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/is paper presents microstructural topology optimization of viscoelastic materials for the plates with constrained layer damping
(CLD) treatments./e design objective is to maximize modal loss factor of macrostructures, which is obtained by using theModal
Strain Energy (MSE) method. /e microstructure of the viscoelastic damping layer is composed of 3D periodic unit cells. /e
effective elastic properties of the unit cell are obtained through the strain energy-based method. /e density-based topology
optimization is adopted to find optimal microstructures of viscoelastic materials. /e design sensitivities of modal loss factor with
respect to the design variables are analyzed and the design variables are updated by Method of Moving Asymptotes (MMA).
Numerical examples are given to demonstrate the validity of the proposed optimization method. /e effectiveness of the optimal
design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to the plates with
CLD treatments.

1. Introduction

Viscoelastic damping materials are desired in many engi-
neering applications to reduce unwanted noise and vibration
due to their favourable characteristics in dissipating dynamic
energy. Damping treatment approaches including active,
passive, and hybrid passive-active methods [1–3] have been
developed to reduce noise and vibration and applied to
many industrial fields. /e constrained layer damping
(CLD) treatments provide considerably more damping effect
than unconstrained ones despite the addition of the addi-
tional weight of the constraining layer, and they are widely
applied to attenuate the structural vibration. In order to
design lightweight structures with high damping perfor-
mance, the optimization for damping treatment has been
extensively studied. Plunkett [4] proposed a method of
cutting the constraining layer into appropriate lengths to
increase the structure damping of the CLD structure. Ray

and Baz [5] studied the optimization of energy dissipation of
active constrained layer damping treatments of plates. Nakra
[6] investigated how to design the layout of CLD treatments
to improve the vibration performance. Zheng et al. [7]
proposed the layout optimization of the CLD treatments to
minimize vibration energy and sound radiation of cylin-
drical shells.

Topology optimization method is regarded as a powerful
tool for seeking innovative structural design. Bendsøe and
Kikuchi [8] firstly proposed the topology optimization
method by employing homogenization theory. With the
development of the topology optimization method, several
well-known topology optimization methods include the
solid isotropic material with penalization (SIMP) method
[9], level set method (LSM) [10], the Evolutionary Structural
Optimization (ESO) [11], and the bidirectional evolutionary
structural optimization (BESO) [12]. A series of methods for
structural topology optimization were proposed to address
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the layout problem of the damping layer in the past decades.
Kim et al. [13] compared the modal loss factors of the
structures with damping material treatment obtained by
topology optimization to the ones obtained by other ap-
proaches and further demonstrated that topology optimi-
zation is the most effective way to find optimal damping
layout in a shell structure. James and Waisman [14] pro-
posed a time-dependent adjoint sensitivity analysis method
to produce optimal designs of structures that exhibit vis-
coelastic creep deformation. Madeira et al. [15] optimized
the distribution of CLD material on a laminated composite
panel to minimize weight and maximize modal damping
simultaneously.

/e damping performance of CLD treatments mainly
depends on the physical and geometric properties of the
viscoelastic damping material. /erefore, there is a great
desire to design the microstructures of viscoelastic materials
with the demand property. Sigmund [16, 17] firstly proposed
an inverse homogenization method to design materials with
prescribed properties. Yi et al. [18] utilized the inverse
homogenization method to optimize the microstructure of
the damping material with the aim of improving the
damping characteristics of viscoelastic composites. Huang
et al. [19] utilized the BESO method to design the composite
microstructure with the desirable viscoelastic properties. Liu
et al. [20] proposed a topology optimization algorithm based
on the BESO method to enhance the macroscopic modal
damping and natural frequency of structures constructed by
optimized viscoelastic materials.

Topology optimization problems involve a large
number of design variables. Hence, gradient-based
methods are preferred over evolutionary- and population-
based approaches. It has been shown that, based on current
computing technology, the evolutionary methods are
prohibitively time- and resource-consuming for most
reasonably sized topology optimization problems [21]. /e
Method of Moving Asymptotes (MMA) [22] is a well-
known gradient-based algorithm, and it is widely used in
topology optimization of structures. Zheng et al. [23] used
topology optimization with MMA approach to optimally
design damping treatment by maximizing damping effect.
Kang et al. [24] investigated the optimal distribution of
damping material in vibrating structures which subject to
harmonic excitations by using a topology optimization
method. El-Sabbagh and Baz [25] conducted topology
optimization for unconstrained damping treatment of
plates. Takezawa et al. [26] proposed complex dynamic
compliance as objective function for optimizing damping
materials to reduce the resonance peak response. Fang
et al. [27] proposed an efficient optimization procedure
integrating the Pseudoexcitation Method (PEM) and the
double complex modal superposition method to optimize
the layout of the CLD structures subjected to stationary
random excitation. Chen and Liu [28] investigated the
optimal microstructural configuration of the viscoelastic
material to improve the damping characteristics of the
macrostructures. Yun and Youn [29] optimized the mi-
crostructures of viscoelastic materials to effectively at-
tenuate transient responses of the viscoelastic damping

structures. Zhao et al. [30] proposed an efficient concur-
rent topology optimization approach for minimizing the
maximum dynamic response of two-scale hierarchical
structures in the time domain.

Most of the present works concerning microstructural
topology optimization of damping material has concen-
trated on the Sandwich beams. Microstructural topology
optimization of damping material of a plate with CLD
treatment is relatively limited. /erefore, the purpose of this
paper is to optimize microstructure of viscoelastic material
of the CLD plates with the aim of maximizing the modal loss
factor of the macrostructure. /e microstructure of the
viscoelastic damping layer is represented by 3D periodical
unit cell (PUC), and its effective shear modulus is obtained
by using the strain energy-based method. /e design sen-
sitivities of modal loss factor with respect to the design
variables are analyzed and the optimization problem is
solved by the MMA approach.

2. Optimization Problem and Material
Interpolation Scheme

A two-scale topology optimization problem of the CLD plate
is studied in this paper./emacrostructure of the CLD plate
is composed of the uniform cellular viscoelastic material.
/e microstructure of the viscoelastic damping layer is
represented by 3D periodical unit cell. /e optimization
objective is to design the optimal layout of the viscoelastic
material within the 3D periodical unit cell with the pre-
scribed volume fraction so that the optimal CLD plate has a
maximum modal loss factor for damping the vibration.
/erefore, the optimization problem can be mathematically
expressed as follows:

find : xi, i � 1, 2, . . . , n,

min : −ηr (r � 1, 2, 3, . . . , ),

s.t:
∑ni�1 xiVi∑ni�1 Vi ≤V∗,
0<xmin ≤ xi ≤ 1, i � 1, 2, . . . , n,



(1)

where xi, i � 1, 2, . . . , n, are the design variables and n is
the total number of the elements within the 3D periodical
unit cell. xi � 1 denotes that element i is full of viscoelastic
damping material and xi � xmin represents a void element.
ηr is the rth mode loss factor. Vi is the volume of the ith
element and V∗ is the prescribed volume fraction.

/e viscoelastic damping material of an element in the
3D periodical unit cell can be treated to be isotropic and its
physical properties are assumed to be a function of the
elemental density, xi. To obtain relative clear 0-1 topo-
logical structure, the Solid Isotropic Material with Pe-
nalization (SIMP) model [31] with an exponential ‘power-
law’ scheme is adopted to penalize the intermediate
densities and the material interpolation scheme can be
expressed as follows:
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ρvi � x
q
i ρ
v0,

D
mi
i � xpi 1 + jη0( )Dv0,

 (2)

where η0is the material loss factor and j �
���
−1

√
. ρv0 and D

v0

denote the density and the storage modulus of the visco-
elastic damping material when xi � 1. q and p are the
penalty factors.

In the SIMP interpolation scheme, the reasonable
penalty factor should be chosen to suppress the interme-
diate density elements in the final optimal topology. A
small penalty factor will lead to a large number of inter-
mediate density elements in the final optimal results as the
punishment is insufficient in the process of solving.
However, when the penalty parameter is too large, many
high-relative-density elements (for example, greater than
0.5 and less than 1.0) may be irrational to delete. It will lead
to checkerboard pattern numerical instability and even
cause the incorrect optimization results [32]. /e

combination of q � 1 and p � 3 is always used to optimize
modal loss factor and vibration response [26–28, 33, 34].
/erefore, the penalty factors q and p are 1 and 3 in this
paper.

3. Finite Element Analysis and
Sensitivity Analysis

3.1. Two-Scale StructureAnalysis. /e finite element analysis
should be conducted both for the CLD plate at the mac-
roscale and the 3D periodical unit cell at the microscale. /e
CLD structure uses its damping mechanism based on vi-
bratory energy dissipation through transverse shear strains
induced in the viscoelastic layer, so viscoelastic layer carries
only transverse shear and no normal stress when the finite
element model of the CLD plate is established. In the
macroscale, the viscoelastic layer is defined as an orthotropic
material. /us, the global stiffness matrix K and mass matrix
M can be calculated by [23]

K �∑N
e�1

K
b
e + K

v
e + K

c
e( ) �∑N

e�1
∫
Ωe
B
T
D
b
BdΩe + ∫Ωe DH

55N
T
xzNxz+D

H
44N

T
yzNyz( )dΩe + ∫ΩeBTDc

BdΩe( ), (3)

M �∑N
e�1

M
b
e +M

v
e +M

c
e( ) �∑N

e�1
∫
Ωe
ρbNT

NdΩe + ∫ΩeρHNT
NdΩe + ∫ΩeρcNT

NdΩe( ). (4)

In these equations, Kbe , K
v
e , K

c
e, M

b
e , M

v
e , and M

c
e are the

eth element stiffness and mass matrix of the base plate,
viscoelastic layer, and constrained layer, respectively. B
and N are the strain matrix and the shape function matrix,
respectively. Db, Dc, ρb, and ρc are constitutive matrix and
mass density of the base plate and constrained layer, re-
spectively. ρH is the average mass density of the viscoelastic
layer. DH

44 and DH
55 are the effective shear modulus of the

viscoelastic layer. Nxzand Nyz are the shape function
matrix of the shear strains cxz and cyz in the viscoelastic
layer, respectively.

/e global stiffness matrix K contains the real part KR
and the imaginary part KI, which are defined as follows:

KR �∑N
e�1

K
b
e + Re K

v
e( ) + K

c
e( ), (5)

KI �∑N
e�1

Im K
v
e( ), (6)

where “Re” denotes “Real part of” and “Im” represents
“Imaginary part of.”

/e governing equation of the CLD structure for free
vibration is written as follows:

€MX + KR + jKI( )X � 0, (7)

where Xis the displacement vector in the macrostructure.
According to the Modal Strain Energy Method, the

modal loss factor at the rth mode can be found as follows:

ηr �
Φ
T
rKIΦr

Φ
T
rKRΦr

, (8)

where Φr is the eigenvector, which is obtained by the real
modal analysis.

/e effective elastic properties of the viscoelastic layer
directly depend on its microstructure. In micromechanics,
there are two basic theories: the homogenization theory
[28–30] and the strain energy-based method [35–37]. /e
basic feature of the strain energy-based method is that both
the unit cell of the periodic structure and the corresponding
unit volume of the homogeneous solid undergo the same
strain energy. Compared with the homogenization theory,
the strain energy-based method can provide a relatively
simple and efficient way in the estimation of the effective
elastic properties and the sensitivity analysis [37].

As illustrated in Figure 1, the 3D unit cell is a cube, which
does not change during the optimization process. /e to-
pology of viscoelastic damping material in a 3D unit cell is
changed by varying the design variables xi. /e 3D unit cell
of the viscoelastic layer is defined as an orthotropic material.
/e generalized Hooke’s law can be written as follows:
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σ1

σ2

σ3

σ4

σ5

σ6




�

DH
11 DH

13 DH
13 0 0 0

DH
21 DH

22 DH
23 0 0 0

DH
31 DH

32 DH
33 0 0 0

0 0 0 DH
44 0 0

0 0 0 0 DH
55 0

0 0 0 0 0 DH
66





ε1

ε2

ε3

ε4

ε5

ε6




, (9)

where σα, εβ, and D
H
αβ (α, β � 1, 2, . . . , 6) are the effective

stress tensor, strain tensor, and elastic tensor.
/e effective shear modulus of the unit cell DH

44 and D
H
55

can be determined by applying the following two unit strain
fields:

ε(4) � 0 0 0 1 0 0{ }T,
ε(5) � 0 0 0 0 1 0{ }T. (10)

/e uniform strain boundary condition is replaced with
equivalent Dirichlet boundary condition in numerical
implementation and the corresponding boundary condi-
tions are resumed in Tables 1 and 2 [37]. In the tables, a1, a2,
and a3 are the sizes of the 3D unit cell in the X, Y, and Z
directions, respectively.

/e strain energy of the orthotropic material under the
unit strain ε(4) can be calculated by

EH44 �
1

2
V

0

0

0

1

0

0





T DH
11 DH

13 DH
13 0 0 0

DH
21 DH

22 DH
23 0 0 0

DH
31 DH

32 DH
33 0 0 0

0 0 0 DH
44 0 0

0 0 0 0 DH
55 0000

0 0 0 0 0 DH
66





0

0

0

1

0

0





� 1

2
VDH

44, (11)

where V is the volume of the unit cell.
/e total strain energy can also be obtained using the

domain integration of the local strain energy density in the
unit cell as follows:

E44 �
1

2
∫
Y
ε
T
4D

mi
ε4dY. (12)

Under the boundary condition described in Table 1, the
finite element equation governing the unit cell can be
expressed as follows:

k′u(4) � f
(4), (13)

where u
(4) and f

(4) are the equivalent nodal displacement
vector and force vector caused by the unit strain ε(4). ki′ is the

real part of the global stiffness matrix of the unit cell, which is
expressed as follows:

k′ �∑n
i�1
∫
Yi

x
p
i b

T
i D

v0
bidYi ��∑n

i�1
x
p
i ki
′, (14)

where bi is the strain matrix of the ith element in the unit
cell. ki′ is the real part of the stiffness matrix of ith element.

In finite element analysis, equation (12) can be rewritten
as follows:

E44 �
1

2
∑n
i�1
x
p
i u

(4)T
i 1 + jη0( )ki′u(4)i , (15)

where u
(4)
i represents the equivalent nodal displacement

vector of the ith element.

Z

a3

a1

a2

X

Y

Figure 1: A 3D unit cell.
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Keeping in mind that EH44 � E44, the effective shear
modulus of the unit cell DH

44 can be expressed as follows:

DH
44 �

∑ni�1 xpi u(4)Ti 1 + jη0( )k′iu(4)i
V

. (16)

Similarly, the effective shear modulus of the unit cellDH
55

is expressed as follows:

DH
55 �

∑ni�1 xpi u(5)Ti 1 + jη0( )ki′u(5)i
V

, (17)

where u(5)i is the equivalent nodal displacement vector of the
ith element, which can be obtained through the statics
analysis of the unit cell under the boundary condition de-
scribed in Table 2.

/e constitutive matrix of an orthotropic material has
nine independent components, see equation (9). /e pro-
cedure for the analysis of the effective shear modulus DH

44

and DH
55 is shown in the paper, and the procedure of the

identification of the other seven components can be ob-
tained from [37].

/e effective density of the unit cell is evaluated through
the following relationship:

ρH � ∑i�1ρvi
n

. (18)

3.2. Sensitivity Analysis. An important step in finding the
optimum distribution of the unit cell is to carry out sen-
sitivity analysis in which the effect of each design variable on
the modal loss factor is estimated. /e sensitivity of the
modal loss factor with respect to the design variables can be
formulated as follows:

zηr
zxi

�
Φ
T
r zKI/zxiΦr( ) Φ

T
rKRΦr( ) − Φ

T
r zKR/zxiΦr( ) Φ

T
rKIΦr( )

Φ
T
rKRΦr( )2 . (19)

Substituting equations (5) and (6) to equation (19),
equation (20) can be obtained:

zηr
zxi

�
Φ
T
r ∑Ne�1 z Im K

v
e( )( )/zxi( )Φr( ) Φ

T
rKRΦr( ) − Φ

T
r ∑Ne�1 z Re K

v
e( )( )/zxi( )Φr( ) Φ

T
rKIΦr( )

Φ
T
rKRΦr( )2 . (20)

Considering the definition of matrix Kve in equation (3),
the sensitivities of Im(Kve) and Re(Kve) can be formulated as
follows:

z Im K
v
e( )( )

zxi
� ∫
Ωe

z Im DH
55( )( )

zxi
N
T
xzNxz+

z Im DH
44( )( )

zxi
N
T
yzNyz

 dΩe,

z Re K
v
e( )( )

zxi
� ∫
Ωe

z Re DH
55( )( )

zxi
N
T
xzNxz+

z Re DH
44( )( )

zxi
N
T
yzNyz) dΩe.

(21)

Table 1: Boundary conditions for the FE model of the unit cell.

Nodes ux uy uz
x � 0 0 Free Free
x � a1 0 Free Free
y � 0 0 Free 0
y � a2 0 Free 0
z � 0 0 0 Free
z � a3 0 a3 0

Table 2: Boundary conditions for the FE model of the unit cell.

Nodes ux uy uz
x � 0 Free 0 0
x � a1 Free 0 0
y � 0 Free 0 Free
y � a2 Free 0 Free
z � 0 0 0 Free
z � a3 a3 0 0
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By analyzing the first partial derivative of equations (16)
and (17) with respect to the design variables, the sensitivities
of the effective shear modulus can be obtained:

z Im DH
44( )( )

zxi
� px

p−1
i η0u(4)Ti ki′u

(4)
i

V
,

z Re DH
44( )( )

zxi
� px

p−1
i u

(4)T
i ki′u

(4)
i

V
,

z Im DH
55( )( )

zxi
� px

p−1
i η0u(5)Ti ki′u

(5)
i

V
,

z Re DH
55( )( )

zxi
� px

p−1
i u

(5)T
i ki
′u(5)i

V
.

(22)

3.3. Optimization Procedure. /e entire topology optimi-
zation procedure for the design of the viscoelastic material

microstructure is illustrated in Figure 2. Based on the initial
microstructure, the effective shear modulus and density are
computed by the homogenization process in equations (16),
(17), and (18). /e modal loss factor of the macrostructure
and the corresponding sensitivities with respect to the design
variables are calculated by a two-scale analysis in equations
(8) and (20). /en, the MMA algorithm is utilized for the
optimizer to update the new design variables. /is process is
repeated until a certain convergence criterion is satisfied.
/e convergence criterion is that the maximum difference of
the design variables of two adjacent iteration steps is less
than the given small value ε. /e convergence parameter is
ε � 0.005.

/e MMA algorithm was proposed to adjust the cur-
vature of the convex linearization method. Giving the
current design x(k)i , the MMA approximation of the max-
imummodal loss factor problem in equation (1) yields to the
following linear programming problem:

find : xi, i � 1, 2, . . . , n,

min : ∑n
i�1

x(k)i − L(k)i( )2
xi − L

(k)
i

zηr
zxi

x(k)i( )  (r � 1, 2, 3, . . . , ; i � 1, 2, . . . , n),

s.t:
∑ni�1 xiVi∑ni�1 Vi ≤V∗,
0< xmin ≤xi ≤ 1, i � 1, 2, . . . , n.



(23)

/e lower and upper asymptotes L(k)i and U(k)i are it-
eratively updated to mitigate oscillation or improve con-
vergence rate. /e heuristic rule is as follows [22].

For k � 1 and k � 2,

U(k)i + L(k)i � 2x(k)i ,

U(k)i − L(k)i � 1.

 (24)

For k≥ 3,

U(k)i + L(k)i � 2x(k)i ,

U(k)i − L(k)i � c(k)i ,

 (25)

where

c(k)i �

0.7 x(k)i − x(k-1)i( ) x(k-1)i − x(k-2)i( )< 0,
1.2 x(k)i − x(k-1)i( ) x(k-1)i − x(k-2)i( )> 0,
x(k)i − x(k-1)i( ) x(k-1)i − x(k-2)i( ) � 0.


(26)

4. Numerical Examples

Two numerical examples are presented in this section to
illustrate the microstructural design of the CLD plates and
demonstrate the effectiveness of the proposed optimization
approach./e first is a rectangular plate with two short edges
clamped and the second is a cantilever rectangular plate. It is
assumed that the material properties of both cases are the
same, as shown in Table 3.

It is assumed that the 3D unit cell characteristic size is
much smaller than the characteristic size of the macro-
structure. Such hypotheses support the homogenization
theory that is used here to compute equivalent mechanical
properties of the periodic viscoelastic damping materials.
/en, the homogenized material properties of viscoelastic
damping materials are independent of the size of the 3D unit
cell [20]. For simplicity, nondimensional sizes 1× 1× 1 for
the 3D unit cell are assumed. /e 3D unit cell of the mi-
crostructure is discretized with eight-node hexahedron el-
ements./e initial designs are of a uniform distribution with
the given volume fraction except the elements at the center.
/e density of the elements at the center is set to be 1.
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4.1. 8e Plate Clamped with Two Short Edges. /e plate
clamped with two short edges is shown in Figure 3. /e
length and width of the cantilever rectangular plate are 0.4m
and 0.2m, respectively. /e thickness of the base plate,
viscoelastic layer, and constrained layer are 0.002m,
0.0005m, and 0.0005m, respectively.

Topology optimization of the microstructure is carried
out first for four different meshes of the 3D unit cell:
15×15×15, 20× 20× 20, 25× 25× 25, and 30× 30× 30. /e
optimization objective is to maximize the modal loss factor
of the first mode and the volume fraction is 0.3. All of the
results are shown in Table 4. It can be clearly seen that the
optimum objective values of the final topologies using
different meshes are close to each other. With the increase of
the number of elements in the 3D unit cell, the optimized
configurations are more detailed, but the computation time
is significantly increased. /e number of elements in a 3D

unit cell can be determined by comprehensively considering
the detail of the optimized configurations and the compu-
tational cost. /e 3D unit cell in the following examples is
divided into 20× 20× 20. From Table 4, it can also be seen
that the optimal configurations have very few intermediate
density elements. It means that while the design variables
can be fractions, most design variables are close to 0 or 1.

No

Yes

Yes

State

Initialize the design variables
x(0) and set k←0

Obtain the effective shear
modulus and density

Calculate the modal loss factor of
the macrostructure

Sensitivity analysis

Is the constraint
condition satisfied?

Stop

k ≤ 2
Update lower and

upper asymptotes using
Eqs. (30) and (31)

Update lower and
upper asymptotes

using Eq. (29)

Solve the MMA subproblem
(Eq.(28)) to obtain x(k+1)

x(k–2)
←x(k–1), x(k–1)

←x(k),
x(k)

←x(k–1), k←k + 1

No

Figure 2: Flowchart for the optimization procedure.

Table 3: Physical parameters of the CLD plates.

Layer Density (kg/m3) Young’s modulus (MPa) Poisson’s ratio Material loss factor

Base plate 7900 2.06 × 105 0.3 ——
Viscoelastic layer 1200 40 0.49 0.5
Constrained layer 2700 7 × 104 0.3 ——

f

Figure 3: /e plate clamped with two short edges.
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/e design results of maximizing the modal loss factor of
the secondmode and the modal loss factor of the third mode
are shown in Table 5. It is found that the optimal micro-
structure of maximizing the modal loss factor of the second
mode is obviously different from those of maximizing the
modal loss factor of the first mode and the third mode. /at
is because the first mode and the third mode are bending
modes and the shear strains occur in the plane y-z, while the
secondmode is torsional mode and the shear strains occur in
the planes y-z and x-z.

For each mode, there is a certain value of the shear
modulus that maximizes the modal loss factor in the damping

structure. /e volume fraction varies with the optimization
objective. /ree different design objectives are considered.
/ey are (1) maximizing the modal loss factor of the first
mode, (2) maximizing the modal loss factor of the second
mode, and (3) maximizing the modal loss factor of the third
mode. /e design results are shown in Table 6. It can be seen
that the iterations are smooth. For the single mode design, the
modal loss factors of optimal designs are increased by 48.28%,
14.72%, and 6.56% than the traditional design (the solid
viscoelastic material) at modes 1, 2, and 3, respectively.

In order to further verify the effectiveness of the optimal
designs, the CLD plate is excited by a central time-harmonic

Table 4: Topological designs of viscoelastic damping material microstructures for four different meshes.

15×15×15 20× 20× 20 25× 25× 25 30× 30× 30

Microstructure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations 51 57 77 100
Computational cost
(s)

1053.94 2809.80 7615.37 17812.88

Effective storage
shear modulus (MPa)

Re(DH
44) � 0.56

Re(DH
55) � 3.77

Re(DH
44) � 0.50

Re(DH
55) � 3.83

Re(DH
44) � 0.41

Re(DH
55) � 3.80

Re(DH
44) � 0.36

Re(DH
55) � 3.73

Modal loss factor 0.0648 0.0648 0.0648 0.0649

Table 5: Topological designs of viscoelastic damping material microstructures with the same volume fraction.

Mode 2 Mode 3

Volume fraction 0.3 0.3

Microstructure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

Convergence histories
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0.06
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r

0 20 40 60

Iteration

Number of iterations 67 56
Computational cost (s) 3324.38 2751.62
Effective storage shear modulus (MPa) Re(DH

44) � 1.56 Re(DH
55) � 3.17 Re(DH

44) � 0.49 Re(DH
55) � 3.85

Modal loss factor 0.0525 0.0584
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Figure 4: Comparison of the amplitude of frequency response function of traditional design and optimal designs.

Table 6: Topological designs of viscoelastic damping material microstructures with different volume fractions.

Mode 1 Mode 2 Mode 3

Volume fraction 0.3 0.5 0.6

Microstructure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1
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1

Convergence
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M
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r

Number of
iterations

57 80 44

Computational cost
(s)

2809.80 3952.76 2181.87

Effective storage
shear modulus
(MPa)

Re(DH
44) � 0.50,Re(DH

55) � 3.83 Re(DH
44) � 3.77,Re(DH

55) � 6.15 Re(DH
44) � 5.29,Re(DH

55) � 7.61

Modal loss factor of
optimal design

0.0648 0.0561 0.0650

Modal loss factor of
traditional design

0.0437 0.0489 0.0610
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force with the amplitude F� 1N. /e location of the exci-
tation force is shown in Figure 3 and the response is
evaluated at the same point. /e amplitude of frequency
response function of the traditional design and the optimal
designs are compared in Figure 4. It can be seen that when
maximizing the first modal loss factor (Case 1), the am-
plitude of frequency response function at the first mode is
minimum. Case 2 and Case 3 show the same tendency with
Case 1.

4.2. 8e Cantilever Rectangular Plate. In order to further
verify the effectiveness of the proposed optimization algo-
rithm, another structure with different boundary conditions
and size is discussed. A cantilever rectangular plate is shown
in Figure 5. /e length and width of the plate are 0.2m and
0.1m, respectively. Other physical and geometrical pa-
rameters are the same as the first example. /e volume

fraction is 0.3. /ree different design objectives are
considered.

/e design results are shown in Table 7. Similar to the
first example, the optimal microstructure and the effective
shear modulus of the first mode are similar to those of the
third mode. /e optimal microstructure and the effective
shear modulus of the second mode are obviously different
from those of the first mode. /at is also because the first
mode and the third mode are bending modes and the shear
strains occur in the plane y-z, while the second mode is the
torsional mode and the shear strains occur in the planes y-z
and x-z.

/e volume fraction varies with the optimization
objective. /e design results are shown in Table 8. For
the single mode design, the modal loss factors of optimal
designs are increased by 160.32%, 1.55%, and 4.67%
than the traditional design at modes 1, 2, and 3,
respectively.

f

Figure 5: /e cantilever rectangular plate.

Table 7: Topological designs of viscoelastic damping material microstructures with the same volume fraction.

Mode 1 Mode 2 Mode 3

Volume fraction 0.3 0.3 0.3

Microstructure

0
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Number of iterations 48 116 44
Computational cost (s) 2367.75 5837.99 2163.63
Effective storage shear
modulus (MPa)

Re(DH
44) � 0.49,Re(DH

55) � 3.79 Re(DH
44) � 1.50,Re(DH

55) � 3.18 Re(DH
44) � 0.49,Re(DH

55) � 3.83

Modal loss factor of
optimal design

0.0402 0.0416 0.0532
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/e loading condition of frequency response analysis is
similar with the first example and the location of the
frequency response point is shown in Figure 5. /e am-
plitude of frequency response function of the traditional

design and the optimal designs are compared in Figure 6.
For mode 1, the resonance peak of the optimal design at the
first mode is obviously lower than the traditional design.
For mode 2 and mode 3, the resonance peaks of the optimal
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Figure 6: Comparison of the amplitude of frequency response function of traditional design and optimal designs.

Table 8: Topological designs of viscoelastic damping material microstructures for maximizing modal loss factors with different volume
fractions.

Mode 1 Mode 2 Mode 3

Volume fraction 0.2 0.8 0.6

Microstructure

0
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Number of iterations 40 43 41
Computational cost (s) 2046.78 2352.25 2152.28
Effective storage shear
modulus (MPa)

Re(DH
44) � 0.17,Re(DH

55) � 2.33 Re(DH
44) � 8.97,Re(DH

55) � 10.14 Re(DH
44) � 5.29,Re(DH

55) � 7.60

Modal loss factor of
optimal design

0.0492 0.0524 0.0590

Modal loss factor of
traditional design

0.0189 0.0516 0.0564
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design for the corresponding mode are slightly higher than
the traditional design. /is is because the stiffness of the
optimal design is naturally lower than the traditional de-
sign [29].

5. Conclusions

A microstructural topology optimization of viscoelastic
materials of CLD plates is presented for maximizing the
modal loss factor of the macrostructure. /e strain energy-
based method is employed to calculate effective properties
of the viscoelastic materials composed of 3D periodic unit
cells. Based on the homogenized properties, the modal loss
factor of the macrostructure is performed by the Modal
Strain Energy Method./e design sensitivities of the modal
loss factor with respect to the design variables are analyzed.
/e density method is adopted to find the optimum layout
on microscale of the viscoelastic damping layer. /e nu-
merical examples demonstrated the effectiveness of the
proposed method./e lightweight damped plates with high
damping capabilities can be designed through the proposed
method.
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