole accumulation
(that is, an increase in carrier density). Thus, the source-drain current increases upon
exposure to the oxidizing gas. In contrast, the electron-donating character of reducing
gases, such as NH3, induces hole depletion (that is, a decrease in carrier density), leading
to a decrease in the source-drain current. The change in the field-effect mobility can also be
monitored in FET gas sensors. If the semiconductor is not a perfect single crystal (this is
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the typical case in soluble acene films manufactured using solution processing), the trap
filling behavior in the oxidizing gas leads to an increase in the field-effect mobility. In
contrast, it decreases upon exposure to a reducing gas. However, the change in mobility is
also affected by the scattering of charge carriers by gas molecules. In that case, the field-
effect mobility decreases in the presence of reducing/oxidizing gases. The charge–dipole
interaction between the semiconductor and gas molecules could also change the mobility
of gas sensors. Accordingly, changes in the electrical performance of FETs depend on the
specific soluble acene type and target gas molecules.
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semiconductor.

3. Control of Soluble Acene Microstructure for Gas Sensors

Soluble acene microstructure could be manipulated by the careful control of solvent
evaporation during solution processing (e.g., drop-casting, spin-coating, inkjet printing, bar
coating). Especially, the use of solvent with a high boiling point is preferable for inducing
slow evaporation of solvent, thereby increasing crystallinity with structural perfectness.
However, soluble acene with low film-forming capability triggers thin-film dewetting
during solution processing. Thus, solvent with appropriate vapor pressure and viscosity
is used in solution processing such as spin-coating and bar coating. Because crystalline
microstructure (e.g., crystallinity, grain boundary, misorientation) of soluble acene is highly
dependent on the processing condition, fine control solvent evaporation is indispensable
for the proper functions in FETs and sensors. Because several well-written review articles
are available in the morphological and structural control of soluble acene [9–11,16–21],
control of the microstructure focusing on gas sensing performance is introduced in this
section. In addition, the gas sensing mechanism in the representative works is reviewed by
considering the specific interaction between soluble acene and gas molecules.

Soluble acene is composed of an aromatic conjugated core (e.g., fused acene, hetero-
acene) and a solubilizing group (e.g., aliphatic alkyl chain) (Figure 1). In soluble acene FET
gas sensors, it is important to examine the specific interaction between soluble acene and gas
molecules from the prototypical soluble acene, TIPS-pentacene. Because TIPS-pentacene is
oriented with silylethynyl groups on the substrate surface (Figure 1a) [55], the adsorption
of gas molecules on TIPS-pentacene may be weaker than pentacene without insulating
silylethynyl groups. The pentacene backbone cannot interact directly with the gas molecules
in TIPS-pentacene. However, a recent report by Wang et al., revealed that TIPS-pentacene
FETs could detect ppm levels of NO2 better than pentacene FETs [73]. Figure 3a shows the
device structure of TIPS-pentacene FET sensors. Para-sexiphenyl (p-6P) was used as the
buffer layer to obtain a terrace-like TIPS-pentacene film. Although TIPS-pentacene was
thermally evaporated on the p-6P film, the sensing modality of TIPS-pentacene could be
measured using the gas testing setup (Figure 3b). Dynamic tests with periodic exposure to
NO2 showed that the TIPS-pentacene sensor exhibited excellent sensitivity (>1000%/ppm),
recovery (>90%), and reproducibility (Figure 3c). When cross-sensitivity was measured
with different gases (Figure 3d), the TIPS-pentacene sensor exhibited selective detection of
NO2. The responsivities and sensitivities to SO2, wet air, and NH3 were low. Interestingly,
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the TIPS-pentacene FETs exhibited better sensing performance than the pentacene FETs.
The combined effect of low intrinsic conductivity and efficient charge transport ability in
TIPS-pentacene films leads to a high gas-on/gas-off conductivity, resulting in excellent
sensitivity toward NO2. A similar performance enhancement of the TIPS-pentacene sensor
toward NH3 compared to pentacene sensor has also been reported [74].
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(1–5 ppm), and (d) responsivity (R) and sensitivity (S) to different gases (NO2, SO2, wet air, and
NH3) [74]. Copyright 2017 Wiley.

Because the diffusion of gas molecules into the semiconducting layer near the semiconductor-
dielectric interface is important, defects, grain boundaries, and molecular ordering in soluble
acene films affect the gas sensing performance of soluble acene FET-based gas sensors. Thus, it
is important to control the soluble acene microstructure during solution processing. Shao et al.,
examined the effect of crystallinity and grain boundaries on the NO2 sensing performance of TIPS-
pentacene FETs using different types of processing solvents (Figure 4a) [75]. When four different
types of solvents (namely, o-xylene, toluene, chlorobenzene (CB), and 1,2-dichlorobenzene (1,2-
DCB)) were used, the spin-cast films exhibited different morphologies and microstructures.
Figure 4b shows the NO2 sensing performance for the different processing solvents. Upon
exposure to NO2, the hole-carrier density and field-effect mobility increased. The responses
were ordered as follows: o-xylene > toluene > CB > 1,2-DCB. Atomic force microscopy images
and X-ray diffraction results indicated that TIPS-pentacene from o-xylene exhibited a highly
crystalline structure with a high density of grain boundaries (Figure 4c). In contrast, the CB
sample exhibited a lower grain boundary density. Thus, TIPS-pentacene FETs fabricated
from CB exhibited low sensitivity, regardless of their high field-effect mobility. The 1,2-DCB
sample had a loosely connected microstructure with the lowest crystallinity, degrading
the field-effect mobility and sensitivity. Using the TIPS-pentacene film fabricated from
o-xylene, the limit of detection of NO2 could be lowered to 1.93 ppb. Seo et al., found that
the gas-sensing performance was enhanced by increasing the grain boundary density in
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TES-ADT spherulites [76]. The grain boundary density was regulated by changing the
mixing time of the TES-ADT solution [77,78]. Subsequent solvent vapor annealing of the
spin-cast TES-ADT films led to the formation of TES-ADT spherulites with different grain
boundary densities (Figure 4d). A mixing time of 5 min resulted in a large grain size
and a corresponding high field-effect mobility of 0.3 cm2/Vs. However, a mixing time of
12 h led to a smaller grain size and moderate field-effect mobility of 0.16 cm2/Vs. The
mixing-induced self-aggregation behavior of TES-ADT molecules triggers aggregates in the
spin-cast TES-ADT film, and subsequent solvent vapor annealing leads to a high nucleation
density and corresponding small spherulites with a high grain boundary density. The
response rate and sensitivity of the TES-ADT film with a high grain boundary density
(sample of 12 h) exhibited significantly better performance, notwithstanding the low field-
effect mobility (Figure 4e). Similarly, the increase in grain boundaries by vertical annealing
or solvent vapor annealing could also be an effective method for increasing the sensitivity
to NO2 [79,80]. From these results, grain boundaries provide a pathway for the target gas
molecules to reach the semiconductor-insulator interface.
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films processed with different solvents [75]. Copyright 2019 Royal Society of Chemistry. (d) Polarized
optical microscopy images of the solvent vapor annealed TES-ADT films whose solutions were mixed
for 5 min or 12 h, and (e) response curves and summarized performance of TES-ADT FETs upon
sequential NO2 and N2 exposure [76]. Copyright 2017 Wiley.

The diffusion pathway for the gas molecules can also be enlarged by fabricating
soluble acene stripes. Gas molecules easily reach the semiconductor-dielectric interface
through these crystal edges. Li et al., demonstrated that ultrathin C6-DTBDT microstripes
could be a good sensing platform for adsorption, diffusion, interaction, and desorption
activities [81]. They fabricated C6-DTBDT microstripes using dip coating (Figure 5a), and
the sensor based on C6-DTBDT microstrips exhibited an excellent response toward NH3.
The electrostatic interaction between the electron-deficient thiophene unit and electron-rich
NH3 led to the adsorption of NH3, thereby inducing traps and de-doping inside the channel
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(Figure 5b). The combined effect of de-doping and dipole-charge interactions led to an
abrupt decrease in the channel current. Here, the form and microstripes were better than
the film because the interaction could be facilitated by the efficient pathway between the
microstripes (Figure 5c). Although the sensor responded to other analytes, it exhibited
the best performance (for example, high sensitivity and low response/recovery times) for
NH3. C6-DTBDT microstripes across Au source/drain electrodes were fabricated using the
wetting-dewetting concept with evaporated Au electrodes and octadecyltrichlorosilane-
treated SiO2 (Figure 5d) [82]. It was possible to fabricate C6-DTBDT microstripes across the
channel region, and the sensor exhibited an excellent response to NH3.
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Figure 5. (a) Scanning electron microscopy image of C6-BTBDT microstripes, (b) sensing mechanism
of C6-BTBDT with NH3, (c) sensitivity, response time, and recovery time of C6-BTBDT FET sensors
according to the target gas molecules [81]. Sensitivity is defined as INH3-off/INH3-on. Copyright 2013
Wiley. (d) Fabrication procedure and scanning electron microscopy images of C6-BTBDT microstripes
on Au source/drain electrodes [82]. Copyright 2016 Royal Society of Chemistry.

The patterning (such as rectangle or line) of soluble acene is important for guaranteeing
the diffusion pathway for target gas molecules. Kwak et al., systematically examined the
relationship between the dimensions of rectangular/line patterns and the gas-sensing
performance [83]. They used a rectangular/line-patterned polydimethylsiloxane (PDMS)
mold to fabricate TES-ADT crystal arrays (Figure 6a, top). The contact region in the
TES-ADT film could be etched by the solvent-soaked PDMS mold, whereas solvent vapor-
assisted crystallization was facilitated in the non-contact region [15,84,85]. Changing the
pattern dimensions in the PDMS mold, it was possible to fabricate TES-ADT crystal arrays
with different widths (Figure 6a, bottom). The gas-sensing performance was heavily
dependent on the pattern type. With the narrowest line width, Type C exhibited the highest
performance (such as response rate, recovery rate, and sensitivity) for NO2 (Figure 6b).
Because the total pathway length for gas diffusion can be estimated from the sum of the
grain boundary and edge lengths, the sensitivity is proportional to the total pathway
for gas diffusion (Figure 6c). From these results, it was concluded that the ultrathin
microstripe pattern provides an efficient gas-sensing platform for reversible gas adsorption
and desorption (Figure 6d).
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4. Microstructural Control of Soluble Acene/Polymer Blends for Gas Sensors

Because soluble acene has a low film-forming capability, polymer binders are typically
added to prepare soluble acene solutions, and spin-casting, dip-coating, inkjet printing,
and bar coating are applied to fabricate soluble acene/polymer blend films [17,39,43–45].
In addition to the insulating binder polymers, poly(triaryl amine) (PTAA) with the highest
occupied molecular orbital level similar to that of soluble acene is used as the counterpart
polymer in the preparation of the blend solution [6,64]. However, there have not been
any reports on soluble acene/PTAA blends in gas sensor applications; therefore, papers
on soluble acene/PTAA blends are excluded in this review which focuses on FET gas
sensors. As the charge carrier path is substantially lateral to the substrate surface, the
formation of a vertically phase-separated structure is indispensable. The authors reviewed
well-written review articles that introduce recent papers dealing with phase separation
in soluble acene/insulating polymer blends [17]. For gas sensor applications, the active
layer should be exposed to ambient air; therefore, the bottom-gate structure is preferable
to the top-gate structure. Figure 7 shows a schematic of the phase-separation behavior of
TIPS-pentacene/polymer blends during the evaporation of the residual solvent. Insulating
polymers (such as poly(methyl methacrylate) (PMMA), poly(alpha-methylstyrene) (PαMS),
and polystyrene (PS)) can be used as binder polymers, which increase the solution viscosity
and reduce the dewetting of soluble acene. The TIPS-pentacene-top/polymer-bottom
structure is spontaneously induced during spin-casting, mainly because of the lower
surface energy of TIPS-pentacene compared to its counterpart polymer. Here, the residual
solvent at a given spin time determines the phase-separated structure and crystallization
behavior of the soluble acene (Figure 7, bottom schematic) [13,86].
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Lee et al., examined the phase separation and structural development of soluble
acene/polymer blends by changing the spin time of a spin-casting blend solution [13].
1,2-dichlorobenzene with a high boiling point (that is, low solvent evaporation rate) was
used to amplify the effect of the residual solvent (Figure 7). A vertically phase-separated
structure consisting of a soluble acene-top and polymer-bottom was induced, regardless
of the spin time. In a short spin time of 5 s, the excess residual solvent resulted in the
flow-induced growth of needle-like one-dimensional (1D) crystals from the edge to the
center position (Figure 8a). In contrast, the optimum residual solvent at a spin time of
50 s resulted in two-dimensional (2D) spherulite crystals. The 2D crystals at 50 s exhibit
significantly higher mobility (approximately 1 cm2/Vs) in FET applications than the 1D
crystals at 5 s because of the higher crystal perfection and coverage of soluble acene crystals
on the phase-separated insulating polymer. The response rate, recovery rate, and sensitivity
toward NO2 of the 2D structure were better than those of the 1D structure (Figure 8b) [37].
Although the 1D microstructure provides a microscale route for gas adsorption/desorption,
the inverse structure in the 2D crystals has many nanoscale holes (Figure 8b, bottom
image). A porous structure with a lower film thickness and nanoscale holes in 2D crystals
is preferable for gas diffusion, whereas higher field-effect mobility facilitates fast detection
in FET gas sensors. It should be emphasized that the 2D structure was better than the
1D structure in the proposed experimental system. Although other results opposite to
this trend are possible, a porous structure with many holes provides an excellent sensing
platform for FET-based gas sensors.

Although porous structures have been proposed for FET-based gas sensors, a gen-
eral route for fabricating porous structures (including soluble acene films) is necessary.
Zhang et al., proposed a methodology for fabricating porous semiconducting films with
organic semiconductor/PS blends (Figure 9a) [87]. In the so-called breath figure method,
water condensation under high humidity conditions (approximately 60%) and subsequent
evaporation of water under thermal annealing led to porous films. Figure 9b shows a
C8-BTBT/PS film fabricated by the breath figure method. Porous structures were eas-
ily fabricated with other blend solutions (such as p-type poly(3-hexylthiophene)/PS, n-
type poly[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-
5,5′-(2,2′-bithio-phene) (N2200)/PS). Figure 9c compares the gas-sensing properties of
dense and porous blend films. Porous films exhibit considerably better sensitivities to NH3
than dense films. This result indicates that a more accessible morphology with nanoscale
holes in the active layer is advantageous for guaranteeing a diffusion pathway in FET
gas sensors.
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Figure 9. (a) Fabrication procedure for a porous organic semiconductor film, (b) atomic force
microscopy image of a porous C8-BTBT/polystyrene (PS) film, and (c) sensitivities of FETs-based
gas sensors based on dense/porous C8-BTBT/PS and poly[N,N′-bis(2-octyldodecyl)-naphthalene-
1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithio-phene) (N2200)/PS films toward different
NH3 concentrations (ppm) [87]. Sensitivity is defined as S = [(IGas − I0)/I0]/[NH3]× 100%. Copyright
2020 AAAS.

Soluble acene/polymer blends are beneficial in terms of long-term device stability
(such as environmental and gate-bias stability). In particular, the gate-bias instability
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of soluble acene FETs can be reduced by incorporating an insulating polymer, which is
easily achieved by blending with an insulating polymer [88]. The FET-based gas sensors
are also operated under continuous bias conditions. Accordingly, the gate-bias screens
the hole carriers in p-type organic semiconductors, leading to on-current decay and a
negative shift in the threshold voltage. It is necessary to decrease the gate-bias instability
in FET gas sensors using several strategies. Kwak et al., enhanced the device stability of
TES-ADT microstripe sensors using TES-ADT/PMMA blends [15]. A patterning method
similar to Figure 6a was used, and spin-casting of the TES-ADT/PMMA blend solution
and subsequent stamping with a solvent-soaked/line-patterned PDMS mold led to highly
crystalline TES-ADT-top/PMMA-bottom microcrystal arrays (Figure 10a). Figure 10b
shows polarized optical microscopy images of the pristine TES-ADT and TES-ADT/PMMA
microstripes with different blend ratios. Although the pristine TES-ADT microstripes
exhibit a clearly patterned image, the blend samples show residue in the etched region.
Additionally, the proportion of lateral phase separation increased with an increasing PMMA
content. Consequently, the patterned TES-ADT/PMMA blend FETs exhibited lower field-
effect mobility and sensitivity than the patterned TES-ADT FETs (Figure 10c). However,
the patterned TES-ADT/PMMA blend FETs showed a significantly lower on-current decay
under the sensor operating conditions. When the gate-bias instabilities were measured,
the blend FETs exhibited lower on-current decays and corresponding higher extracted
characteristic times (τ) (Figure 10d), indicating that the charge carriers in the mobile states
increased with the ratio of PMMA in the TES-ADT/PMMA blends. Incorporating PMMA
by blending with PMMA provides a route for decreasing the gate-bias instability in soluble
acene FET gas sensors.
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Figure 10. (a) Fabrication procedure of TES-ADT/poly(methyl methacrylate) (PMMA) microstripes
using a PDMS mold, (b) polarized optical microscopy images of the fabricated microstripes from
TES-ADT and TES-ADT/PMMA blends, (c) gas-sensing characteristics toward NO2 according to
the types of microstripes, and (d) gate-bias stabilities at continuous bias conditions (VGS = −20 V,
VDS = −10 V) [15]. Copyright 2020 Elsevier.

5. Flexible Soluble Acene Gas Sensors

Soluble acenes are promising candidates for use in flexible printed electronics and
sensors. Yu et al., developed a flexible TIPS-pentacene FET gas sensor using spray coat-
ing [89]. Spray coating of TIPS-pentacene on a PMMA/substrate led to a highly crystalline
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TIPS-pentacene film for high-performance OFETs (Figure 11a). Exposure to the NH3 target
gas resulted in a substantial decrease in the source-drain current in the FETs, mainly due
to the electron-donating character of NH3 (Figure 11b). Figure 11c shows a flexible gas
sensor fabricated on a plastic substrate using spray coating, and the change in the transfer
curve under NH3 exposure is shown in Figure 11d. As the NH3 concentration increased,
the turn-on voltage decreased, which is consistent with the decrease in the source-drain
current at the given gate and source-drain voltages. Although a flexible gas sensor on a
plastic substrate was demonstrated with spray coating, the operating voltage in this study
was still high.
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Feng et al., developed a low-voltage-driven NH3 gas sensor based on a TIPS-pentacene/PS
blend [90]. Figure 12a displays the device structure of the plastic substrate. They used low-k
poly(vinyl cinnamate) (PVC) as the gate dielectric and inkjet-printed Ag as the gate and source-
drain electrodes. Dropping the TIPS-pentacene/PS blend onto the inclined PVC gate dielectric
resulted in the 1D growth of TIPS-pentacene crystals (Figure 12b). Flow-induced 1D growth
of TIPS-pentacene on an inclined substrate has previously been reported [91]. In addition to
the flexibility shown in Figure 12c, the device exhibited remarkable FET characteristics
(such as a low subthreshold slope, low-voltage operation, and operational stability). In
particular, the FET exhibited a significant response toward NH3 under ambient conditions
with a minimum power consumption of 50 nW. Figure 12d shows the readout circuit of the
NH3 FET gas sensor, which successfully changes the current signal to the voltage output
signal (Vout) using a load resistor. The high signal at the inlet of the ambient NH3 and
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stable background at the outlet of the ambient NH3 demonstrated the stable operation of
the NH3 sensor under ambient conditions.
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6. Conclusions and Future Perspective

This paper reviews soluble acene-based FET gas sensors, focusing on the microstruc-
tural control of soluble acene films and soluble acene/polymer blend films. Soluble acene-
based FET sensors exhibit different sensing modalities depending on the type of soluble
acene; however, in most cases, they can detect NO2 and NH3 with dipolar characteris-
tics. Considering the diffusion-limited adsorption/desorption of target gas molecules, the
sensitivity can be enhanced by grain boundary engineering, patterning, and generation
of pores in the active layer of FET gas sensors. Soluble acene/insulating polymer blends
have also been suggested as sensing layers for FETs. The microstructure and vertical phase
separation must be finely tuned to enhance the sensitivity, recovery, and stability of the gas
sensors. In particular, the growth characteristics of soluble acene on an insulating polymer
determine the FET performance and sensor characteristics. Recent studies have also been
conducted on flexible soluble acene gas sensors and circuits.

Notwithstanding the introduced studies, the selectivity of the target gas is not easily
attainable for soluble acene FET gas sensors. Because NO2 is the strongest oxidizing gas
in the harmful gas libraries, the sensitivity toward NO2 is generally the highest in soluble
acene gas sensors. TIPS-pentacene exhibited the highest selectivity for NO2. However,
it is not easy to select other gases with low oxidation or reducing strength. It should be
emphasized that many types of gases exist under atmospheric conditions, which may
interfere with the target gas, interrupting the sensing signal from the target gas. Thus,
a selective sensing mechanism that manipulates the soluble acene–gas interaction must
be developed. Under atmospheric conditions, water and oxygen molecules always affect
sensitivity and long-term stability. Thus, a soluble acene gas sensor that is stable under
humid atmospheric conditions should be developed. Although a flexible gas sensor has
been demonstrated, a soluble acene-based gas sensor with other form factors (such as
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being stretchable and rollable) must be developed to enable wearable electronics. For
applications in wearable electronics, exhale breath sensors employing soluble acene FETs
will be particularly useful for the real-time analysis of human diseases.
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