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D. Crespd
Departament de Bica Aplicada, Universitat Polinica de Catalunya, Campus Nord UPC, &b B4, 08034 Barcelona, Spain

T. Pradell
Escola Universitda d’Enginyeria Tenica Agricola, Universitat Politenica de Catalunya, Urgell 187, 08036 Barcelona, Spain

M. T. Clavaguera-Mora
Grup de Fsica de Materials |, Departament dedica, Facultat de Ciecies, Universitat Autsoma de Barcelona,
08193 Bellaterra, Spain

N. Clavaguera
Grup de Fsica de I'Estat Slid, Departament d’ECM, Facultat de’ica, Universitat de Barcelona, Diagonal, 647,
08028 Barcelona, Spain
(Received 3 July 1996

A model has been developed for evaluating grain size distributions in primary crystallizations where the
grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field
integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account
a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is
considered, and a modification of this is proposed to take into account interference of the diffusion profiles
between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain
size distribution and transformed volume fraction for transformations driven by nucleation and either interface-
or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystalliza-
tion of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are
computed, and their properties are discus§86163-18207)10405-3

I. INTRODUCTION well established; see, for instance, Ref. 1. However, the dif-
fusion around isolated grains cannot give a description of the
For some nonequilibrium transformations the kinetics ofinterference between diffusion fields of neighbor grains at
molecular rearrangement is sufficiently slow to give a rate ofidvanced stages of the phase transformation, which follows a
advance of the interface limited by the kinetics of the inter-nucleation and growth kinetics.
face attachment process rather than by the heat flow. This Nucleation and growth kinetics which results in the cal-
characteristic has been used to carry out studies of interfac&ulation of the volume fraction transformed at a given time is
controlled crystal growth over wide ranges of temperature'e! establlshe9_6by the 'Kolmogorov-Jphnson-MehI-Avr_am|
We wish to consider the situation in which the kinetics of (KIMA) theory™™ KIMA's theory considers randomly dis-
transformation is sufficiently fast for diffusive processes totfiouted active nucleation sites which grow to form grains
limit the rate of interface advance. Assuming that the trans&nd during the growing process may collide with other grains
formation kinetics is controlled by random nucleation, the®f N€ighbor sites. To summarize, let us define a control vol-
explicit form of the growth-rate-limiting process determinesUMe Vo where the growing phase occupies a volux(g);
the microstructure of the final product. Other quantities, sucil® transformed volume fraction is theq(Y,t)=V(t)/Vo.
as transformation rate, mean grain size, and grain densityeré Y is any of the macroscopic variables which may in-
depend to some extent on the limiting mechanisms underlyluence the kinetics. Avrami introduces the concept of ex-
ing the transformation. tended voluméV/(t) as the volume that the growing grains
The diffusion-controlled growth rate plays a fundamentalwould occupy neglecting impingement:
role in a wide range of crystallization processes, especially in

partitioning transformations. In a general sense, the kinetics 2\_!: Vo~V (1.2
of the grain growth is controlled by the diffusion of the dv Vo '

slower species which must be included in, or expelled out of,

the transformed phase. In most cases primary crystallization This relationship means that the probability of each grain

of amorphous materials falls into this picture and, thereforefinding an untransformed volume to continue growing is ran-

an accurate knowledge of the diffusion process and the indomly distributed. The KIMA theory gives an adequate de-

duced kinetics is essential in order to describe the propertiescription of the kinetics of any nucleation and growth trans-

of the microstructures developed in the crystallization proformation because it is based only on statistical

cess. considerations, being independent of the specific dynamics

The diffusion process around an isolated growing grain if the procesg.
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Equation (1.1) can be integrated under realistic condi- Nk 1=ik,

tions, provided that the nucleation rdter,t) and the growth
rate G(Y,t) are known. Several authors have performed Nii1ke1=Njk, ™6 (2.9
these kind of calculatiors:*!

Recently, Crespo and Pradélhave proposed an exten-
sion of the Avrami’s theory in order to calculate not only the
transformed volume fraction but also the grain size distribu
tion developed. This model has been tested against Mon
Carlo simulations, showing excellent agreement.

In this paper, the above model is used and convenientl
modified in order to describe diffusion-controlled grain
growth in primary crystallization processes. In Sec. Il A we 'Jk=2_ ’ﬁjykéﬂl’?. (2.5
summarize the features of the previous mddéh Sec. Il B J
radius-dependent grain growth is studied, and results ob-

tained are applied to diffusion-controlled grain growth N than extended populations due to grain collisions. Our pur-

sec. IIC. Overlapplng Of. dlffu5|or_1 fields is cor]5|dered In pose is to calculate those populations explicitly. Therefore,
Sec. Il D. Comparison with experlmental_ data is alsc_) Pr€an extension of the KIMA model is needed. The model is
sented. Sec. lll is devoted to the analy3|s_ of the gramn SIZg it in the following structure. Impingement between grains
r?r'nplies that only a fraction of the grains belonging to each
population of radius; at timet, is able to grow enough to

have radiusr;,, at timet,,,. We define this fraction as

Il. MODELING OF DIFFUSION-CONTROLLED ay, and postulate that this fraction is independent of the

GRAIN GROWTH grain radius j because it is only related to the probability of

finding an untransformed volume near to a grain. This allows

) us to write equations equivalent to Eq8.4) for the actual
As mentioned, Crespo and Pradélhave proposed a populationsn; ,:

mean-field model in order to calculate the grain size distri-

whereﬁj,k is the extended population of radiug per unit
volume at timet,, andi,=i(t,). Note that all the grains
nucleated at time, are included in the population, . 1,
hus having a finite number of populations which grow at
unit speed. The extended transformed volume, coming from
)q unit volume, is easily written as

Actual grain populations; , do grow at a slower speed

cluding remarks are presented in Section IV.

A. Mean field integration of Avrami’'s model

bution obtained after nucleation and growth. The essential Ner1=(1—a )N +i(1—vy),
feature of this model is that it assumes that Bql) can be _
applied in differential form to any grain population with a Niiixr1=(L—@)njitan, j>€ (2.6

well-defined average radius. The main features of this mOdE{,'\,
are now summarized. as
The model is written in terms of reduced variables, which

are presented as lowercase letters while dimensional vari-

ables are presented in as uppercase letters. A unit lepgth V= 2 nj,kéwrjs. (2.7
defined to make calculations dimensionless, i.e., the resolu- !

tion length of a suitable observation method, and space di-
mensions are reduced by Time is also scaled by imposing
the condition that the growing speed in the reduced system
(g) be unity. Then the time unit is defined by

herev is the transformed volume by unit volume, defined

The value ofey is determined by imposing the condition
at the volume differential¢extended and actuabatisfy
vrami’'s equation(1.1), which in this formulation is written
as

t+7(t)
U:f G(Y,t")dt’, (2.1 Uk+1~ Uk-1
t —r- -

= =1—vy. (2.8
Uk+17 Uk-1

and, consequently, the reduced nucleation rate is Equations(2.4), (2.6), and(2.9) give an iterative method

t7(t) to obtain the grain size distributions present in the materials.
i(t)= 7]3J (Y, t")dt’. (2.2 The initial conditions for the integration are
t

njo=0, j=1M,
Let us assume that new nuclei have an average initial

radiusR,; in the reduced system it becomes given by Njo=0, j=1M, (2.9
whereM is the arbitrarily large number of populations simu-
r :E 2.3 lated. At each integration step E@8.4) are used to calculate
¢ n’ ' the new values of the extended populations. Then the value

of ay is determined from Eqs(2.6) and (2.8) by using a
Extended and real populations by unit volume are definedNewton-Rapson method. The model has been tested against
and their evolution is followed at unit time steps. ExtendedMonte Carlo simulations, giving excellent results; see Ref.
populationsn;  are calculated assuming that grains grow in12. We refer to this model as the mean-field constant-scale
isolation. Due to the particular coordinate system chosen, it8MFC) model because the grain radius scale is homoge-
evolution is neous.
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B. Modeling of radius-dependent grain growth

Most of the nucleation and growth transformations are R
driven by a growth speed dependent on the grain radius, i.e., m
G=G(Y,t,r). The MFC model is not able to reproduce such
processes because the radius dependence of the growth rate Ret — = ~ -

breaks the grain radius scale homogeneity which is underly-
ing the MFC model. For that reason, in this section we
present a modification of the MFC model which is able to R ¥ - - -
deal with the particular case of time-independent radius-
dependent growth rates, i.&5,=G(r), which we will refer t

to as the mean-field variable-scdMFV) model. In particu-

lar, this model will apply to diffusion-controlled grain FIG. 1. Plot of R(t) in a interface-plus-diffusion-controlled

growth. grain growth process.

In order to adapt the MFC model to radii-dependent o
growth, it is necessary to define a variable radius length C. Application: Interface plus
scale, by imposing diffusion controlled grain growth

We will consider a particular case of a transformation
g(rp=1 Vk. (2.10  driven by homogeneous nucleation of graifw spherical
shape of critical radiusR, whose initial growth occurs at a

This is achieved by observing that the radius of an isoconstant rate up to a threshold radis, further growth
lated grain, nucleated &t=t, with an initial radiusR,, isa  Peing diffusion controlled® Under steady-state conditions

continuous function oft—t) given by the growth velocity will become
t dR__C*-Cp 1 015
R(t)=R€+f G(t' —to)dt'. (2.11 dt "C*—C.R’ :
to

where D is the diffusion coefficient for the slowest solute
}hat piles up ahead of the interface, a@g,, C*, andC,
and, respectively, for the concentration of that solute inside
e grain, at the grain interface, and at very large distances
compared to the radius of the grain.
In this section we ignore the interference between differ-
1 (t-to . . : .
F(t—tg)=r .+ _j G(t")dt’, (2.12 ent growing grains that arises fr(_)m the competition for the
0 available excess solute, since it becomes important only
when the diffusion fields of two grains begin to overlap to an
which establishes that there is a univocal relationship beappreciable extent. The more general problem of interference
tween the grain radius and the time elapsed since nucleatiois treated in the next section. Thus, as a first approximation,
Therefore, the value of is defined by isolated grains grow in an infinite matrix ahas the initial
value C, of the initial phase. We will define aeffective

This is a universal function, in the sense that the radius o ¢
all grains has the same time dependence after nucleatioﬁj.
Then, for a given value of; we have

T diffusion coefficientD, as
77=f G(t")ydt'=r(7)—r,. (2.13
’ Do=D = 20 2.1
=D (2.19
Once definedr, the values of, are simply
and then
Merk=r(K7), (2.149 dR D,
TR (2.1
which automatically satisfy Eq2.10.
Expression(2.14 ensures that extended populatian$ In order to select between the two growth mechanisms,

. : ~k+1 . . . . . .. . .
will always transform inton;;; for any values off andk.  the continuity in radius size is imposed, resulting in

This property also implies the need of a time independence

of G, because changing values®fwould imply the redefi- : R.+Got, R(1)=Ry, .18
nition of the radius scale, thus invalidating the definition of R(t)= vi , 21
populations. JR:+Dgt  otherwise,

Under the above condition, Eq&2.4), (2.6), and (2.8)  where G, is the interface controlled growth rate and the
apply without any correction, conserving their meaning. Cal-threshold radiuR; is
culation of the actual grain populations according to this
definition is achieved straightforwardly by using the same Do
computation strategy as in the MFC model. RTZG_O_ R.. (2.19
This MFV model allows us to study the crystallization
behavior of a primary transformation. Figure 1 shows the behavior &%t).
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FIG. 3. Plot of the grain density vs time obtained for a given
value ofg andi =4x10"8 (solid line) andi/10 (dashed lingwith-
out diffusion. Plot of the total(stars ling, interface-controlled
(circles ling, and diffusion-controlledtriangles ling grain density
in an interface-plus-diffusion-controlled process with the same val-

The length scale of the MFV model applied to this case is'®® ofi andg and a reduced diffusion coefficiedt=1.2.

written in reduced units as

FIG. 2. Plot of the crystalline fraction vs time for a given growth
rate g and reduced nucleation rate=4X 1078, i/10, andi/100
without diffusion, and for the same valuesiaindg with diffusion
obtained whers=1.2 andé/4.

creases, but it is reduced as soon as diffusion plays a role.
The effect on the grain size distribution shape will be dis-
(2.20 cussed ir_l Sec. lll. . .

' We will apply this model to the experimental data ob-
tained for the primary crystallization ei-F&(Si) DO4 struc-
ture in a Fe; sCuNb;Si; 7 sBs amorphous alloy. As is well
known*~*nanocrystallization is promoted by the presence

Dy of Nb atoms which limit the grain size. Nb is expelled from
o= ﬂ (22D the crystalline structures, generating a diffusion layer in the
0 surrounding matrix’ The homogeneous nucleation fre-
andR;/n=&8—r in reduced units. quency and interface-controlled growth dependence on tem-

We now illustrate the effect of the introduction of the Perature are evaluated by the classical théBand the dif-
diffusion in the grain growth. Figure 2 plots the evolution of fusion coefficient Dy, corresponding to Nb atoms, is
the crystalline fraction versus time for a given growth rateassumed to follow an Arrhenius temperature dependence.
g and three different values of the reduced nucleation rateThe values of the several relevant quantities are shown in
namely,i=4x 1078, andi/10, andi/100, without diffusion. ~ Table I for specific temperatures. Experimental data on
Moreover, two diffusion-controlled processes obtained forX(t) were obtained under isothermal transformation of the
the same values of andi, and reduced diffusion coeffi- Sample heat treated in a differential scanning calorimetry
cientss= 1.2 andd/4, are presented. As a general trend, both(DSC) cell *+22
diffusion and reduction of the nucleation rate retard the crys- The isothermal evolution of the transformed fraction for
tallization, but in a different way. Therefore, the introduction three different temperaturgg90, 500, and 510 °Cis ob-
of the diffusion mechanism provides more flexibility for tained by the integration of the MFC model for interface-
modeling grain size populations in transformations for whichcontrolled growth and the MFV model for interface-plus-
the KIMA theory is applicable. diffusion-controlled growth. Figure 5 shows the comparison

We can also visualize the relative importance of the two
mechanisms, nucleation rate and diffusion, by plotting in
Fig. 3 the number of grains versus time for a given value of i e
g and different values of and §. Although reducing the - — o -
nucleation rate and introducing diffusion both delay the tran-
sition, the effect on the grain density is the opposite: Reduc-
ing the nucleation rate drastically reduces the total number of
grains, while the introduction of diffusion increases it.

The model of grain growth used assumes that diffusion
takes place only after the grain reaches a threshold radius
Ry. Therefore, diffusion-controlled growth takes place
above the time needed for the first nuclei to redh This
is also shown in Fig. 3, where the relative fractions of grains
growing either by interface or by diffusion are also plotted. |G, 4. Plot of the average grain radius vs time obtained for a
At increasing time, diffusion becomes the dominant mechagjiven value ofy andi=4x 108 (solid line) andi/10 (dashed ling
nism of grain growth. The average grain radius also showsyithout diffusion, and with the same values ioindg and a re-
these differences, as shown in Fig. 4. Without diffusion, theduced diffusion coefficiens=1.2 (stars ling. In all cases the ar-
average grain size increases as the nucleation irade-  rows indicate the end of the primary crystallization.

3 j, IsRq¢ln,
fi= Jr2+(j—e)6 otherwise,

where§ is the reduced diffusion coefficient defined by

—%— 08 ~

Average grain radius
(arb. units)
R
R

I I
t (arb. units)
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TABLE |. Parameters used in the calculation of the nucleation

. C

ratel, the growth rateG, and the diffusion coefficienD for the ¢ b

Fe;3 sCuNb;Si;; sBs amorphous alloy.

T R. Go [ Do go

(°C)  (nm) (cm sY (em3s™h) (cm? s7h * R R
C - @

490 1.106 3.241%107%° 1.4112x10'%° 1.6826<10°%°

500 1.106 6.097810°%° 3.5303x10"%° 2.6611x10°%°

510 1.106 1.099810 % 8.3671x10"%*® 4.1597x10 5 G |- c
Cy -

R R’

between experimental d&t£?and the values calculated with
the two models above mentioned. By convention, the trans- FIG. 6. Scheme of the concentration profile between grains at
formed volume fraction is taken to Be=1 at the end of the the beginninga) and near the entb) of the crystallization process,
primary crystallization, while a volume fraction-1y of the ~ Showing the effect of the overlapping diffusion fields.
specimen remains untransformed. S ) ) )
Close observation of Fig. 5 indicates that the computecPart't'O'?'”_g transfo_rmatlons. The c_on_centrat](_)n gradient at
volume fraction for both models fits the experimental data athe grain interface is fortunately quite insensitive to the pre-
the onset of the transformation. However, systematic overe$#S€ manner in Wh'?ﬁwe specify the boundary conditions far
timation of the transformed fraction occurs when considering?Way from one graifi’ At the final stages of the transforma-
only interface-controlled growth. Overestimation, comparedion, one expect$C* —C|<|C* —Cy. In this case, the in-
to experimental data, likewise appears in the computed vaferface will move sufficiently slowly for the steady-state
ues when the interface-plus-diffusion-controlled growth is€duation(2.19 to be appropriate. However, the presence of
used, but it occurs mainly at the late stages of the transfof2€ighbor grains growing simultaneously will increa€e
mation. These results suggest that, in the crystallization pro¥hich instead of remaining constaf@nd equal toCo), as
cess considered, the onset is driven by homogeneou%ssumf{d in the f|rst_apprOX|mat|on, will vary with time and
nucleation- and interface-controlled growth, while thedepending on the microstructure developed.
diffusion-controlled growth dominates further crystallization ~ The main problem in order to take this effect into account
stages. However, in this particular alloy some further mechalS that spherical symmetry is lost due to the random distri-
nism is retarding the crystallization. bution of grains around a given grain of radiRsMoreover,
Eq. (2.19 is obtained under the assumption that far away
from the growing grain the concentration of solute is known.
In the present case, we consider that the grains are still grow-
The interference between nearby growing grains is part olng in isolation by substituting the effect of the rest of the
the diffusion problem and results in a growth rate that gradugrowing grains for an increase in the average concentration
ally becomes zer®® This is due to the fact that the concen- C(t) of solute in the matrix far away from the grain at any
tration profile in the matrix is altered by the presence ofgiven time. That is, we will substitute the concentration in-
nearby grains, becoming time dependent, as sketched in Fifomogeneity, due to individual grains, for the mean concen-
6. In a general sense, this corresponds to the situation wheteation field C(t). Therefore, Eq(2.195 will still be appli-
the growth of the grains modifies their surroundings, i.e., incable, replacingC, by C(t). In order to evaluate this time-
dependent concentration of solute, a mass balance atttime
has to be written, yielding

D. Model of overlapping diffusion fields

¥YX(1)Cy [ 1= yX(1)]C(1) =Co. (2.22

The value ofC(t) is then

Crystallized fraction (%)

o 0 Co— YX(DCy
© 500 °C C(t) = _ 22
| o s10°C () 1— X(1) (2.23
25 — -~ Interface controlled
1 — lg;:)evrlfl:ce+Diffusion Introducing this value in Eq(2.195 in place ofCy, we
0 . | —contolled growth obtain after some transformation
0 400 800 1200
dR 1-f 1 D
t(s) b _ xt Lo
dt (1 1-1, Vx(t))l—yxu) rR- (229

FIG. 5. Experimentally measured transformed volume fraction
vs time for the isothermal crystallization of fz8:CuN;Si;7 sBs Herefy=Co/C*, f;;=C/C*, andy are assumed con-
metallic alloy at several temperatures. Calculated crystalline fracStants which might be determined experimentally. It is easy
tions for interface-controlled growttdotted ling and with the in-  to see that at the beginning of the transformation, that is, at

troduction of the diffusion-controlled processolid line) are also  the limit X(t)—0, the growth speed is the same as defined
shown for the three temperatures. by Eq.(2.17).
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In order to simplify the notation, we will define the coef- 100
ficient ~ ,
8
X(0)=| 1= 2y | 2.2 £
5 50
so that S i © 500°C
= o s10°C
dr DO ‘i 25 - lclz)lx:arrfoac:+[:oifyfusion
a:()-()((t))ﬁ (226) ) - — Ov«:rlalll)pdingg "
0 , | : : difflusion ﬁellds
Therefore, the radius evolution of a grain is still given by 0 400 800 1200
Egs.(2.18 and (2.19, substitutingD, by o(X(t))D,. This t(s)

produces a double effect on the growth protocol; on the one
hand there is an additional reduction of the diffusion- FIG. 7. Experimentally measured transformed volume fraction
controlled growth rate as the transformed volume fractiorvs time for the isothermal crystallization of fze:CuNb;Si;; sBs
increases, while on the other hand there is a reduction of theetallic alloy at several temperatures. The calculated crystalline
threshold radius at which diffusion begins to control thefractions with the diffusion-controlled procegdotted ling and
growth rate. with the introduction of the overlapping diffusion modsblid line)

The introduction of this variable diffusion rate in the are shown.
MFV model is performed by defining the same variable ra-
dius scale as in Eq2.20, and modifying Eqs(2.4) and  Mossbauer spectra also gives the value/(F)X(t), obtain-

(2.6) as follows: ing (490 °0=0.60+0.05 (Ref. 25 and %510 °Q
=0.65+0.05%° These parameters have not been determined
Newr1=lk, at 500 °C, but it seems plausible to accept t€B00 °O
_ _ =0.62+0.05). The only unknown parameter still undefined
Nj+1k+1=Njk,  0(X)O—T>]>€, in Eq. (2.24 is C*, which we will fix by imposing the con-

dition that no diffusion gradients exist in the remaining ma-
trix; that is, C(t) —C* whent—co. This results in

_ o \_ o
nj+1,k+1:(1_U(Xk)_)nj+l,k+ a(X—N; i,
Fj+1 rj

Co
(1>]>a(X)6—r., (2.27 o ~fo=1-v. (2.29
Np1xr1=[1= (XD N w16t o(X)Nj k. j>r7, With this assumption, no new adjustable parameters are
introduced in the modeling of the growing speed.
Nek+1= (L= )Nt i(1=Vy), The results of the integration of the MFV model using the
growth rate defined by Eq2.24 and the above-mentioned
Njyixr1= (1= )Nt o, o(X)d—r.>j>e, assumptions are compared with experimental data in Fig. 7

for the annealing of the samples at the same temperatures
(490, 500, and 510 °C The agreement between computed
and experimental data is excellent, always below the uncer-
tainty of the experimental data-(10%).

o o
Njtik+1= ( 1- akO‘(Xk)r_—) Njt1xt ako'(xk)r__nj,lw
j+1 i

re>j>a(Xé—r., (2.28
Il. GRAIN SIZE DISTRIBUTIONS
Njt+1kr1=[1— ko (XN 1kt axo (XN, J>r1. , o ,
The final goal of the above formulations is to obtain a

Here, X, = X(tyx) and, consequentlyr(X) are considered quantitative description of the resulting grain size distribu-
slowly varying variables; their variation during the integra- tions after controlled thermal treatmenfsThe shape of the
tion step is neglected and they are recomputed at each itergize distribution has substantial influence on most of the
tion. It is worth noting that it is necessary to separate themacroscopic physical properties of interest, i.e., magnetic co-
grains of radiuso(X(t))o—r . <r;<ry because they first ercitivity and susceptibility, electric resistance, etc. How-
grow at a constant rate, their radius scale being constanéver, the parameters usually given in the description of a
Afterwards their growth is controlled by diffusion, and the microstructure, namely, the grain density and the average
growth rate becomes proportional tdR1/ grain radius, are quite insensitive to the real grain size dis-

Let us evaluate the effect of the existence of over-ribution. Thus, the ability of the above models to obtain
lapping diffusion fields in our previous example, of the pri- those distributions greatly increases the knowledge of the
mary rystallization of «-FeSi) DOj; structure in a microstructure, which is the essential feature controlling the
Fe 5 <CUNb;Si;; Bs amorphous alloy. In this particular macroscopic propertied3°
case, it has been determined experimentally Bat=0. Figures 8 and 9 show the computed grain size distribu-
Mossbauer results indicate that primary crystallization endsions after isothermal treatments of F&Cu Nb;Si; 7 sBs at
approximately after annealing 4(& h), at 490 °C(510 °O; 490 and 510 °C for several crystallized fractions. Interface-
so we accept thak=1 at this moment. Analysis of the controlled growth produces a broad grain size distribution,
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FIG. 8. Plot of the grain size distributions for isothermal anneal- 1 g piot of the grain size distributions for isothermal anneal-
ing of Fe 3 sCuNb;Siy 7 sBs at 490 °C at three different crystallized ing of Fe,s SCUNb;Si;- Bs at 510 °C at three different crystallized
fractions, namelyX=20%, 60%, and 99%. The dotted line ShOWS f5.tions, namelyx=209%, 60%, and 99%. The dotted line shows
the resulting distribution for the interface-controlied growth mecha-e regyting distribution for the interface-controlled growth mecha-
nism. The dashed line includes interface-plus-diffusion-controlled,is, “The dashed line includes interface-plus-diffusion-controlled

growth. The solid line shows the result of interface plus overlappingyo\th. The solid line shows the result of interface plus overlapping
diffusion fields growth. diffusion fields growth.

shgwlbngl a flar: profile with a srl]mll_ar nL(ijb_er of ?rau;_sﬁfor_ all smaller average radius will be obtained with a higher number
radii below the maximum. The introduction of a diffusion o¢ oaing while increasing temperature.

mechanism dramatically changes the shape of the distribu- 1o refinement of the distribution produced by the diffu-
tion, giving a main asymmetric peak. The discontinuity ob- jon process may also be observed in Fig. 10, where the
served on the left side of the peak appears at the thresho erage grain size and maximum grain size of the distribu-

radius, where diffusion becomes the controlling mechanisny,, ore piotted as a function of the annealing temperature for
of grain growth. The shape of the discontinuity is due to théy,q o\erjapping diffusion field model, and are compared with
discontinuous model of growing mechanism used, which asgg jnterface-controlled growth results. Although the average
sumes continuity in the radius growth but not in the growinggain size is only slightly reduced, it becomes evident that

speed, being only a first approach of the true growing mechghe maximum grain size is strongly cut down because of the
nism. In fact, a smooth transition between interface- an

diffusion-controlled growth is expected, and more sophisti-

cated models may offer a more realistic description. How- 20
ever, the effect of this improvement of the growing descrip- - -
tion should not affect the main trends of the shape of the . T
distribution. Tmax
The most interesting features of the introduction of a e \
diffusion-controlled growing mechanism are the refinement £
of the microstructure and the reduction of the maximum ¢ - - e,
grain size, closely related to the asymmetry observed in the n T
shape of the distribution.
The delay of the crystallization given by the introduction 0 | | |
of the presence of overlapping diffusion fields gives a further 490 500 510
reduction of the maximum grain radius and results in an T (°C)
accumulation of grains at small radiis, giving a more asym-
metric grain size distribution. FIG. 10. Dependence of the averag@iamonds and

The main features of the grain size distribution are thémaximum (circles grain size with annealing temperature of
same at higher annealing temperatures, but an extra reduge,, .CuNb;Si;; $Bs for the overlapping diffusion field model
tion of the average grain size and maximum grain size and agolid line) and the interface-controlled growtdashed ling Re-
increase of the total number of grains and peak maximum areults for the diffusion model are indistinguishable from the average
also observed. Therefore, a sharper distribution with aliffusion field model.
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e 025 0.50 075 1,00 FIG. 12. Volume fraction occupied by each population after

completion of primary crystallization X=1) for a sample

of Fe;3 sCUNb;Si; 7 sBs annealed at 490 °C at the end of the pri-

mary crystallization. The dotted line shows the resulting distribu-
FIG. 11. Plot of the grain density vs crystallized fraction in tion for the interface-controlled growth mechanism. The dashed line

Fer3 sCUND;SI; 7 5Bs. includes interface-plus-diffusion-controlled growth. The solid line

shows the result of interface plus overlapping diffusion fields

growth.

Crystallized fraction

diffusion, and it is additionally reduced by an increase in the
annealing temperature. Results for the diffusion model are
indistinguishable from the overlapping diffusion field model each population, is presented in Fig. 12, and shows that there
and so are not plotted. is only a narrow range of grain sizes having appreciable con-

The above statements greatly coincide with the empiricatributions to any extensive macroscopical property. What is
knowledge about the suitable annealing procedures to obta@lso important is the main change induced by the diffusion
small grain sizes. Effectively, it is well known that better mechanism controlling the growth rate, namely, a clear de-
macroscopical properties are obtained by annealing at higherease in the size<{30%) of the relevant populations. This
temperatures, provided that no secondary crystallization bedistribution is directly comparable with the experimental
gins. data obtained by indirect Fourier transform of small angle

Another critical parameter of the obtained grain size disneutron scatteringSANS) and small angle x-ray scattering
tribution is the grain density. It is shown in Fig. 11 for the (SAXS) spectra. These methods give volume fraction distri-
three models studied above and the three temperatures, adations, but not absolute measurements of the number of
function of the crystallized fraction. Comparing the grains. Measurements of a crystallized material of a similar
interface-controlled growth and the diffusion-controlled composition (Fe,; <CuNb,;Si s B7),%2 annealed fo 1 h at
growth for a given temperature, the effect of the diffusion550 °C, give an average grain size of about 5 nm and a
mechanism is to increase the grain density by a factor omaximum grain size of about 8 nm. The shape of the ob-
about 3/2. Furthermore, the overlapping diffusion fieldtained distribution is very close to those computed with the
model still gives a further increase in the grain density, duanterface-plus-diffusion-controlled growth model.
essentially to the additional reduction of the growing speed The developed microstructure may also be evaluated by
for larger grains. transmission electron microscofyEM) analysis. However,

In the final stages of the crystallization process, for crysdit has some limitations both in resolution and statistics. On
tallized fractions over 0.9, the overlapping diffusion field the one hand, the resolution of the TEM spot limits the mini-
model gives rise to an additional increase in the total grairmum size of a detectable grain, thus avoiding the detection
number. This increase is due to the fact that the nucleationf smaller grains, as well as in the separation between con-
rate is considered constant in the whole process. Howevetiguous grains. On the other hand, the finite thickness of the
the change in composition of the remaining amorphousample is responsible for grain overlapping. Both facts can
phase should result in a reduction of the nucleation rate at thiead to an underestimation of the total number of grains.
final stages of the crystallizatioh.This has not been consid- Moreover, as shown by several authdtshe shape of the
ered in the present model, and will result in a smoother in-TEM grain size distribution also depends on the tracks of the
crease of the total number of grains. cut grains on the two surfaces of the sample, which may also

The relatively important number of grains of small sizesbe evaluated as in Ref. 12. The observed grain size distribu-
responsible for the marked asymmetry of the grain size distion becomes a mixture between the grain size distribution
tributions will, in fact, have a low effect on any extensive and the surface grain size distribution. As an example, the
macroscopical property. In fact, considering the fraction offinal surface distribution for the sample annealed at 490 °C
volume occupied by each population of a given radius, theand 510 °C, computed with the overlapping diffusion fields
populations with small radii will also make a small contribu- model following Ref. 12, is shown in Figs. 13 and 14. The
tion to the total crystallized volume. The volume fraction shape of this distribution shows a more rounded main peak
distribution, obtained by plotting the volume occupied bythan the grain size distribution.
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FIG. 13', Fina! surface grain size distribution  of FIG. 14. Final surface grain size distribution of
Fe;3 sCuNb;Siy 7 5Bs, isothermally annealed at 490 °C, computed Fe 5 <CUND;Siy 7 B, isothermally annealed at 510 °C, computed

by using the ov_erlapplng diffusion field model at three different by using the overlapping diffusion field model at three different
grystalllzed fractions, r.1ame|.y,:.20%, 60%, and. 99%. The dotted crystallized fractions, namely=20%, 60%, and 99%. The dotted
line shows the _resultmg d|str|but|on_for t.he mterfa_ce-controlled"ne shows the resulting distribution for the interface-controlled
g_rowt_h mechanism.  The dashed_ I|r_1e includes |nterface-plusgro\mh mechanism. The dashed line includes interface-plus-
diffusion-controlled growth_. Th_e so_hd line shows the result of in- g sion-controlled growth. The solid line shows the result of in-
terface plus overlapping diffusion fields growth. terface plus overlapping diffusion fields growth. Fig. 8.

TEM analysis of the samples aft€ h of annealing at nisms in both cases is analyzed. Extensive analysis of the-
490 °C (Refs. 22 and 2bgave an average grain radius of data is presented with respect to the macroscopical and mi-

about 5 nm and a maximum grain radius of about 15 nm, iff"oScopical property evolution.

good agreement with the calculated results for the overlap- As a maip re:sult It has b.een Qemon_strated that the in_tro—
ping diffusion fields model, namely, 5.7 and 12.7 nm. Ex.duction of diffusion mechanisms is crucial for understanding

perimental estimation of the final number of grains by unitthe micro§truc;ture_deve!opment. Consideration of the.over-
lapping diffusion fields is necessary in order to obtain an

surface and volume gives values of aboux #0'' and \ : ; .
2x 1017 cm 3, respectively, which are in excellent agree- overall agreement with the experimental time evolution dur-

ment with the computed values of %40 and 5.2< 10'7 ing the transformation procesgoth microstructure and
em3 ' transformed fraction and provides a natural mechanism to

stop the primary crystallization. However, the main picture
of the final microstructure developed is rather insensitive to

IV. CONCLUSIONS the overlapping diffusion field consideration.
_ . e The validity of the model has been tested against experi-
A mean-field model for nucleation and diffusion- meontal data on the primary crystallization of an amorphous
controlled growth processes in primary crystallization hasyaieria| resulting in a nanocrystalline structure. In practical
been developed which allows one to evaluate the microstrucsyjications, interesting macroscopical properties of new
ture development by computing the grain size-distribution. aterials may be obtained with a very large amount of grains
In a general sense, this corresponds to the situation where g 5 yefined nanostructure, namely, a very small grain size
growth of the grains modifies their surroundings, which iSgisyripytion with a small average grain size. The results pre-
the case in partitioning transformations. The body Ofgenteq show that those characteristics may be achieved as a

the model is a generalization of the already develdbed yoqt of a diffusion-controlled growth mechanism.
nucleation and growth kinetics model for evaluating grain

size distributions, conveniently modified to include size-
dependent_crystal growth. _ _ ACKNOWLEDGMENTS
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