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Cholinergic dysfunction has been implicated in the pathophysiology of psychosis and psychiatric disorders such as schizophrenia,
depression, and bipolar disorder. The basal forebrain (BF) cholinergic nuclei, defined as cholinergic cell groups Ch1-3 and Ch4
(Nucleus Basalis of Meynert; NBM), provide extensive cholinergic projections to the rest of the brain. Here, we examined
microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis (~31 weeks of psychosis, <2
defined daily dose of antipsychotics) and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support our
findings. We used a cytoarchitectonic atlas of the BF to map the nuclei and obtained measures of myelin (quantitative T1, or qT1 as
myelin surrogate) and microstructure (axial diffusion; AxD). In a clinical sample (n = 85; 29 healthy controls, 56 first-episode
psychosis), we found significant correlations between qT1 of Ch1-3, left NBM and MRS-based dorsal anterior cingulate choline in
healthy controls while this relationship was disrupted in FEP (p > 0.05). Case-control differences in gT1 and AxD were observed in
the Ch1-3, with increased qT1 (reflecting reduced myelin content) and AxD (reflecting reduced axonal integrity). We found clinical
correlates between left NBM gT1 with manic symptom severity, and AxD with negative symptom burden in FEP. Intracortical and
subcortical myelin maps were derived and correlated with BF myelin. BF-cortical and BF-subcortical myelin correlations
demonstrate known projection patterns from the BF. Using data from the Allen Human Brain Atlas, cholinergic nuclei showed
significant enrichment for schizophrenia and depression-related genes. Cell-type specific enrichment indicated enrichment for
cholinergic neuron markers as expected. Further relating the neuroimaging correlations to transcriptomics demonstrated links with
cholinergic receptor genes and cell type markers of oligodendrocytes and cholinergic neurons, providing biological validity to the

measures. These results provide genetic, neuroimaging, and clinical evidence for cholinergic dysfunction in schizophrenia.
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INTRODUCTION
Dysregulation of the cholinergic system has been long suspected
in the pathophysiology of psychotic disorders such as schizo-
phrenia [1, 2]. Several lines of evidence support a cholinergic
imbalance in psychosis [3], particularly in the negative symptoms
such as psychomotor retardation and inattention [4, 5]. The
cholinergic hyperactivity induced by physostigmine worsens
negative symptoms [4], while anticholinergics provide some relief
for negative symptoms [6, 7]. Muscarinic (M1/M4) agonist
xanomeline has been shown to have clinical efficacy in schizo-
phrenia [8, 9]. Post-mortem human studies have identified a
biological basis for these observations; specifically, the distributed
reduction of muscarinic receptors in a subset of patients [10, 11].
Taken together, these findings motivate calls for focused
investigations of the cholinergic system to aid therapeutic
discoveries in psychosis [9].

Despite the substantial evidence for a cholinergic abnormality
in schizophrenia, it is not clear how a disrupted cholinergic system

relates to the first presentation of psychosis, before treatments
with anticholinergic effects are started. The three major hurdles in
this regard are (1) the challenges in non-invasive study of the
basal forebrain (BF), a structure that provides cholinergic
projections to extensive areas of the cortical mantle; being a
deep brain structure, both direct non-invasive stimulation and
surface level recordings of activity are difficult to obtain, (2) the
difficulties in direct quantification of acetylcholine [12] through
in vivo imaging studies as field inhomogeneities of the basal brain
regions limit neurochemical imaging and acetylcholine is not
readily separable from other choline-containing compounds, (3)
challenges in studying symptomatic untreated patients without
the confounds of illness chronicity and long term antipsychotic
exposure [13], as many acutely unwell patients do not prefer
prolonged MRI sessions.

There are a number of whole brain morphometric studies [14],
and a region-of-interest study [15] of BF in schizophrenia, yet none
have identified notable changes in the basal forebrain. A recent
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study specifically assessed grey matter volume of the BF in
schizophrenia, while results were not significant after taking into
account global effects [16]. In a focused post-mortem examination
of Nucleus Basalis of Meynert (NBM), Williams and colleagues [17]
identified a notable reduction in oligodendrocyte density and glial
cell abnormalities in schizophrenia. It is unknown if these changes
are restricted to the NBM, which primarily projects to the
neocortex, or if they extend to anteromedial BF nuclei (Ch1-3, or
Broca's diagonal band) that project to the hippocampus [18]. The
vulnerability of BF has been linked to its later onset of myelination
and the relative sparsity of myelin sheaths in the BF compared to
other regions of the brain [19-21]. Higher myelin concentration
may reflect reduced metabolic demands on the ensheathed
neurons, and thus higher resilience to degenerative processes
[22].

The relative lack of grey-white matter differentiation in the basal
forebrain often limits accurate volumetric measurements, yet
advances in human neuroimaging have provided us with
probabilistic maps of BF based on cytoarchitectonic studies [23].
Though oligodendrocytes cannot be directly measured using MRI
in humans, a number of related microstructural properties can be
examined in vivo. Of particular relevance is quantitative T1 or qT1
which has a high negative correlation with myelin content [24, 25],
while axial diffusivity (AxD) best captures axonal injury [26]; both
gT1 and AxD increase in experimental animal models of
demyelination [27].

While microstructural changes of the basal forebrain may be
present across several disorders, it is unclear whether this
structural variation translates differences in acetylcholine levels
and cholinergic tone in the cortex. In humans, acetylcholine levels
could be estimated using magnetic resonance spectroscopy
(MRS), which may aid the interpretation of microstructural
findings. Acetylcholine and free choline, the precursor of
acetylcholine, together contribute to a small portion of the MRS
total choline spectra, but this signal is not separable from that of
other membrane bound choline moieties [28]. Nevertheless,
several observations suggest that the variations in the MRS
choline signal may reflect variations in cholinergic tone. Xanome-
line, a muscarinic agonist, decreases MRS choline resonance in
Alzheimer's Disease patients [29]. In mice, the anticholinergic
scopolamine induces an acute reduction in MRS choline signal
that returns to baseline in 72h [30], while anticholinesterase
donepezil increases choline resonance [31]. In rats, MRS choline
signal intensity shows a high degree of correlation with direct
tissue measurement of acetylcholine levels across various brain
regions [32]. In humans, free choline, when teased apart from
bound choline, changes with the performance of tasks such as
reversal learning that are dependent upon cholinergic transmis-
sion [28, 33]. While these fMRS studies have focussed on striatal
choline signal, the diffuse prefrontal cholinergic projections from
the basal forebrain [34-36], indicate that the overall cholinergic
tone of BF projection are best estimated from the frontal cortical
regions. MRS choline is increasingly being used as a proxy
measure for acetylcholine levels in the anterior cingulate cortex
(ACQ) in patients with psychosis [37].

The ACC is an important site of cholinergic projection from the
basal forebrain in animals [38] and humans [18, 39]. In particular, the
NBM is specifically connected to the dorsal ACC (dACC) component
of the Salience Network [18] (SN), enabling contextual integration
and cognitive control function [40]. The SN, in turn, plays a critical
role in the resource allocation for stimulus evaluation and action
outcomes that involve the deployment of large-scale cortical
networks [41]. Prior research, from our groups and others [42-45],
has implicated the SN in the pathophysiology of psychosis. Given
the cholinergic hypothesis of psychosis, and the SN dysfunction
observed in this illness, it is likely that the structural integrity of basal
forebrain cholinergic nuclei influences the cholinergic tone of the
SN, but this has not been evaluated to date.
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Neuroimaging studies may identify broad changes in brain
structure and function, but with limitations in identifying genetic
and cellular perturbations. Large-scale datasets such as the Allen
Human Brain Atlas (AHBA [46]) allow for anatomically compre-
hensive studies of fine-grained structures [47, 48]. Previous
transcriptomic studies of the BF have focused on conditions such
as traumatic encephalopathy [49] and dementia [50], with no past
gene expression studies of the BF in humans or in relation to
schizophrenia. In addition, recent work bridging neuroimaging
and transcriptomics supported the biological basis for neuroima-
ging correlations [51], further increasing the value of gene
expression analyses in complementing neuroimaging data.

Here, we examine the microstructure of the basal forebrain
cholinergic nuclei in first-episode psychosis (FEP) using ultra-high
resolution imaging. We quantified choline resonance from the
dACC using 7T proton MRS. We related this resonance to BF qT1 in
56 patients with first episode psychosis and 29 healthy individuals,
anticipating a dissociation between the microstructure of BF and
dACC choline levels in patients. Given the reported reduction in
oligodendrocyte density in schizophrenia [17], we expected the
microstructural changes of increased qT1 and AxD in patients with
untreated first episode psychosis.

Furthermore, on the basis of Tandon’s hypothesis that higher
cholinergic tone underlies greater negative symptoms
[4, 6, 7, 52, 53], Janowsky's cholinergic hypothesis of mania
[54, 55] that implies reduced cholinergic tone predict higher
manic symptoms, and given past evidence of ACHe inhibitors
improving manic symptoms [56], we tested if higher qT1 (low
myelin) and thus reduced cholinergic tone would correlate with
greater manic symptom severity, and lower qT1 (high myelin) and
increased cholinergic tone to predict greater negative symptom
burden.

We tested covariance between qT1 of BF and cortical-
hippocampal regions to test the biological validity of BF qT1. This
is based on previous work that shows cellular similarity, and
connectivity as a basis for correlations between morphometric
measures [51]. We hypothesised that the most significant
correlations would reflect (1) Brain regions receiving cholinergic
input from the basal forebrain, and (2) Brain regions with relatively
higher cholinergic neuron content. In the hippocampus, we
expect CAl-subiculum to demonstrate strongest correlations
given it has a higher density of cholinergic neurons based on
choline aceyltransferase (ChAT) expression [57], and both CA1 and
subiculum receives projections from the BF [58]. In the cortex, we
expect strongest correlations with the frontal, entorhinal, and
anterior cingulate cortices based on tracer studies [59-61], and
also frontal, entorhinal, and motor/sensory regions [34].

Through transcriptomic analyses, we expected gene expression
of the basal forebrain to show enrichment for schizophrenia-
related genes given previous links between psychiatric disorders
and cholinergic dysfunction. In imaging-transcriptomic correla-
tions of BF-cortical covariance, we expect enrichment for
oligodendrocyte marker genes given gT1 measures myelin
content and qT1-based correlations would be driven by myelin-
related genes. We also expect enrichment for cholinergic neurons
given presence of cholinergic interneurons may also drive
correlations between the cortex and BF. Amongst the genes, we
expect significant associations with cholinergic receptor genes as
regions with high correlations are more likely to receive
cholinergic input from the BF.

MATERIALS AND METHODS

Clinical participant recruitment and assessment

Details regarding recruitment have been described in our previous work
[44, 62, 63] but included here for completion. Participants were recruited as
part of a neuroimaging project tracking changes in early psychosis from
the PEPP (Prevention and Early Intervention for Psychosis Programme) at
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London Health Sciences Centre. All participants provided written, informed
consent with approval from Western University Health Sciences Research
Ethics Board. Inclusion criteria were as follows: individuals experiencing
FEP, with lifetime antipsychotic treatment less than 14 days. Exclusion
criteria for FEP included: meeting criteria for a mood disorder (bipolar or
major depressive) with psychotic features, or possible drug-induced
psychosis. Healthy control (HC) participants were free from personal
history of mental illness or family history of psychotic disorders, matched
based on age, sex, and parental education. Exclusion criteria for both FEP
and HC included substance use disorder in the past year based on DSM-5
criteria, history of major head injury, significant medical illness, or
contraindications to MRI.

Participants were assessed using DSM-5 criteria and the 8 item Positive
and Negative Syndrome Scale (PANSS-8), Young Mania Rating Scale (YMRS),
the Calgary Depression Scale (CDS), and cannabis use evaluated using the
Cannabis Abuse Screening Test (CAST). Parental socioeconomic status (SES)
was quantified on the National Statistics Socio-economic classification (NS-
SEC), based on the parent’s highest occupation in the past 5 years. Cognitive
tests included digit symbol substitution test (DSST—average of written and
oral), and trail making test. Substance use in the past year was assessed
based on self-report questionnaire for healthy controls, and self-report, DSM-
based clinical assessments, and urine drug screening at time of clinic entry
(not at time of scanning) in suspected cases for patients.

Acquisition of neuroimaging and preprocessing
Details regarding imaging acquisition parameters and preprocessing are
provided in Supplementary Information—briefly, we acquired T1-weighted
images (qT1), diffusion tensor imaging, and MRS measures of choline in the
dACC. Voxel size for structural imaging (T1) was 0.8 mm x 0.8 mm x 0.8 mm,
while for DTI it was 2mmx2mmx2mm. MRS voxel measuring
2.0cmx2.0cmx2.0cm (8 cm) was placed in the bilateral dACC.
Preprocessing for T1-weighted images are in line with our previous work
[63], as well as DTI [64] and MRS [62, 63]. Following preprocessing, we used
the T1-weighted images to map the cortex and subcortical structures using
automated methods (see Supplementary Methods). The basal forebrain is
defined using a published probabilistic atlas based on cytoarchitectonic
mapping of cholinergic cell groups, Ch1-3 and Ch4 (NBM) [23], and warped
to individual subject T1-weighted images using ANTs [65] (Supplementary
Methods).

MRS and MRS-structural analyses

We first compared MRS choline between HC and FEP using multiple linear
regression, controlling for age, sex, smoking status, and cannabis use. We
then tested for correlations between dACC choline and BF measures
separately in HC and FEP, expecting significant correlations in HC but not
in FEP. We expected BF measures to predict cholinergic tone, and in HC,
we expected gT1 to correlate negatively with choline—such that lower
gT1 (high myelin) would reflect higher cholinergic tone and elevated levels
of choline.

We tested whether the BF-choline correlations were significantly
different between groups by modelling the diagnosis-by-qT1 interaction
effect on choline levels, accounting for age and sex as covariates. Smoking
status and cannabis use were excluded in interaction analysis since the
healthy control group had no smokers, and the FEP group had significantly
higher cannabis use (t=5.63, p=4.50E—07, DF =64). Threshold of
significance is based on multiple testing correction for 3 comparisons
(left, right NBM, and Ch1-3 with dACC choline) with pgonferroni < 0.017.

Structural neuroimaging analyses
In case-control analysis, we compared neuroimaging measures of BF (qT1,
AxD) between HC and FEP, using multiple linear regression seeking the
main effect of diagnosis accounting for age, sex, cannabis use (CAST), and
smoking status as covariates. Multiple testing correction is based on 3
comparisons (left, right NBM and Ch1-3) between groups with pgons < 0.017
deemed as significant. We tested for correlations between left NBM and
Ch1-3 (gT1 and AxD) with clinical measures of total YMRS and PANSS-8
negative symptom scores. Multiple testing correction is based on 8 tests
(2 structures x 2 metrics x 2 clinical scores) with pgon threshold < 6.25E—03.
We correlated qT1 values between the BF and the rest of the brain
including the subcortical brain structures (hippocampus, amygdala,
striatum, thalamus, globus pallidum) and cortex. Pearson’s R correlations
were corrected for multiple testing by FDR within each structure, with
significance threshold of FDR g < 0.10.

Translational Psychiatry (2022)12:358

M.T.M. Park et al.

Transcriptomic analysis of basal forebrain

We examined gene expression profiles of the BF structures to determine
whether transcriptomics would reveal enrichment for cholinergic cell type
markers, and disease associations. We used gene expression data from the
Allen Human Brain Atlas [46]. Quality control was done by visual
examination of BF samples on the MNI template. One Ch1-3 sample was
found to be misplaced or mislabelled (see Supplementary Fig. 1), and
therefore excluded from analysis. For the NBM, 4 donors contributed 9
NBM samples and the same 4 donors contributed 8 Ch1-3 samples
(nucleus of the diagonal band, 4 horizontal and 4 vertical division) after
quality control.

Probe selection was based on published quality control metrics based
on comparison between the Agilent microarray and “ground truth” RNA-
Seq [66]. We selected those probes that passed quality control and
selected one probe per gene based on highest correlation to RNA-seq
data. Probe-to-gene mappings were provided by the Allen Institute.

We identified genes that were specifically expressed in the Ch1-3 and
NBM. Region-specific expression analysis, as in previous studies [48, 67],
was done using R (version 4.0) and the limma package to detect genes
specifically expressed in the BF. For this analysis, all samples are included,
restricted to only those donors that sampled the Ch1-3 and NBM.

For each gene, linear models were fit to gene expression with terms for
the donor and region of interest. Moderated t statistics and p-values were
calculated using the empirical Bayes moderation method, and corrected
for multiple comparisons using Benjamini-Hochberg false discovery rate
(FDR) [68]. Genes were ranked based on significance (—log10 of p-value)
multiplied by the sign of the t-statisticc and we selected the most
significantly enriched genes after FDR correction at g <0.10. These gene
lists were submitted to the cell-type specific expression analysis (CSEA),
which we expect to show enrichment for cholinergic neurons [69, 70].
ToppGene [71] was used to test for disease enrichment (at g < 0.10), using
the DisGeNet Curated database, exploring whether there was enrichment
for schizophrenia-related genes.

Imaging-transcriptomic validation

We sought to explain BF-cortical imaging correlations with gene
expression. We used data from the AHBA for the left cortex only since
only 2 of the 6 AHBA brains sampled the right hemisphere. Only cortical
samples are retained (samples from non-cortical, i.e., subcortical regions
are removed), prior to finding a 1-to-1 match between each AHBA cortical
sample and CIVET-generated vertex (Supplementary Fig. 2a).

For matching AHBA samples to vertices on the CIVET cortical template,
we used the set of re-registered AHBA sample coordinates to the MNI ICBM
2009c¢ (nonlinear symmetric) template (generated by Gabriel A. Devenyi;
https://github.com/gdevenyi/AllenHumanGeneMNI). This improves anato-
mical concordance between the original anatomical sample and MRI using
multispectral and non-linear registration, as the original AHBA-provided
MNI coordinates were calculated using an affine registration only. The
ICBM template is also processed through CIVET 2.1.0 to generate a cortical
surface. We assigned each AHBA sample to the closest vertex based on
Euclidean distance. Where multiple samples matched to the same vertex,
the closest sample in terms of distance was retained. We removed
2 samples with distance greater than 10 mm, which were in the right
hemisphere based on visual inspection (Supplementary Fig. 2b). We
matched 1236 AHBA samples to a unique vertex, with mean distance of
1.47 between sample and vertex (sd 0.89, range 0.084-6.78 mm).

Pearson’s R correlations for the left cortex (as described above) were
modelled using mixed effects models, with gene expression as the fixed
and donor as random effect. This is repeated across ~14,000 genes and
resulting p-values are corrected using FDR. Top and bottom 10% of ranked
genes were submitted to CSEA.

Post hoc analyses

We explored the relationship between cognitive scores (DSST, trail making
test) and neuroimaging measures (qT1 and AxD). We also examined radial
diffusivity (RD) as an alternative measure for myelin, in relating to MRS
choline, case-control differences, and clinical scores.

RESULTS

Sample characteristics

After quality control of neuroimaging measures, 56 FEP and 29 HC
were available for analysis. There were no significant differences
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Table 1. Summary of sample demographics and clinical characteristics.

FEP (N =56)
Age 22.34 (4.30)
Sex (male/female) 43/13
Parental SES 3.49 (1.23)
PANSS-8 total 25.24 (6.62)
Total positive 12.60 (2.59)
Total negative 7.17 (4.26)
Total CDS 3.67 (3.31)
SOFAS 39.67 (12.94)
Mean DSST (sd) 51.77 (13.97)
Mean trail making test (sd) 88.34 (74.86)
Mean DUP (sd) (weeks) 31.13 (56.62)
Mean DDD (sd) (days) 1.32 (2.10)
Antidepressants at time of scanning 5
Consensus diagnosis 2 MDD

2 Bipolar

1 Clinical High Risk
3 Schizoaffective

1 Schizophreniform

44 Schizophrenia
3 Psychosis NOS

HC (N=29) t/X? P-value
21.72 (3.46) 0.67 0.507
18/11 1.38 0.24

3.21 (1.45) 0.89 0.38
68.71 (11.30) —5.62 2.51E—07
54.88 (15.26) 2.20 0.032

CDS Calgary Depression Scale, SOFAS Social and Occupational Functioning Assessment Scale, DUP duration of untreated psychosis, DDD defined daily dose

(lifetime).

between groups in terms of age or sex distribution (Table 1).
Cognitive scores were significantly different between groups, with
lower DSST scores and greater trail making test times in FEP
compared to HC (Table 1).

MRS-structural correlations

We tested for correlations between structural measures and dACC
choline. There was no significant difference in dACC choline
between HC and FEP (t = 1.08, p =0.284, DF = 78) after control-
ling for age, sex, smoking status and cannabis use. Mean CRLB of
choline was 1.88 (sd 0.52, range 1.18-3.58).

In healthy controls (N =29), we found significant correlations
between dACC choline and left NBM ¢T1 (Pearson’s R=—0.517,
p =4.08E-03, DF =27), marginally so for Ch1-3 (R=—0.35,
p =0.062), but not the right NBM (R =—0.238, p =0.2127) (Fig.
1a). After accounting for influence of covariates including age, sex,
and cannabis use on choline, correlations continued to be
significant—for Ch1-3 (t=—-2.62, p=0.015, DF =23), and left
NBM (t = —4.34, p = 2.4E—04, DF = 23). These correlations were
not significant in the FEP group (p =0.292, 0.874, 0.307 for left,
right NBM and Ch1-3 respectively).

We tested for the differences in slopes by modelling the
diagnosis-by-qT1 interaction effect on choline levels which
showed significant differences for Ch1-3 (t=2.96, p = 4.14E—03,
DF =76), and left NBM (t=2.72, p=8.10E—03, DF =76) after
accounting for age, and sex as covariates (Fig. 1a).

Case-control differences in BF microstructural measures

We found significant differences between HC and FEP in Ch1-3
qT1 (t=2.717, p=8.64E—03, DF =59) after accounting for age,
sex, cannabis use, and smoking as covariates (Fig. 1b). There were
no differences in left or right NBM (p > 0.10). For the Ch1-3, mean
AxD was increased in FEP (t=2.90, p = 5.58E—03, DF = 50) with
the same covariates (Fig. 1b). These results for Ch1-3 persist after
including ICV as a covariate—for qT1 (t=2.88, p=>5.57E-03,

SPRINGER NATURE

DF =58) and AxD (t=2.94, p =5.02E—03, DF = 49). Overall, we
found evidence for increased qT1 and AxD in the Ch1-3 (medial
septum and diagonal band) of the basal forebrain in FEP,
independent of brain size. Levene's test was not significant
(p > 0.05), demonstrating equal variance for all neuroimaging
measures except for left Ch4 AxD (F=6.73, p =0.01).

Basal forebrain microstructure in relation to clinical scores

There was a significant correlation between left NBM qT1 and
YMRS (t=3.03, p=5.09E—-03, DF=29) after accounting for
cannabis use and smoking status (Fig. 1¢), accounting for 24.7%
(adjusted R-squared) of the YMRS variance. Ch1-3 axial diffusivity
correlated with YMRS neared significance (R = —0.286, p = 0.054),
and less significant after accounting for cannabis use and smoking
status (p=0.90). Left NBM AxD was correlated with negative
symptom severity (R=0.358, p=0.0115, DF =47), remaining
significant after accounting for smoking status and cannabis use
(t=2062, p=0.0490, DF = 27). After multiple testing correction
(2 structures x 2 metrics X 2 clinical scores = 8 tests), only the left
NBM gT1 to YMRS correlation is significant (pgont < 6.25E—03).

Neuroimaging correlations

Outlined in Fig. 2 is the neuroimaging preprocessing, including
cortical and subcortical segmentation and sampling (Fig. 2a),
registration of the probabilistic atlas to subject space (Fig. 2b, top)
and resulting distribution of mean qT1 values as an example (Fig.
2b, bottom).

Figure 3 shows the range of Pearson’s R values and thresholded
(after FDR correction) regions from BF-cortical and BF-
hippocampal qT1 correlations. For BF-cortical correlations, sample
size was N=65 (22 HC, 43 FEP) after quality control of CIVET
cortical surfaces, and for BF-hippocampal correlations, N =76 (27
HC, 49 FEP) after QC for subcortical segmentations.

Correlating qT1 values between the BF and cortex demonstrates
the known projection pathways from the BF (Fig. 3a). The medial
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Fig. 1 Evidence for microstructural changes of the basal forebrain in FEP. a Left: Magnetic resonance spectroscopy of choline in the dACC
with example of voxel placement (top), and spectral fit for choline (bottom). Right: In FEP, there is decoupling of the correlation between qT1
and choline levels, while a significant correlation exists in healthy controls such that lower qT1 (higher myelin) is associated with elevated
choline levels. b In the Ch1-3, there is increased qT1 (lower myelin), and increased axial diffusivity. ¢ Higher qT1 (indicating lower myelin) of
the left NBM is associated with greater manic symptom severity, and increased AxD (reflecting lower axonal integrity) is associated with
negative symptom severity. Left: y-axis shows residuals of the linear regression (YMRS ~ cannabis use) added to the mean YMRS score.

b

CIVET cortical segmentation MAGeT subcortical segmentation

Atlas Subject

NBM (Ch4)

Subcortical qT1 sampling

1400 1600 1800 2000
qT1
variable | Ch123 I Leit Cha | Right Chd

Fig. 2 Image preprocessing of cortical, subcortical, and basal forebrain structures. a qT1 and T1-weighted MRI data at 7T were acquired
using the MP2RAGE sequence. The CIVET pipeline (version 2.1.0) was used to delineate the cortical surfaces and sampling at multiple depths,
and we sample gT1 measures at 50% depth from the pial to white matter surface. Subcortical qT1 sampling along MAGeT Brain-generated
structures (hippocampus, amygdala, striatum, thalamus, globus pallidum). b Mapping probabilistic atlas based on cytoarchitectonic data of
the basal forebrain structures onto individual subjects through non-linear registration. Histogram shows group distribution of qT1 values for
the three structures—Ch1-3, left and right Ch4 (NBM).
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Fig. 3 NBM-cortical and NBM-hippocampal qT1 correlations.
Warm colours (red) indicate most positive correlations, and cool
colours (blue) negative correlations for each set of surfaces. Regions
surviving FDR correction are displayed, while for the right NBM-
cortical correlations no regions survived FDR correction at g < 0.10,
and thus subthreshold findings at p<0.05 are shown instead.
a NBM-cortical qT1 correlations. Findings are consistent with the
hypothesis with strongest (most positive) correlations reflecting
cortical regions receiving the most consistent afferent projections
the BF, and those regions with cortical cholinergic neurons. These
include the frontal (blue arrow), sensory/motor cortices (yellow
arrow). b NBM-hippocampal qT1 correlations—for the hippocam-
pus, CA1l-subiculum demonstrate strongest correlations (green
arrow).

cortical surfaces show significant correlations, reflecting the
medial pathway of Ch4 projections [72]. After FDR correction,
we observed significant correlations for frontal (Fig. 3a, blue
arrow), precentral/postcentral (red arrow). BF-hippocampal corre-
lations show the CA1 and subiculum as the most prominent
regions (Fig. 3b, green arrows).

Transcriptomic analysis of BF structures
We examined genes with specific expression in the Ch1-3 and
NBM, at FDR corrected thresholds of 10, 5, and 1%.

ToppGene disease enrichment shows Ch1-3 (at FDR 10%) genes
showing significant overlap with schizophrenia-related genes
(1226 genes from Ch1-3, 79 genes overlapping with 883
schizophrenia-related genes) (q=4.744E—03) (Fig. 4a). In the
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NBM, 2880 genes survived FDR 10%, and 153 genes overlapped
(@ =2.51E—02). For both sets of overlapping genes, we found 4
acetylcholine-related genes including CHAT, CHRM2, ACHE, and
CHRNA3. CHAT was the most significantly expressed gene in both
Ch1-3 and NBM out of the intersecting genes, and ACHE was
amongst the top 10 genes. CSEA showed enrichment for
cholinergic neuron markers in the Ch1-3 and NBM (Fig. 4b).

Imaging-transcriptomic analyses

We sought to explain BF-cortical correlations via gene expression
(Fig. 5a). At varying thresholds of FDR (10, 5, 1%), cortical qT1
covariance of NBM was significantly associated with 2262, 1513,
and 754 genes respectively, and 4087, 3343, and 2278 genes for
Ch1-3-covariance. We found a significant spatial correspondence
between BF-cortex qT1 covariance and the distribution of
cholinergic receptor gene expression (Fig. 5b), with CHRNA3
being positively correlated (i.e., highly expressed in those cortical
regions with strongest correlations with Ch1-3 and NBM) (Fig. 5b).
CHRNA2 was negatively correlated (i.e., highly expressed in cortical
regions with negative correlations with BF) (Fig. 5b). We used
CSEA to interpret the imaging-genetic correlations by testing the
top and bottom 10% percentile genes (most extreme t-statistics).
For NBM-cortical correlations, CSEA of the top 10% (1512) genes
(indicating positive t-statistics) shows enrichment for glial cells
(astrocytes and oligodendrocytes) and cholinergic neurons, while
the bottom 10% shows enrichment for cortical neurons (Fig. 5c).
Ch1-3-cortical correlations showed similar results (Supplementary
Fig. 3).

Post hoc analyses

We explored the relationship between cognitive scores (DSST and
trail making test), with qT1 and AxD. Pearson’s R correlations were
used across 12 tests (2 cognitive scores X 3 regions X 2 imaging
modalities) for FEP and HC separately. DSST scores were available
for all 29 HC participants and 55 FEP (1 missing) and Trail Making
Test for 25 HC (4 missing) and 38 FEP (18 missing). In FEP, there
was a significant correlation between left Ch4 qT1 and trail
making time (R = 0.40, p = 0.014, df = 35), and the next strongest
correlation was between Ch1-3 AxD and DSST (R = 0.27, p = 0.053,
df =48). In HC, there was a significant correlation between right
Ch4 gT1 and DSST (R = 0.45, p =0.013, df = 27). These were not
significant after correction for multiple testing (pgont < 4.17E—03).

Examining RD as an alternative measure for myelin, we found
similar findings compared to qT1. Structure-MRS correlations were
partly observed with RD: in healthy controls, none of the
correlations, without covariates were significant-left NBM was
the strongest (R = —0.34, p = 0.1). After accounting for covariates
(age, sex, cannabis use on choline), left NBM correlation was
significant (t=—4.02, p =7.28E—04)—indicating increased RD
(reduced myelin, or myelin damage) predictive of lower choline
levels. These correlations were not significant in FEP, with and
without accounting for covariates. The diagnosis-by-RD interaction
effects were not significant.

In case-control differences of RD, there was a significant
difference in Ch1-3 (t = 2.264, p = 0.028, DF = 50) with increased
RD in FEP after taking into account age, sex, cannabis use, and
smoking status. This is not significant after multiple testing
correction (pgonf < 0.017). Left and right NBM were not significant.
Relating clinical scores to RD, left NBM RD was correlated with
negative scores (R =0.28, p = 0.049, DF =47), not for YMRS.

DISCUSSION

Studying the microstructure of the BF cholinergic nuclei for the
first time in first-episode psychosis (FEP), we report an increased
gT1 (reflecting reduced myelin content) and increased AxD
(reduced axonal integrity) of anteromedial nuclei (Ch1-3) in
patients. While dACC choline levels reflected the microstructure
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Fig. 4 Transcriptomic analysis of the basal forebrain structures. a Enrichment of schizophrenia related genes. Venn diagram shows overlap
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of NBM in healthy individuals, this relationship was absent in
patients, indicating a possible dissociation between the choliner-
gic inputs to the Salience Network in psychosis. Our findings
(summarised in Fig. 6) agree with the cholinergic-adrenergic
hypothesis of mania, and possibly Tandon’s hypothesis that higher
cholinergic tone underlies greater negative symptom burden. The
transcriptomic analysis of the cholinergic nuclei further supports
these findings by highlighting cholinergic neurons and dysfunc-
tion in schizophrenia.

While illness-related effects were most pronounced in the
anteromedial BF (Ch1-3), the variance in NBM microstructure
related to cortical MRS choline, and clinical severity of manic and
negative symptoms. This may indicate that a diffuse cholinergic
deficit involving hippocampal projections may underlie psychosis,
but more extensive deficit involving cortical projections may
worsen the symptom burden. This distinction is based only on
correlation analyses; studies with longitudinal design are needed
to test this speculation. In testing structure-MRS correlations, we
found left NBM had stronger correlations to dACC choline than the
Ch1-3, which may be due to the NBM containing the highest
proportion of cholinergic neurons (at least 90%) compared to Ch1
(10%), Ch2 (70%), Ch3 (1%) in the rhesus monkey [73]. Further, left
NBM qT1 and AxD were correlated with manic and negative
symptom burden, suggesting the left NBM being most predictive
cholinergic function across healthy controls and FEP. As expected,
healthy controls, with no perturbation to the BF system,
demonstrated a linear association between microstructural
integrity and dACC cholinergic levels implying a healthy state.
We expected the microstructure of the BF to be perturbed in FEP,
resulting in the loss of a linear relationship between dACC choline
levels and BF microstructure. This dissociation is likely if
cholinergic aberration occurs in a subgroup with aberrant BF
microstructure, while the degree of BF aberration per se in most
patients with FEP not being sufficiently strong to reduce the
absolute concentration of MRS measure of cortical choline.

We used imaging correlations as a proxy for testing the
biological validity of qT1 in measuring basal forebrain micro-
structure. We found significant qT1-based correlations between
the BF cholinergic nuclei and cortical (frontal, precentral/
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postcentral), and subcortical regions (CA1 and subiculum in the
hippocampus). Regions with strongest correlations seemingly
reflected the known projection patterns from the BF and the
presence of cholinergic neurons, in particular the hippocampus
with CA1l-subiculum [57, 58]. We found significant cortical
correlations along the expected medial and lateral pathways from
the Ch4 [72], or along the medial cortical surfaces (Fig. 2c).
Significant cortical regions including frontal, sensory/motor, and
visual cortices are highlighted in previous tracer studies
[34, 59-61]. Further biological validation for the imaging correla-
tions are provided by significant associations with cholinergic
receptor genes (Fig. 3d) and enrichment for both oligodendro-
cytes and cholinergic neurons (Fig. 3e). The contrast of the top vs.
bottom percentile genes highlights positive enrichment for glial
cells, or in other words cortical regions positively correlated with
the basal forebrain may house greater density of oligodendro-
cytes, and overall myelin correlations could be reflective of
underlying glia-neuron ratios. Taken together, these analyses
strengthen the validity of microstructural measures (qT1, AxD).

In our structural neuroimaging protocol, we found very little
grey-white matter contrast in the BF region, therefore, limiting
confidence in automated techniques for grey-white matter
classification such as VBM, and even less so in measuring its
differences across individuals. For example, a recent study with
similar methods (using the same cytoarchitectonic atlas) found
reduced grey matter integrity, while findings were not significant
after accounting for global grey matter volumes [16]—suggesting
findings were not region-specific and ascribed to global changes.
Here, in the exploration of an alternative approach and using
untreated samples, we demonstrated feasibility and biological
validity of microstructural measures using both imaging-imaging
and imaging-transcriptomic correlations, and results were not
impacted by global effects. Our results are further supported by
the previous finding of myelin maps as superior in representing
cortical circuitry and gene expression compared to other metrics
such as cortical thickness [74].

Analysis of basal forebrain gene expression identifies enrich-
ment of schizophrenia genes in both Ch1-3 and NBM, and
highlights cholinergic neuron markers (ACHE, CHAT). This
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Fig. 5 Using transcriptomics to explain neuroimaging correlations. a Coloured cortical surface (left) shows Pearson’s R correlations between
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highlights an understudied component of schizophrenia patho-
physiology, and an update building on previous findings [17, 75].
Our results are in line with neuropathological studies, yet there are
limited past transcriptomic studies of the BF cholinergic nuclei.
While not a focus of the study, we found enrichment of genes
associated with major depressive disorder within the BF. As
mentioned above, the cholinergic-adrenergic hypothesis of
depression [54] along with recent clinical studies has led to
renewed interest of the cholinergic system in psychiatric disorders
[76, 77]. The biological overlap of cholinergic dysfunction across
depression and schizophrenia [78] signals a common dimension
that cuts across diagnoses that may explain clinical overlap (such
as negative symptoms in schizophrenia that mimic depressive
symptoms)—indicating a need to refine our understanding of
cholinergic networks to better guide treatment options in
psychiatry.

Our study has several strengths as well as limitations. We
studied the cholinergic profile of patients experiencing first
episode psychosis (mean duration of illness = 31.13 weeks), with
minimal or no antipsychotic exposure (lifetime antipsychotic
exposure of mean 1.32 DDD equivalents, amounting to < 2 days of
exposure to minimal effective doses of antipsychotics) and no
exposure to anticholinergic drugs. We quantified nicotine use and
adjusted for the observed variance in our analysis. Nevertheless,
we could not quantify choline resonance from the BF due to
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technical limitations of MRS from this anatomical area. There was a
limitation in the MRS measures comprising the total choline
spectra, which includes choline-containing compounds such as
glycerophosphocholine (GPC) and phosphocholine (PC), while the
variations in MRS choline may reflect variations in cholinergic tone
(discussed in “Introduction”). GPC and PC may be elevated in cases
of cell membrane turnover, which may be the case in FEP, yet
there were no significant differences in choline between groups.
We observed the normative association between BF structure and
choline in healthy controls, which was disrupted in FEP—this may
be indicative of a subgroup of patients with structural changes
and elevated choline (thereby indicating increased cell membrane
turnover), contributing to the dissociation of the correlation.

The neuroimaging analyses identified notable findings in the
left NBM, but not the right, while the transcriptomic analyses did
not allow for separate analysis due to the limited number of
samples which could show hemispheric differences. Furthermore,
we were limited in the number of female participants in this study;
we urge readers to exercise caution when generalising our results
to female participants. Lastly, while the majority of the FEP sample
(N=156) consists of schizophrenia (N =44, Table 1) and other
schizophrenia spectrum disorders (3 schizoaffective, 1 schizophre-
niform), there are a small number of unclear diagnoses (3
psychosis NOS) and patients later diagnosed with mood disorders
(2 MDD, 2 bipolar)—we expect the effects observed to be driven
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surviving FDR correction.

largely by the schizophrenia group, with the limitation that
heterogeneity would be expected due to inclusion of all
diagnostic groups.

In summary, through a multimodal study employing micro-
structural imaging, MRS, and indirect inference from transcrip-
tomic correlations, we demonstrate clinical evidence for
cholinergic dysfunction in schizophrenia and its relevance to
negative and affective symptoms among patients experiencing
first-episode of psychosis.

CODE AVAILABILITY
R code used for statistical analysis of neuroimaging and gene expression data are
available (https://github.com/mtpark89/NBM_transcriptomic).
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