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Abstract

This work provides a family of explicit phenomenological models both in the F − H and F − B variable space.
These models are derived directly from an analytical implicit homogenization model for isotropic magnetorheological
elastomers (MREs), which, in turn, is assessed via full-field numerical simulations. The proposed phenomenological
models are constructed so that they recover the same purely mechanical, initial and saturation magnetization and
initial magnetostriction response of the analytical homogenization model for all sets of material parameters, such as the
particle volume fraction and the material properties of the constituents (e.g., the matrix shear modulus, the magnetic
susceptibility and magnetization saturation of the particles). The functional form of the proposed phenomenological
models is based on simple energy functions with small number of calibration parameters thus allowing for the description
of magnetoelastic solids more generally such as anisotropic (with particle-chains) ones, polymers comprising ferrofluid
particles or particle clusters. This, in turn, makes them suitable to probe a large set of experimental or numerical results.
The models of the present study show that in isotropic MREs, the entire magnetization response is insensitive to the
shear modulus of the matrix material even when the latter ranges between 0.003-0.3MPa, while the magnetostriction
response is extremely sensitive to the mechanical properties of the matrix material.

1. Introduction

In recent years, there has been an increasing interest in the experimental, theoretical and numerical study of mag-
netoelastic and electroelastic materials that can achieve large strains under application of magnetic or electric fields,
respectively. Specifically, in the context of magnetoelasticity, this has been possible by the fabrication of composite
materials made of a soft matrix (such as gels, polymers and elastomers) and magnetically soft or hard but mechanically
stiff particles. This class of materials has been termed magnetorheological elastomers (MREs) (Shiga et al., 1995; Jolly
et al., 1996; Ginder et al., 1999; Martin et al., 2006; Diguet et al., 2010; Danas et al., 2012; Bodelot et al., 2016, 2018) or
h-MREs (Schümann et al., 2017; Kim et al., 2018; Zhao et al., 2019). The MREs comprise magnetically soft iron particles
with negligible magnetic hysteresis and the h-MREs consist of magnetically hard particles (such as NdFeB ones), which,
in turn, lead to a strong magnetic hysteresis.

For this reason, numerous studies have been devoted to construct analytical continuum models capable of describing
the magnetoelastic response of MREs materials under finite deformations and magnetic fields. These studies can be
roughly classified into two categories: (i) top-down or phenomenological approaches in which macroscopic free energies
are postulated based on macroscopic experimental observations (Kankanala and Triantafyllidis, 2004; Dorfmann and
Ogden, 2005; Bustamante et al., 2011; Danas et al., 2012; Saxena et al., 2015) and (ii) bottom-up or homogenization
approaches in which macroscopic free energies are derived based on the underlying microscopic behavior (Liu et al.,
2006; Ponte Castañeda and Galipeau, 2011; Galipeau and Ponte Castañeda, 2013; Lefèvre et al., 2017). While the
practical challenges of carrying out experiments that test the material (and not the structural) response of specimens
have led to the development of numerous phenomenological models, the intrinsic mathematical challenges of carrying
out the homogenization limit of the equations of magnetoelastostatics has only provided a handful of available results.
Furthermore, the proposed phenomenological models have only been calibrated and assessed for the given experimental
setup that have been proposed and a zoo of different expressions is now available. Yet none of these models has universal
characteristics in the sense that none of these models has been used to study a wide range of materials parameters.

In parallel, numerical homogenization studies of various microstructures have been carried out in two- and three-
dimensional unit cells (Javili et al., 2013; Galipeau et al., 2014; Miehe et al., 2016). In those studies, the results were
obtained by using a scalar potential formulation which was presented in the context of electromechanical problems by
Landis (2002) (but see also recent numerical work by Henann et al. (2013)). In more recent studies, Kästner and co-
workers(Spieler et al., 2013, 2014; Metsch et al., 2016) and Danas (2017) have used the vector potential to analyze
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two-dimensional MREs. Moreover, in an effort to resolve some of the surrounding air and specimen effects, Kalina et al.
(2016) have modeled directly the specimen, the surrounding air and the microstructure at the same scale. While this
study has led to satisfactory qualitative agreement with experiments, it did not resolve the different length scales as one
goes from specimen to microstructure, since that would require an untractable mesh size. Along this effort, Keip and
Rambausek (2015) proposed a two-scale finite element approach in order to solve simultaneously the magneto-mechanical
boundary value problem and the microstructural problem by properly resolving the separation of the very different length
scales. While this last approach is the more complete one, it still remains numerically demanding, especially if complex
unit cells with large number of particles are considered. Moreover, in all these approaches, it is very hard to decouple
from the estimated response the relative effect of the specimen geometry and that of the microstructure.

In this regard, the recent study of Lefèvre et al. (2017) proposes an alternative view to the problem by first solving
the homogenization problem at the RVE scale analytically and then using these estimates at the macroscopic scale to
analyze the specimen shape effects. In that effort, the authors obtained a very useful analytical model for incompressible
isotropic MREs in the space of the deformation gradient F and the Lagrangian h−field H. This model, however,
is implicit and requires the solution of a highly nonlinear algebraic equation simultaneously with the estimation of the
effective energy function. In a companion paper (Lefèvre et al., 2019), the same authors proposed an approximate explicit
model obtained directly by fitting the implicit variable of the original homogenization model, thus making it extremely
simple for numerical implementation keeping extremely good accuracy. In turn, due to the very strong nonlinearities
involved in those models, it is almost impossible to carry out an analytical partial Legendre-Fenchel transform with
respect to the H field in order to obtain the complementary energy in terms of the deformation gradient F and the
Lagrangian magnetic field B. This latter F−B version is extremely useful in numerous boundary value problems (e.g.,
instability problems or device-based ones where the magnetic poles and the coils are modeled directly), that are naturally
written in terms of the magnetic vector potential and not the scalar potential.

Motivated by these observations, the objective of this work is to put forth a family of homogenization-guided phe-
nomenological models for isotropic MREs in both the F − H and F − B space that are entirely calibrated by using
the analytical implicit homogenization model of Lefèvre et al. (2017). These phenomenological models are “explicit” in
both F −H and F −B space and thus are very simple to be implemented in any finite element user material/element
code. They are constructed by a proper choice of energy functions and in such a way that recover three main features of
the homogenization model: (i) they recover the exact (in the sense of homogenization) effective magnetization response
at small and very large (i.e. at magnetization saturation) magnetic fields, (ii) they predict the exact magnetostriction
response at small-to-moderate magnetic fields for all mechanical pre-loads and (iii) their purely mechanical response is
exactly that of the homogenization model, which has been originally obtained in Lopez-Pamies et al. (2013). In addition,
the proposed phenomenological models are assessed for a very large range of material responses, such as a large range
of shear moduli of the matrix material and particle volume fractions. This allows to study various boundary value
problems in a more predictive fashion that aids in material selection for given applications. The form of the phenomeno-
logical functions that are proposed for the coupled magneto-mechanical response is universal in the sense that they can
be used to describe the magnetoelastic response of MREs from available experimental or other numerical results for
anisotropic microstructures (e.g. particle-chains), or describe the response of polymer composites comprising other type
of magnetoactive particles such as ferrofluids (Lefèvre et al., 2017). Also, the present phenomenological models can be
used mutatis mutandis to describe the response of electroactive polymers with (Lefèvre and Lopez-Pamies, 2016a,b) or
without dielectric particles (Zurlo et al., 2018). Finally, an ad-hoc extension of these models in the context of nearly
incompressible MREs is proposed allowing for an even more simplified implementation in numerical codes.

The presentation of the work is organized as follows. Section 2 discusses basic definitions in the context of coupled
magneto-elasticity. In Section 3, we formulate the homogenization problem in the F−H space, we recall the definitions
of the effective energy and propose, following the recent work of Danas (2017), an augmented variational framework
that allows for the proper definition of an RVE and the corresponding effective magnetization and magnetostriction
free from specimen shape effects. We then devote Section 4 to the presentation of the analytical homogenization and
phenomenological models in the F − H and F − B space. Therein, we discuss in detail the construction of the phe-
nomenological models and the calibration of their coefficients by proper expansions at small mechanical and magnetic
fields. This section finishes with the discussion of the numerical finite element RVE problem. The assessment of all the
models is done in Section 5, where we study a wide range of material parameters, while we also explore the response of
the phenomenological models beyond the regime of calibration by analyzing the effect of mechanical pre-stress upon the
magnetization and magnetostriction response of the MRE. Finally, in Section 6, we record some concluding remarks.

2. Preliminary definitions

We consider a deformable solid occupying a volume V0 ∈ R
3 with boundary ∂V0 ∈ R

2 in its reference configuration.
The deformation of the solid from its reference configuration V0 to the current configuration V is defined in terms of a
continuous and one-to-one mapping y(X). We assume y to be continuous and twice differentiable in V0, except at the
material interfaces. Thus, the position vector of a material point in the current configuration is given by x = y(X).

The deformation gradient is therefore defined as F̆(X) = Grady1 with J̆ = det F̆ > 0, where Grad denotes the gradient

1Henceforth, the notation (̆.) is used to denote local microscopic quantities, whereas plain symbols refer to the macroscopic scale.
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operator with respect to X. We consider no time dependence.
The purely magnetic problem may be described in terms of the Eulerian magnetic field b̆, whose work conjugate is

referred to as the magnetic h-field h̆. The current magnetization m̆ is then defined by the constitutive relation

b̆ = µ0(h̆+ m̆), (1)

where µ0 is the magnetic permeability of free space to be defined later. In case of a non-magnetic medium, e.g., air, the
magnetization m̆ vanishes reducing (1) to b̆ = µ0h̆. In principle, the magnetic problem can be expressed in terms of b̆, h̆
or m̆ as the independent variable, see for instance (Kankanala and Triantafyllidis, 2004). In fact, in a coupled magneto-

mechanical problem, one can retrieve the h̆-based formulation from the b̆ form by performing a partial Legendre-Frechel
transform of the total energy functional with respect to b̆ and vice-versa (Danas, 2017). Both b̆ and h̆ are Eulerian
quantities and are subjected to well-defined differential and boundary constrains arising directly from the magnetic
balance laws. The magnetization m̆ is also an Eulerian quantity on which, in turn, no differential and/or boundary
constraints are imposed.

The Lagrangian counterparts of the divergence-free b̆ and the curl-free h̆ are obtained by a pull-back operation on
the global balance equations (Dorfmann and Ogden, 2004), such that

B̆ = J̆F̆−1b̆ and H̆ = F̆T h̆, (2)

respectively. Given the Lagrangian B̆ and H̆ as in (2), it is evident that (1) is non-unique under pull-back transformations,
also implying the non-uniqueness of the Lagrangian form of m̆ (Dorfmann and Ogden, 2004, 2005; Kankanala and

Triantafyllidis, 2004). Therefore, no attempt is made to provide a Lagrangian form of m̆. The Lagrangian B̆ and H̆

fields also satisfy the divergence and curl free conditions, respectively, so that (Kankanala and Triantafyllidis, 2004;
Dorfmann and Ogden, 2005)

Div B̆ = 0 in V0 with N ·
[[
B̆
]]

= 0 on ∂V0, (3)

Curl H̆ = 0 in V0 with N ×
[[
H̆
]]

= 0 on ∂V0, (4)

where [[·]] denotes the jump across the boundary ∂V0 whose normal is denoted with N . The former allows us to express B̆

as the curl of a vector potential A, i.e., B̆ = CurlA, whereas the latter leads to an expression of H̆ in terms of the gradient
of a scalar potential, such that, H̆ = −Gradϕ. Such vector/scalar potential-based formulations are used extensively in
the numerical realization of coupled magneto-mechanical boundary value problems (Lefèvre et al., 2017; Danas, 2017;
Psarra et al., 2017). In fact, from a purely computational point of view, the scalar potential-based formulation is simpler
to implement due to the use of a single additional scalar degree of freedom, i.e., the scalar potential. For the purposes
of the present work, this is sufficient since we are interested in the constitutive response of MREs. The reader is referred
to (Danas, 2017) for an equivalent vector potential-based formulation.

An equivalent set of the magnetostatic balance laws in terms of the Eulerian b̆ and h̆ fields can be obtained by
substituting (2) into (3) and (4). The resulting counterparts of (3) and (4) that hold in the current configuration are
then given by (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2005)

div b̆ = 0 in V with n ·
[[
b̆
]]

= 0 on ∂V, (5)

curl h̆ = 0 in V with n×
[[
h̆
]]

= 0 on ∂V, (6)

where “div” and “curl” represent, respectively, the divergence and curl operations in the current configuration and n is
the unit normal on the current boundary ∂V.

Finally, the energy per unit volume of an isotropic, magneto-hyperelastic solid in its reference configuration may be
given in terms of the deformation gradient F̆ and the Lagrangian h−field H̆ by

W (X, F̆, H̆) = Φ(X, F̆, H̆)− µ0

2
J̆F̆−T H̆ · F̆−T H̆. (7)

In this expression, Φ(X, F̆, H̆) is the specific free energy of the system, while the second term is used to describe the
magnetic energy of the surroundings (ether) and is present always irrespective of whether the medium is magnetic or
not (Dorfmann and Ogden, 2005; Danas, 2017). No effect of magnetic/elastic dissipation is considered. Furthermore,

in the above description, we use H̆ as an independent variable. An equivalent description and analysis using B̆ as an
independent variable has been discussed extensively in Danas (2017) for the homogenization problem and is not repeated
here.

Hence, by standard thermodynamic arguments, one can obtain the constitutive relations (Kankanala and Triantafyl-
lidis, 2004; Dorfmann and Ogden, 2005; Bustamante et al., 2008; Lefèvre et al., 2017)

S̆ =
∂W

∂F̆
(X, F̆, H̆) and B̆ = −∂W

∂H̆
(X, F̆, H̆) (8)
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for the local first Piola-Kirchhoff stress and the local magnetic field, respectively. Several phenomenological energy
functions have been proposed for both isotropic (Bustamante, 2010) and transversely isotropic (Danas et al., 2012)
MREs. In the following sections, we first consider fully decoupled energy functions for each constituent, i.e., the polymer
matrix phase and the particle magnetic phase to obtain an effective macroscopic response of the composite via analytical
and numerical homogenization.

Finally, it is worth noting that the local Piola-Kirchhoff and Cauchy stresses may be written as a sum of the local
mechanical and Maxwell stresses (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2005; Bustamante et al.,

2008). For the case of an energy function that depends on F̆ and H̆, one can show that (Kankanala and Triantafyllidis,
2004)

S̆ = J̆σ̆F̆−T , σ̆ = σ̆mech + σ̆maxw, with σ̆maxw = h̆ b̆− µ0

2
|h̆|2I, (9)

where | · | represents the standard Euclidean norm and I is the second order identity tensor. In the absence of mechanical

body forces, the stress measures, S̆ and σ̆
2, are divergence-free leading to the balance laws

Div S̆ = 0 in V0 with N ·
[[
S̆
]]

= T̆ on ∂V0, (10)

div σ̆ = 0 in V with n · [[σ̆]] = t̆ on ∂V, (11)

in the reference and current configuration, respectively. The Lagrangian (Eulerian) boundary traction on ∂V0 (∂V) is

denoted by T̆ (t̆) in (10) ((11)).

3. Micro-magneto-mechanical modeling of MREs

This section describes the general steps towards the numerical and theoretical modeling of particle-filled MREs.
We first define the constitutive models for the individual phases of the composite. This is followed by laying out the
periodic homogenization framework in order to obtain the effective (macroscopic) response of the composite. It should
be noted that the following expressions are presented in the general compressible case, while both the incompressible
and compressible cases are studied in the following sections. Whenever necessary, special care is taken to clarify the
differences between these two descriptions.

3.1. Local constitutive models for the constituents

We consider a composite material consisting of a matrix phase, denoted with i = m and a particle phase, denoted with
i = p. For the sake of presentation, we assume both phases to be magnetoelastic, whereas the special case of a polymeric
non-magnetic matrix or rigid mechanically particle can be easily obtained later. Each phase occupies a sub-domain Vm

0

and Vp
0 , respectively, in the reference configuration. The local energy associated with such a composite is then given by

W (X, F̆, H̆) = Θ(X)Wm(F̆, H̆) + (1−Θ(X))Wp(F̆, H̆),

where the function Θ(X) is the characteristic function and takes the value Θ(X) = 1 if X ∈ Vm
0 and Θ(X) = 0 if X ∈ Vp

0 .
These characteristic functions must comply with the hypothesis of the separation of length scales, i.e., Θ must vary in
a length scale that is much smaller than the length scale of the representative volume element (RVE) under study. The

energy associated with an individual phase is then given by Wi(F̆, H̆) ≡ wi(F̆, h̆) with i = m or i = p, and reads

Wi(F̆, H̆) = Φi(F̆, H̆)− µ0

2
J̆F̆−T H̆ · F̆−T H̆ = φi(F̆, h̆)−

µ0

2
J̆ h̆ · h̆ = wi(F̆, h̆). (12)

Here, we used the transformation relation (2)2 to obtain the equivalent energy wi(F̆, h̆) in terms of the Eulerian h-field

h̆. The specific free energy Φi(F̆, H̆) is typically decomposed into a purely mechanical and a magneto-mechanical part
(Danas et al., 2012; Javili et al., 2013; Lefèvre et al., 2017; Danas, 2017)

Φi(F̆, H̆) = Φmech
i (F̆) + Φmag

i (F̆, H̆), (13)

where the subscript “mech” denotes the purely mechanical part and the subscript “mag” represents the magneto-
mechanical part of the total Φi(F̆, H̆). Such a decomposition is fairly general but is more than sufficient for phases
that are not magnetic or exhibit a very minor magneto-mechanical coupling, such as the iron particles which are very
stiff mechanically and thus attain very small magnetostrictive strains (e.g. in the order of 10−6 − 10−5). Furthermore,

material objectivity is readily satisfied by expressing Φi(F̆, H̆) in terms of six invariants as listed in Table 1.

2Note that the expression for the Maxwell stress depends on the choice of the independent magnetic variables as discussed in Kankanala
and Triantafyllidis (2004).
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Table 1: Invariants associated with isotropic magneto-elastic solids

Mechanical Magneto-mechanical
Invariant Expression Invariant Lagrangian Eulerian

Ĭ1 = tr(F̆T F̆) ĬH4 = H̆ · H̆ F̆T h̆ · F̆T h̆

Ĭ2 =
1

2
[{tr(F̆T F̆)}2 − F̆T F̆ · F̆T F̆] ĬH5 = F̆−T H̆ · F̆−T H̆ h̆ · h̆

Ĭ3 = J̆ = det F̆ ĬH6 = F̆−1F̆−T H̆ · F̆−1F̆−T H̆ F̆−1h̆ · F̆−1h̆

In this table, the first three invariants are purely mechanical. In turn, invariants Ĭ4 − Ĭ6 should be discussed with
caution. Following the discussion in Danas (2017), if one applies the Eulerian magnetic field h̆, then Ĭ5 is a purely

magnetic invariant leading to no coupling. Instead, if one applies the Lagrangian H̆ field3, the uncoupled magnetic
invariant is Ĭ4. This subtle point is a source of discrepancies in the literature of magneto-elastic and electro-active solids
and caution should be taken when one proposes constitutive laws. This distinction will be discussed in more detail in
the subsequent sections when selecting the invariants for the coupled magneto-mechanical response.

Very often, the mechanical response of the magneto-elastic solids is described by a simple Neo-Hookean model, such
as

Φmech
i (F̆) =

Gi

2
(Ĭ1 − 3− 2 ln J̆) +

G′
i

2
(J̆ − 1)2, i = m, p. (14)

In this expression, Gi is the shear modulus and G′
i is the Lame constant associated with the compressibility of each

phase i = m, p. In the subsequent proposed homogenization and phenomenological models the use of Neo-Hookean model
is not at all a prerequisite. Instead, the mechanical part of the proposed models in the present study is directly based on
the work of Lopez-Pamies et al. (2013) and are valid for any matrix that is described by a I1−based mechanical energy
density.

For the magnetic part, a Langevin-type saturation function is used in the present study (Lefèvre et al., 2017)

Φ
mag
i (F̆, H̆) = − J̆ µ0(m

s
i)

2

3χi

{
ln

[
sinh

(
3χi

ms
i

√
ĬH5

)]
− ln

[
3χi

ms
i

√
ĬH5

]}

= − J̆µ0(m
s
i)

2

3χi

{
ln

[
sinh

(
3χi

ms
i

|h̆|
)]

− ln

[
3χi

ms
i

|h̆|
]}

= φmag
i (J̆ , h̆). (15)

Here, ĬH5 is defined in Table 1, whereas χi and ms
i are the magnetic susceptibility and the saturation magnetization of

each phase i = m, p. Again, the proposed models in the following section can deal with any type of saturation functions
such as the hyperbolic tangent (see Danas (2017)). We further note that as a consequence of the definition of ĬH5 , φ

mag
i

depends on F̆ only via J̆ if the Eulerian field h̆ is prescribed. Even more, in the incompressible limit, where J̆ = 1, the φmag
i

depends only on h̆ thus leading to no magneto-mechanical coupling in this last case. The situation is of course different
if the Lagrangian field H̆ is prescribed. This point has been raised recently by Danas (2017) in order to distinguish the
case of MREs and electroactive polymers.

Using next the energy (15) and the Langevin function

L(x) = cothx− x−1, x ∈ R, (16)

one obtains by applying relation (8)2

B̆(F̆, H̆) = −∂Wi

∂H̆
= µ0J̆

[
1 +

ms
i√
ĬH5

L


3χi

√
ĬH5

ms
i



]
F̆−1 · F̆−T H̆, (17)

which becomes by use of relation (2)

b̆(h̆) = µ0

[
h̆+ms

iL
(
3χi|h̆|
ms

i

)
h̆

|h̆|

]
. (18)

The magnetization is then simply given by matching definition (1) with the last equation (18), such that

m̆(h̆) = ms
iL
(
3χi|h̆|
ms

i

)
h̆

|h̆|
. (19)

In the limit of |H̆| → 0, definition (15) becomes quadratic in H̆ (or h̆), such that

Φmag
i (F̆, H̆) = − J̆µ0χi

2
IH5 = −µ0χi

2
J̆ h̆ · h̆ = φmag

i (J̆ , h̆), i = m, p. (20)

3This is the case in the context of electro-active problems where electrodes are directly attached on the boundary of the specimen and
thus the electric field follows the deformation of the solid and is Lagrangian in nature.
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By applying again (8)2 and (2), the last relation (20) leads readily to a linear magnetic response, which can be written
in terms of the magnetic permeability of phase r as

b̆ = µih̆, µi = (1 + χi) µ0, i = m, p. (21)

3.2. Periodic homogenization framework

In this section, we describe briefly the periodic homogenization framework in the context of a magnetoelastic com-
posite. Specifically, the typical size of the iron particle-filled MRE samples, that are used in the experiments, ranges
from 2 − 100 mm, whereas the average size of the iron particles is in the order ∼ 5 µm (Danas et al., 2012; Semisalova
et al., 2013; Bodelot et al., 2018). This implies that the local interactions between the magnetized iron particles take
place at a scale that is substantially smaller than the specimen itself and the variation of the loading conditions. Hence,
the assumption of the separation of length scales, which is necessary for the homogenization theory, turns out to be
valid for such materials to a large extent (at least up to the point where macroscopic instabilities occur). Moreover, a
slow variation of the microstructure of the MRE sample is further assumed, allowing to define a representative material
volume V#

0 ∈ V0. The smallest volume V#
0 that describes on average the response of the MRE is the representative

volume element (RVE). A more complete discussion of the various scales and assumption is presented in Danas (2017)
and is omitted in the present work for brevity and conciseness.

Given the aforementioned assumptions for V#
0 , the average F and H are then obtained from the local F̆ and H̆ of

V#
0 in terms of their volume average

F =
1

V#
0

∫

V#

0

F̆(X)dV and H =
1

V#
0

∫

V#

0

H̆(X)dV, (22)

respectively. The periodicity condition in V#
0 leads to a representation of the local displacement ŭ(X) and the scalar

potential ϕ̆(X) fields in terms of their zero-average periodic fields ũ(X) and ϕ̃(X) as well as the average fields u = (F−I)·X
and ϕ = −H ·X, respectively, such that

ŭ(X) = (F− I) ·X+ ũ(X) and ϕ̆(X) = −H ·X+ ϕ̃(X), ∀X ∈ V#
0 . (23)

Equation (22) may be directly obtained by (23) and use of the zero average of the perturbation fields ũ and ϕ̃. Moreover,

use of the push-forward transformation (2)2 for H̆ together with the Hill-Mandel lemma and (23)2 one obtains (see
Appendix A for details)

h =
1

V#

∫

V#

h̆(x)dv = F−TH. (24)

Furthermore, the periodicity conditions (23) also imply that the magnetic fields can be decomposed into an average

magnetic field h and a perturbation magnetic field (with zero average) h̃, such that the true magnetic field h̆ becomes

h̆ = h+ h̃, or H̆ = H+ H̃, (25)

with H̃ = −Gradϕ̃.
The Hill-Mandel lemma and the periodicity conditions (23) allow to state the homogenization problem as the following

optimization problem (Ponte Castañeda and Galipeau, 2011; Lopez-Pamies, 2014; Lefèvre et al., 2017)

WH(F,H) = inf
ŭ∈K(F)

sup
ϕ̆∈G(H)

1

V#
0

∫

V#

0

W (X, F̆, H̆)dV. (26)

Here, K and G denotes the admissible sets for ŭ and ϕ̆ given by

K(F) =
{
F̆ : ∃ x = y(X) with F̆ = I+Gradŭ, J̆ > 0, ŭ = (F− I)X+ ũ, ũ periodic in V#

0

}
(27)

and
G(H) =

{
H̆ : ∃ x = y(X) with H̆ = −Gradϕ̆, ϕ̆ = −H ·X+ ϕ̃, ϕ̃ periodic in V#

0

}
, (28)

respectively.
It can be shown (Ponte Castañeda and Galipeau, 2011; Javili et al., 2013; Lopez-Pamies, 2014; Lefèvre et al., 2017)

that the effective (macroscopic) stress S and magnetic field B satisfy the homogenized constitutive relations

S =
∂WH

∂F
(F,H) = JσF−T , B = −∂WH

∂H
(F,H) =

1

J
F−1b, (29)

where σ is the effective Cauchy stress, b is the effective Eulerian magnetic field and J = detF. Note that the effective
first Piola-Kirchhoff stress S and the effective Cauchy stress σ are total stresses containing both mechanical and Maxwell
stresses.
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The developed magnetoelastic homogenization framework (26) is so far identical to the electro-active homogenization
problem (Lopez-Pamies, 2014; Lefèvre and Lopez-Pamies, 2016a,b). However, the boundary conditions, to which a
magneto-active elastomer is subjected to, is usually very different from the electro-active experiments. A MRE is
typically placed far from the fixed magnetic poles, which essentially creates a Eulerian background magnetic field in
between them (Psarra et al., 2017; Bodelot et al., 2018). On the other hand, electrodes are typically sprayed on an
electro-active soft composite to apply an electric field directly on the boundary of the composite. This fundamental
difference between the magneto- and electro-active problems necessitates a correction to (26), which is, in its present
form, the complete variational problem for electro-active composites (Danas, 2017).

We note that in a magnetoelastic RVE, the mechanical stress, Smech, is a direct consequence of the rearrangement
of the iron particles, which move due to the applied background Eulerian magnetic field as well as due to inter-particle
interactions. In turn, the average Maxwell stress, Smaxw, is present in an RVE and its neighboring RVEs because of the
average magnetostatic energy. Owing to the fact that in a slowly changing microstructure, the neighboring RVEs have
the same average magnetization m and thus average magnetostatic energy, we can completely disregard the effect of
Smaxw in the mechanical deformation of a magentoelastic RVE (see Danas (2017) for more details).

But first, one needs to identify Smaxw from (26). For this, we recast WH(F,H) explicitly in terms of the effective free
energy ΦH(F,H) and the energy contribution due to the background magnetic field, such that

WH(F,H) = ΦH(F,H)− µ0

2
JF−TH · F−TH = φh(F,h)− µ0

2
Jh · h = wh(F,h). (30)

The total effective stress S can then be obtained via (29)1. However, as it was shown in Danas (2017), it is difficult to

identify the complete Lagrangian average Maxwell stress given a prescribed Eulerian field h̆. Instead, it is easier to work
with the effective Cauchy stress, that is obtained from the energy Wh(F,H) by

σ =
1

J

∂wh

∂F

∣∣∣∣
h

FT +
1

J

(
∂wh

∂h
· ∂h
∂F

)
FT ≡ σmech + σmaxw. (31)

Here, the first term is the purely mechanical stress, while the second part is the total average Maxwell Cauchy stress.
Using next the second part of equation (30) and after some straightforward algebra and the chain rule (i.e. the fact that
h depends on H and F), we obtain

σmaxw =
1

J

(
∂wh

∂h
· ∂h
∂F

)
FT =

1

J

[(
∂φh

∂h
· ∂h
∂F

)
− µ0

2
J
∂
(
h · h

)

∂h

∂h

∂F
− µ0

2
h · h∂J

∂F

]
FT

= µ0hm+ µ0hh− µ0

2
|h|2I

= hb− µ0

2
|h|2I. (32)

The mechanical and the Maxwell parts of the effective first Piola-Kirchhoff stress are then obtained via Smech = JσmechF
−T

and Smaxw = JσmaxwF
−T , respectively. Finally, the average mechanical traction at the boundary of the RVE in the reference

configuration is given by (Danas, 2017)

T =
[
S− Smaxw

]
·N = Smech ·N on ∂V#

0 . (33)

3.2.1. An augmented variational principle

This last boundary term allows us to analyze the pure microstructurally induced magneto-mechanical coupling in
the RVE remaining free from any geometry/shape effects. Therefore, (33) is crucial in a coupled magneto-mechanical
homogenization problem. The application of (33) in the homogenization problem (26) is, in turn, a non-trivial operation.
Such operation necessitates the evaluation of F, S, h, b and m from (26) followed by the application of (33). To avoid
such iterations, an augmented variational principal (Danas, 2017), that is capable of applying the condition (33) directly
to the homogenization problem, is employed.

Specifically, in order to apply the purely mechanical traction (33) on the boundaries of the RVE and also to ensure
the continuity of the Maxwell stress Smaxw across the neighboring RVEs, one needs to deduct the average Maxwell energy,
WH

maxw, of the RVE from the homogenized energy (26). The latter is defined as

WH
maxw(F,H) = −µ0

2
JF−TH · F−TH, (34)

and alone gives rise to a deformation gradient F under the application of H across the RVE. Thus, if it is not deducted
from (26), one obtains a fictitious F in the RVE, even when non-magnetic phases (such as a simple polymer) are analyzed
(Danas, 2017). In other words, the deduction ofWH

maxw fromWH upholds the practical condition of fixed, far-away magnets
from the sample by not allowing the poles to move towards each other under an applied h-field H. The energy WH in
its original form (26), in turn, represents the electro-active homogenization problem, where the electrodes are attached
directly on the sample.
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As noted earlier, the magnetic poles create a uniform background magnetic field, which is indeed perturbed by the
presence of the MRE sample by creating a self field around itself. Thus, a material point in the MRE sees a Eulerian
h-field and not a Lagrangian which is the case in electroactive problems. The application of such an average Eulerian
field as the loading in our homogenization problem can be achieved in various manners. The simplest and more practical
way we follow in this work consists in constraining the product F−TH = h to be equal to an applied average background
h-field, denoted as ha.

The deduction of the average Maxwell energy, WH
maxw, defined in (34) together with the last constraint F−TH = ha

are employed by the augmented variational principle (Danas, 2017)

PH(F,H) = WH(F,H) +
µ0

2
JF−TH · F−TH+

µ0

2ζ
J |F−TH− ha|2 − Smech · (F− I). (35)

Here, WH(F,H) is given by (30), ζ is a non-dimensional penalty factor serving to enforce the application of a Eulerian
background h−field. In practice, it suffices to set it equal to a very small number left to be defined in Section 5.1. Also
note that the last term in (35) should be dropped unless a non-zero average mechanical traction is applied.

It should be noted that the mathematical homogenization problem (26) is well posed and the additional terms in
(35) are employed after solving for WH in (26). This is because the analytical estimates for WH are independent of the
boundary conditions (Ponte Castañeda and Galipeau, 2011; Lopez-Pamies, 2014; Lefèvre and Lopez-Pamies, 2016a,b).
However, the boundary condition (33) is crucial for the proper interpretation of the effective F, S, h, b and m fields for
a given RVE. For this reason, in the case of analytical homogenization or phenomenological modeling of an MRE, the
function WH(F,H) is obtained explicitly or implicitly first, while the subtraction of WH

maxw together with the application
of the constraint F−TH = ha is be carried out a posteriori to extract the relevant estimates for F, S, h, b and m of
the MRE. In turn, in a numerical simulation of an RVE, that would require extremely long computation times since one
has to obtain numerically the energy WH(F,H) and its derivatives. The augmented potential energy (35) offers a direct
alternative allowing the direct evaluation of the desired estimates for F, S, h, b and m under given loading conditions
ha and T.

4. Exact and approximate solutions for the effective energy

In this section, we present two distinct families of theoretical models; an “implicit” one obtained by a rigorous
homogenization analysis (Lefèvre and Lopez-Pamies, 2016a; Lefèvre et al., 2017) and “explicit” homogenization-guided
phenomenological models, which are calibrated to recover the implicit homogenization estimates for a very large range
of material parameters. In particular, motivated by microscopic images of standard MREs (Semisalova et al., 2013), we
consider in this study only the case of spherical mechanically stiff but magnetically soft inclusions that are isotropically
and uniformly distributed in a non-magnetic matrix phase. Nevertheless, the same ideas may apply to other composites
such as polymers comprising ferrofluid inclusions (Lefèvre et al., 2017).

Specifically, in the original work of Lefèvre et al. (2017) estimates for both WH(F,H) and WB(F,B) were proposed.
In the first case, an explicit estimate has been proposed for linear magnetic particles (i.e. linear local magnetic response of
the particles such as the one given in equation (21)) and an implicit one for nonlinearly saturating ones. In turn, only an
explicit model for linear magnetic particles has been proposed forWB(F,B), which resulted by a partial Legendre-Fenchel
transform of the corresponding WH(F,H) model.

To fill this gap and simplify possible numerical implementations of such models in general purpose finite element
codes, we propose next simple explicit energy densities WH(F,H) and WB(F,B) for nonlinearly saturating magnetic
particles that are calibrated by using the analytical explicit and implicit homogenization models. Note, however, that
the free parameters in the phenomenological models can be calibrated independently by available experiments or other
numerical calculations, thus offering a well-designed yet simple energy description for MREs.

Finally, we discuss at the end of this section the finite element-based numerical simulations used to estimate the
effective response of three-dimensional periodic RVEs. Those calculations, which are limited in the present study to
fairly large matrix shear moduli due to the significant amount of computational time and sensitivity of calculations, are
mainly used to assess the homogenization models.

Specifically, the analytical solutions of Lefèvre et al. (2017) consider an incompressible I1−dependent matrix phase
and mechanically rigid but magnetically soft particles without magnetic hysteresis. Thus, for the incompressible matrix
phase, which is also magnetically inert (i.e., χm = 0), (12) along with (14) and (15) reduce to (Lefèvre et al., 2017)

Wm(F̆, H̆) =

{
Φmech
m (Ĭ1)−

µ0

2
ĬH5 if J̆ = 1,

+∞ otherwise.
(36)

In the special case of an incompressible Neo-Hookean material, Φmech
m (Ĭ1) = Gm(Ĭ1 − 3)/2, with Gm denoting the shear

modulus of the matrix. In turn, the energy associated with the magneto-active mechanically rigid particles (i.e., with
shear modulus Gp = +∞) is given by

WH
p (F̆, H̆) =

{
−Sp(Ĭ

H
5 ) if J̆ = 1,

+∞ otherwise.
(37)
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where IH5 is the local invariant and has been defined in Table1, while the function S(IH5 ) is any nonlinear saturation
function. In the present study, we report results for the Langevin-type saturation function defined in (15) for J̆ = 1,
such that

Sp(Ĭ
H
5 ) =

µ0

2
ĬH5 +

µ0(m
s
p)

2

3χp

{
ln

[
sinh

(
3χp

ms
p

√
ĬH5

)]
− ln

[
3χp

ms
p

√
ĬH5

]}
. (38)

Here, χp and ms
p are the magnetic susceptibility and magnetization saturation of the particles, respectively.

4.1. Analytical homogenization solutions

Given the above-described local energies for the matrix and the particle phase by (36) and (37), respectively, the
homogenized energy reads (Lefèvre et al., 2017)

WH(F,H) =




Φmech(F)− cSp(IH

5 ) +
c ξ

2
IH
5 +

1

2
(v (ξ)− z (ξ)) IH4 − v (ξ)

2
IH5 if J = 1

+∞ otherwise.
(39)

In this expression, the purely mechanical effective energy is given by (Lopez-Pamies et al., 2013)

Φmech(F) = (1− c)Φmech
m (I1), (40)

where Φmech
m is defined in (14) for a Neo-Hookean material, c denotes the particle volume fraction,

I1 = tr(FTF), IH4 = H ·H = FTh · FT h, IH5 = F−TH · F−TH = h · h (41)

and

I1 =
I1 − 3

(1− c)7/2
+ 3, IH

5 = − 54c(1− c)(ξ − µ0)µ
2
0

5[(2 + c)µ0 + (1− c)ξ]3
IH4 +

9[(10− c+ 6c2)µ0 + (5 + c− 6c2)ξ]µ2
0

5[(2 + c)µ0 + (1− c)ξ]3
IH5 . (42)

The effective coefficients v(ξ) and z(ξ) are given by

v(ξ) = µ0 +
3c(10 + 2c+ 3c2)(ξ − µ0)µ

2
0

5[(2 + c)µ0 + (1− c)ξ]2
+

3c(1− c)(5 + 3c)(ξ − µ0)µ0ξ

5[(2 + c)µ0 + (1− c)ξ]2
(43)

and

z(ξ) = µ0 +
3cµ0(ξ − µ0)

[(2 + c)µ0 + (1− c)ξ]
, (44)

respectively. The variables v and z depend also on c and implicitly via ξ on F and H but for the sake of clarity in the
notation, we have omitted this dependence in the last two equations.

Then, the variable ξ is defined implicitly as solution of the nonlinear algebraic equation4

2S ′
p(IH

5 )− ξ = 0. (45)

This last equation cannot be solved analytically for any standard nonlinear saturation function and thus implies that
the term ξ has no explicit expression in terms of the model parameters, rather, it has an implicit dependence on the F

and H fields as well as on the volume fraction c and the magnetic constants χp and ms
p. Therefore, WH in (39) is an

implicit function of F and H.
For practical purposes, we recall the expressions used to evaluate the total stress S and Lagrangian magnetic field B,

i.e.,
S = 2(1− c)−5/2Φmech,′

m (I1)F+ v(ξ)F−TH⊗ F−1F−TH− pF−T , (46)

with p indicating an arbitrary hydrostatic pressure arising from the incompressibility constraint J = 1 and

B = (z(ξ)− v(ξ))H+ v(ξ)F−1F−TH. (47)

Those expressions can be used appropriately to impose a Eulerian field ha together with a purely mechanical traction as
described in equation (33). In the following, it is necessary to remark two important limiting cases for equation (45).

Remark 1. In the limit of small h-fields and deformation gradients, i.e., ĪH4 → ĪH5 and ĪH5 → 0 or equivalently |H| → 0
and |FH| → 0, S(IH

5 ) becomes linear in IH
5 , which now reads S(IH

5 ) = µpIH
5 /2, with µp = µ0(1 + χp) or equivalently

ξ = µp. This linearization of S together with (45) leads to the effective magnetic permeability µ of the MRE at small
magnetic fields, which reads

µ = z(µp) = µ0 +
3 c µ0(µp − µ0)

[(2 + c)µ0 + (1− c)µp]
≡ (1 + χ)µ0, (48)

4Throughout, we make use of the standard convention g′(x) = dg(x)/dx to denote the derivative of functions of a single scalar variable.
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while

v = v(µp) = µ0 +
3c(10 + 2c+ 3c2)(µp − µ0)µ

2
0

5[(2 + c)µ0 + (1− c)µp]2
+

3c(1− c)(5 + 3c)(µp − µ0)µ0µp

5[(2 + c)µ0 + (1− c)µp]2
. (49)

Both µ and v5 are of course independent of F and H. In this last expression and for later use, we have also defined the
effective susceptibility χ = µ/µ0−1 of the MRE. It is also noted that (48) corresponds to the well-known Maxwell-Garnett
(or equivalently Hashin-Shtrikman) estimate for purely magnetic composites (Psarra et al., 2017). As a consequence,
(39) may be expressed explicitly as

WH
0 (F,H) =




Φmech(F) +

v − µ

2
IH4 − v

2
IH5 if J = 1

+∞ otherwise.
(50)

Here, the superscript 0 is used to denote the limiting case of |H| → 0, while the coefficient v(µp) is given by (49).

Remark 2. In the limit of very large magnetic fields, i.e., |H| → ∞, S(IH
5 ) = µ0IH

5 /2 and hence z = ξ = µ0. In that
same limit, the effective magnetization may be found to be simply

m = ms h

|h| , ms = cms
p, (51)

which readily defines the effective saturation magnetization ms of the MRE. This result has also been confirmed nu-
merically by Danas (2017) in the context of MREs, where the magnetization saturation of the MRE was shown to be
independent of the microstructure itself but only function of the volume fraction of the particles.

These last two remarks are extremely important for proposing simple and consistent phenomenological models in the
following sections.

4.1.1. Explicit homogenization estimates for linear magnetic particles: F-B version

Owing to the linearity of WH
0 defined in (50) in the magneto-mechanical invariants IH4 and IH5 , one can obtain the

corresponding complimentary energy density WB
0 (F,B) by application of the partial Legendre-Fenchel transform with

respect to H (Bustamante and Ogden, 2012)

WB(F,B) = sup
H

[
B ·H+WH(F,H)

]
, (52)

such that (Lefèvre et al., 2017)

WB
0 (F,B) =




Φmech(F) +

1

2v

[
IB5 + η2IB4 + η(I1I

B
5 − IB6 )

1 + η3 + η2I2 + ηI1

]
if J = 1

+∞ otherwise,

(53)

where the coefficient η = (µ−v)/v is introduced for convenience in the notation. In turn, IB4 , IB5 and IB6 are the standard
magneto-mechanical invariants in terms of B and in the incompressible limit J = 16 are given by

IB4 = B ·B = F−1b · F−1b, IB5 = FB · FB = b · b IB6 = FTFB · FTFB = Fb · Fb, (54)

respectively.
As it is evident from relation (53), WB

0 exhibits a non-trivial coupling between purely mechanical and magneto-
mechanical invariants. Nevertheless, by a closer inspection of the expression (53), we observe that the parameter η is
proportional to µ − v, which is shown in Fig. 1a to be significantly smaller than unity for volume fractions c ≤ 0.3
and magnetic permeabilities of particles µp/µ0 < 50. This observation allows us to approximate WB

0 even further, an
operation that will prove very useful in the next section where we propose explicit phenomenological models.

Thus, by neglecting higher order terms in O(η2) in (53), and keeping only the zero order term in I1 = 3+O(|F− I|2),
we obtain the approximate energy density

WB
0

∣∣
|η|≪1

(F,B) =




Φmech(F) +

1

2v

[
τ IB5 + η(3IB5 − IB6 )

1 + 3η

]
if J = 1

+∞ otherwise.

(55)

5Henceforth, it is implied v = v(µp).
6The invariants IB

4
, IB

5
and IB

6
are all multiplied with J2 in the case of compressible materials.
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Figure 1: (a) Contour plot of the coefficient η as a function of the particle volume fraction c and the normalized magnetic permeability of the
particles µp/µ0. (b) Difference between the exact and approximate homogenization energy functions for a representative case of c = 0.15 and
µp/µ0 = 31 indicated by a red point in part (a).

Here, the coefficient τ is introduced to ensure that the second term of (55) consistently leads to IB5 /2µ in the limiting
case of |b| → 0 and is consequently evaluated to be

τ =
5vµ− 2v2 − 2µ2

vµ
(56)

after considering the limit |b| → 0 in (55). Finally, substitution of (56) into (55) leads to

WB
app(F,B) =




Φmech(F) +

(v − µ)

2v(2v − 3µ)
(IB5 − IB6 ) +

1

2µ
IB5 if J = 1

+∞ otherwise,

(57)

The approximate linearized energy (57) is compared with the original homogenized energy (53) in Fig. 1b. As is easily
observed, the difference between those two estimates is very small and thus allows us to use expression (57) to obtain the
initial response of the subsequent phenomenological model in the F−B space in a straightforward manner. It is finally
noted that all energies discussed in this section comprise the same purely mechanical part which is explicit and has been
originally proposed in the work of Lopez-Pamies et al. (2013).

4.2. Microstructurally-guided explicit phenomenological models

In this section, we propose fully explicit, homogenization-guided phenomenological models for the MRE using both
F−H and F−B variables. The phenomenological models are proposed in terms of two additional modeling parameters,
which are subsequently obtained via consistent linearization and fitting with the homogenized models. First, we propose
models for incompressible MREs and then extend in an ad-hoc manner those models for nearly incompressible ones.
This extension serves only practical purposes since it allows for a simpler numerical implementation. For consistency, we
impose on the phenomenological model certain important properties, which are:

1. the phenomenological models shall have the same purely mechanical part with the homogenized models, i.e.,
Φmech(F) = (1− c)Φmech

m (I1) with I1 given by (42).

2. for H = 0 and arbitrary F, both phenomenological models shall recover exactly the analytical homogenization
solutions (50) and (57) for the F − H and F − B versions, respectively. This condition implies first that the
phenomenological and homogenized models shall deliver the same initial magnetization response or equivalently give
the same slope in the b − h space, i.e., µ as defined from relation (48). And second, they both result in the same
magnetostrictive response as H → 0 or whenever the magnetic particles are modeled as linear magnetic materials
without saturation.

3. for |H| → ∞, both phenomenological and homogenized models shall lead to the same saturation magnetization
response, i.e., |m| = ms obtained in (51).

4.2.1. Explicit F-H phenomenological model

Given the above requirements, we propose a phenomenological energy function for incompressible MREs in terms of
three distinct energy contributions, namely, a fully decoupled mechanical and magnetic energy and an additional coupling
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energy, which reads

WH(F,H) =




Φmech(F) + ΦH

mag(I
H
5 ) + ΦH

couple(I
H
4 , IH5 )− µ0

2
IH5 if J = 1

+∞ otherwise,
(58)

where the effective mechanical energy Φmech is given by (40), and IH4 and IH5 by (41). Instead, the purely magnetic part
Φmag is given in terms of a Gaussian Hypergeometric function, denoted by 2F1, as

ΦH
mag(I

H
5 ) = −µ0

2
χIH5 2F1


 1

kH
,
2

kH
, 1 +

2

kH
,−
(
χ
√
IH5

ms

)kH

 ,

= −µ0

2
χ|h|22F1

[
1

kH
,
2

kH
, 1 +

2

kH
,−
(
χ |h|
ms

)kH
]
= φh

mag(h). (59)

In this expression, kH is a positive integer, ms = cms
p denotes the effective saturation magnetization and χ = (µ/µ0− 1)

is the effective magnetic susceptibility, which is given by (48). The function 2F1 is typically expressed in terms of a series
given by,

2F1[a, b, c; z] =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (60)

with
(x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1).

It can be shown via rigorous convergence tests that the infinite series in (60) converge for all z < 0 and non-negative a, b
and c (Abramowitz and Stegun, 1972, p. 81-86). Hence, (60) can be evaluated numerically in a straightforward manner
(Perger et al., 1993; Hankin, 2015). Of interest, however, are the first and second derivatives of φh

mag(h) with respect to
h, which, as shown in the following, take very simple algebraic forms.

Subsequently, motivated by the corresponding homogenized model in equation (39), we express the coupled magneto-
mechanical energy as a function of the two invariants IH4 and IH5 , thus taking the form

ΦH
couple(I

H
4 , IH5 ) = ΦH

4 (IH4 )− ΦH
5 (IH5 ), (61)

with

ΦH
i (IHi ) = βH

1

µ0(m
s)2

2χ
ln

[
1 +

4∑

q=1

1

c

(
4

5
χ

)q+1(
c

βH
2

)q(√
IHi

ms

)2q
]
, i = 4, 5. (62)

In the above expressions, we have introduced three free parameters, namely, kH , βH
1 and βH

2 . The evaluation and
selection of these parameters using the analytical homogenization model in (39) is described in detail in the following.

The selection of the parameter kH . We start by noting that the derivative of the Gaussian Hypergeometric function

2F1 with respect to its argument has a very simple form, which reads

m = − 1

µ0

∂φh
mag

∂h
=

χh
[
1 + (χ)kH

(
|h|/ms

)kH ]1/kH
. (63)

Here, the initial susceptibility is always χ irrespective of the value of kH thus leading to the correct (in the sense of
homogenization) initial effective magnetization response of the MRE. The same is true for the saturation response, which
gives |m| = ms as required by the homogenization process. On the other hand, the rate of magnetization depends on
the power coefficient kH , which may be calibrated to follow closely the homogenized response. Specifically, by direct
calibration, we find in Section 5 that a value

kH = 4 (64)

leads to a good fit for the magnetization response for all volume fractions c ∈ [0, 0.3] and matrix shear moduli analyzed
in the present study. Of course, given any experimental data, a different value for kH may be used. For illustration
purposes, we show in Fig. 2 representative curves of the hypergeometric function and its derivative, which gives the
m−h response as evaluated from equation (63). For comparison, magnetization curves obtained by the Langevin (based
on definition (16)) and the hyperbolic tangent functions (see equations (2.12) and (2.14) in Danas (2017)) are also
shown. The use of a hypergeometric function is done in order to allow for flexibility in the calibration process since the
homogenized response of an MRE comprising magnetic particles with Langevin-type magnetization saturation response
does not lead to an effective magnetization response of a Langevin-type, as is discussed in Section 5. Before proceeding
to the coupled energy part, we note further that the decoupled mechanical and magnetic energies are expressed in terms
of the homogenized material parameters, which can be evaluated directly in terms of the constituents’ properties and
the particle volume fraction c.
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Figure 2: Comparison of (a) the magnetic energy functions and of (b) their derivatives obtained from and hypergeometric Φh
mag saturation

function given in equation (63) for various exponents kH , the Langevin function (based on definition (15)) and the hyperbolic tangent function
(see equations (2.12) and (2.14) in Danas (2017)).

The evaluation of the parameter βH
1 . To facilitate the relevant discussion, we show in Fig. 3 the response of ΦH

i as a

function of the invariant IHi . First, we observe that ΦH
i is non-convex with respect to

√
IHi since its derivative increases

rapidly from zero to a maximum and then gradually decreases to zero (see Fig. 3b). As we will see in the following, such
a function allows to obtain a material magnetostriction response that is initially quadratic, subsequently increases in a
non-quadratic manner until finally reaching a saturating state.

Another important comment is related to the specific form of ΦH
couple, i.e., the subtraction term ΦH

4 (IH4 )− ΦH
5 (IH5 ).

This is done for two reasons. First, the derivation of ΦH
couple with respect to h leaves the magnetization response

completely unaffected at small and very large applied magnetic fields ha, thus allowing the hypergeometric function in
equation (59) to completely control the m − h response at the initial regime and the saturation regime. The second
reason is that only the IH4 = FTh · FT h part of the function contributes to the magnetostriction whenever a Eulerian
field ha is applied, while the corresponding IH5 = h · h part induces no magnetostriction.

Figure 3: Representative plots of (a) the function ΦH

i
(with i = 4, 5) and (b) of its derivative with respect to

√

IH
i

for q = 1, 2, 4.

In view of the above observations, the evaluation of βH
1 is readily obtained by enforcing an exact equivalence between

the phenomenological model (58) and the linearized homogenized model (39) in the limit of |h| → 0. To achieve that,
we expand WH in equation (58) around IH4 = IH5 = 0, to obtain

WH
0 (F,H) =




Φmech(I1) + 16

(µ− µ0)

50

βH
1

βH
2

(IH4 − IH5 )− µ

2
IH5 if J = 1

+∞ otherwise.

(65)

By direct matching of the individual coefficients of IH4 and IH5 in (65) with those in (50), one gets

βH
1 =

25

16

(v − µ)

(µ− µ0)
βH
2 . (66)

The above definition of βH
1 ensures that the initial (quadratic) magnetostriction obtained from the homogenization

model (39) and the phenomenological model (58) is exactly the same. Evidently, (65) becomes independent of βH
2 after

substitution of (66) for βH
1 .
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The selection of the parameter βH
2 . The parameter βH

2 affects the magnetostriction response at larger h-fields as a
result of the nonlinearity of the coupled function ΦH

couple in (61) but not the initial magnetostriction. Therefore, the

parameter βH
2 needs to be calibrated numerically by fitting the magnetostriction response of the phenomenological model

with that of the homogenized model (39) at large h. It is worth noting here that the numerical fitting process is carried
out by considering a zero applied mechanical traction (see equation (33)) and a Eulerian applied h-field ha, as discussed
in Section 3.2. To achieve that, we employ the least square-based curve fitting algorithm lsqurvefit of MATLAB.

More specifically, the coupling coefficient βH
2 essentially depends on four material parameters: the shear modulus

Gm of the matrix, the initial susceptibility χp, the saturation magnetization ms
p of the particles and the particle volume

fraction c. In practice, most of the MREs are fabricated by curing the commercially available carbonyl iron particles along
with various elastomers in different proportions (Danas et al., 2012; Psarra et al., 2017; Bodelot et al., 2018). Therefore,
Gm and c are the two key parameters7 that vary for different MRE samples, while we set χp = 30 and µ0m

s
p = 2.5T, as

obtained experimentally in Psarra et al. (2017).
First, we observe that βH

2 becomes almost independent of Gm and c for Gm > 1MPa. Hence, we introduce a non-
dimensional shear modulus, G∗

m = Gm/G
Ref
m , where GRef

m = 1MPa. The fitting process then involves scanning for the
optimum βH

2 in the 0.001 ≤ G∗
m ≤ 1.5 and 0 < c ≤ 0.3 range, as shown in Fig. 4a. The fitting of the contour in that

Figure 4: (a) Calibrated βH

2
(G∗

m , c) in the G∗

m − c space with the smooth surface showing the profile of the function (67) for βH

2
(G∗

m , c) and the
black dots representing the optimized βH

2
as obtained via fitting the magnetostriction response with the analytical homogenization model.

(b) Evolution of the functions αH

1
(G∗

m ) and αH

2
(G∗

m ) in (67) with G∗

m .

figure gives

βH
2 (G∗

m , c) = αH
1 (G∗

m)− αH
2 (G∗

m)L
[
c αH

3 (G∗
m)
]
, (67)

with

αH
1 (G∗

m) = exp
[
− 0.29 tanh

{
0.27(lnG∗

m + 7)
}
− 1.575

]
,

αH
2 (G∗

m) = exp
[
4.4L(−0.78 lnG∗

m)− 5.2
]
,

αH
3 (G∗

m) =
0.1

G∗
m + 0.0007

− 5.4G∗
m + 6.75.

Here, L(.) is the Langevin function given by (16). Specifically, the evolution of βH
2 with respect to G∗

m is mainly controlled
by the coefficients αH

1 and αH
2 . In turn, the third coefficient αH

3 is used to model the variation of βH
2 with respect to c

for a given G∗
m . The dependence of the functions αH

1 and αH
2 on G∗

m is shown in Fig. 4b, where we observe that αH
2 ≈ 0

for G∗
m > 1, i.e., for all Gm > G∗

m . Hence, beyond G∗
m > 1 a constant βH

2 ≈ 0.155 is sufficient. On the other hand, for very
soft, gel-like MREs, i.e., in the range of 0.01 ≤ G∗

m ≤ 0.001, the coupling coefficient βH
2 becomes highly sensitive to G∗

m

and c, resulting in a significant variation of βH
2 in this particular range (see Fig.4a).

Remark 3. In spite of the fact that the assumption of an incompressible matrix and rigid particles leads to very
efficient analytical estimates of the effective response, compressible models for the MREs are employed in most of the
computational investigations due to their simplicity to incorporate them in a finite-element solver. Unfortunately, carrying
out the homogenization problem for a compressible matrix is extremely difficult and no rigorous model is available up to

7Different values of χp and ms
p are expected to change the functions obtained below but only weakly, whereas one can always find the

optimal coefficient βH

2
by simply fitting the homogenized model for the given set of material properties of interest.
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date neither for the purely mechanical part nor for the magneto-mechanical part. In this regard, we propose an ad-hoc
extension of the incompressible phenomenological model (58) that essentially relaxes the assumption of incompressibility
without affecting the aforementioned key features of the model at least in the case of high bulk modulus (i.e. nearly
incompressible materials). The proposed compressible model reads

WH
comp(F,H) = Φ

comp
mech(I1, J) + ΦH

mag(I
H
5 ) + ΦH

couple(I
H
4 , IH5 )− J µ0

2
IH5 , (68)

where

Φcomp
mech(I1, J) = Φmech(I1)−

Gm

(1− c)5/2
ln J +

G′
m

2(1− c)6
(J − 1)2. (69)

where Φmech and I1 have been defined in (40) and (42), respectively, whereas G′
m is the Lamé constant associated with

the compressibility modulus of the matrix. A nearly incompressible response is obtained for values G′
m ≥ 100Gm, which

is the key assumption in most of the numerical computations associated with MREs. In that range, we observe no
visible difference between the incompressible and the nearly incompressible versions for both the magnetostriction and
the magnetization response.

4.2.2. Explicit F-B phenomenological model

In principle, one can obtain an equivalent F-B model via the partial Legendre-Fenchel transformation (52) of (58)
with respect to H. However, due to the severe nonlinearity of the functions associated with the proposed F-H model
(58), one can not obtain its complementary energy in an explicit form. Instead, a complementary energy WB , which has
the exact same form as that of WH in (58), is proposed directly as

WB(F,B) =




Φmech(F) + ΦB

mag(I
B
5 ) + ΦB

couple(I
B
5 , IB6 ) +

1

2µ0

IB5 if J = 1

+∞ otherwise,

(70)

where the magneto-mechanical invariants IB5 and IB6 have been defined in (54). Evidently, the first term of (70) that
represents the purely mechanical component of WB is identical to that in (39) and (58), and is given by (40). Also, the
last term of (70) represents the F-B version of the magnetostatic energy of free space (Dorfmann and Ogden, 2004).

It remains then to prescribe the two free energies, namely, the magnetic and the coupled free energy. Due to their
intrinsic properties, ΦB

mag and ΦB
couple retain the same functional form to their F-H counterparts (59) and (61), respectively.

Note that, as shown in Figs. 2 and 3, the hypergeometric 2F1 and the ΦH
i functions are rich enough to model a wide

variety of constitutive responses.
In this regard, the purely magnetic part ΦB

mag is chosen as

ΦB
mag(I

B
5 ) = − χ

2µ0 (1 + χ)
IB5 2F1


 1

kB
,
2

kB
, 1 +

2

kB
,−
(

χ
√

IB5
(1 + χ)µ0ms

)kB



= − χ

2µ0 (1 + χ)
|b|2 2F1

[
1

kB
,
2

kB
, 1 +

2

kB
,−
(

χ |b|
(1 + χ)µ0ms

)kB
]
= φb

mag(b), (71)

while, the coupling energy is defined by

ΦB
couple(I

B
5 , IB6 ) = ΦB

6 (I
B
6 )−ΦB

5 (I
B
5 ), with ΦB

i (I
B
i ) = βB

1

(1 + χ)µ0(m
s)2

2χ
ln

[
1+

4∑

q=1

1

c

(
5

4

χ

1 + χ

)q+1(
c

βB
2

)q(√
IBi

µ0ms

)2q
]
,

(72)
where i = 5, 6 and again ms = cms

p.

Remark 4. As stated earlier, (72) retains an identical functional form as its F-H counterpart in (61) except that the
magneto-mechanical coupling is now modeled in terms of the invariant IB6 . This choice of the coupling invariant is
not arbitrary, rather, is directly equivalent to the F-H model. The invariant IH4 in the F-H model can be expressed in
terms of the Eulerian h as IH4 = FTh · FTh. The Legendre-Fenchel transform of that invariant leads to the invariant
IB6 = FTb · FTb. In addition, and perhaps more importantly, we have shown that in the linearized regime, the
corresponding homogenized model (53) can be approximated accurately by the model in (57), which in turn depends on
IB5 and IB6 .

In expressions (71) and (72), we have introduced three free parameters, namely, kB , βB
1 and βB

2 . The evaluation
and selection of these parameters using the analytical homogenization model defined in (39) as well as the approximate
linearized one in (57) is described in detail in the following.

The selection of the parameter kB. Similar to the F-H version, a single exponent

kB = 6 (73)
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provides a good fit to the magnetization response for all particle volume fractions and matrix shear moduli considered
in this study. Note that the purely magnetic energy (71) in the F-B model is not an exact Legendre transform of the
corresponding magnetic energy (59) of the F-H model. Thus, no direct correlation can be drawn between the model
parameters kB and kH and their calibration values.

The evaluation of the parameter βB
1 . The evaluation of the coefficient βB

1 is carried out in a similar fashion (i.e., via
consistent linearization and fitting with the homogenized response) to the F-B homogenization model. In the limit of
small |b| → 0, (70) can be expanded in terms of the invariants around IBi = 0 (with i = 5, 6). Thus, retaining only the
leading order terms in IBi , one can express (70) as

WB
0 (F,B) =




Φmech(F) +

25

32

βB
1

βB
2

(µ− µ0)

µµ0

(IB6 − IB5 ) +
1

2µ
IB5 if J = 1

+∞ otherwise.

(74)

By direct matching of this last free energy function with the approximate linearized one defined in equation (57), we
obtain

βB
1 =

16

25

µ0µ(v − µ)

v(µ− µ0)(3µ− 2v)
βB
2 . (75)

The above relation for βB
1 ensures that the initial (quadratic) magnetostriction obtained from the homogenization model

(57) and the phenomenological model (70) is exactly the same. Evidently, (74) becomes independent of βB
2 after substi-

tution of (75) for βB
1 .

The selection of the parameter βB
2 . The parameter βB

2 affects the magnetostriction response at larger h-fields as a
result of the nonlinearity of the coupled function ΦB

couple in (72). Thus, the F-B phenomenological model is also reduced

to a single modeling parameter, βB
2 . This parameter is then obtained by fitting the material magnetostriction obtained

from the phenomenological model (70) with that from the homogenization model (39). The optimal βB
2 for a given G∗

m

and c is shown by black squares in Fig. 5, which is qualitatively similar to Fig. 4a. For convenience in the notation,
here we use the same non-dimensional shear modulus G∗

m as defined in Section 4.2.1. Specifically, we use two piecewise

Figure 5: Calibrated βB

2
(G∗

m , c) in the G∗

m − c space with the smooth surface showing the profile of the function (76) for βB

2
(G∗

m , c) and the
black dots representing the optimized βB

2
as obtained via fitting the magnetostriction response with the analytical homogenization model.

continuous functions of G∗
m and c to model the variation of βB

2 in the G∗
m − c space, which reads

βB
2 (G∗

m , c) =

{
αB
1 (G

∗
m)− αB

2 (G
∗
m)L
[
c αB

3 (G
∗
m)
]
, if G∗

m ≤ 0.1

0.4055− 0.5 c
[
1− 0.67L(15G∗

m)
]

otherwise
(76)

with

αB
1 (G

∗
m) = exp

[
− 0.029 lnG∗

m − 0.982
]
,

αB
2 (G

∗
m) = exp

[
1.78L(−0.32 lnG∗

m)− 1.78
]
,

αB
3 (G

∗
m) = exp

[
0.14− 0.54 lnG∗

m

]
.

Here, L(.) is again the Langevin function defined in (16). The first function is similar to βH
2 with three coefficients αB

1 ,
αB
2 and αB

3 , which are functions of G∗
m , whereas, the second function, which models βB

2 for all G∗
m > 0.1, is rather a

simple function of G∗
m and c. We observe in Fig. 5 that the two fitting functions for βB

2 have approximately the same
magnitude near G∗

m = 0.1. Thus, the particular choice of piecewise continuous βB
2 ensures a constant transition from the

Langevin decay to the linear decrease regime.
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Remark 5. A compressible version of (70) is given by

WB
comp(F,B) = Φcomp

mech(I1, J) + ΦB
mag

(
IB5
J2

)
+ΦB

couple

(
IB5
J2

,
IB6
J4

)
+

1

2µ0J
IB5 , (77)

where Φcomp
mech is given by (69).

4.3. Numerical computations of the effective response

The effective response and specifically the average magnetostriction and magnetization of the MRE is also evaluated
numerically by employing the augmented variational principle (35) similar to the study of Danas (2017) and Keip and
Sridhar (2018). To accomplish this, we employ a standard nonlinear finite-element framework to numerically evaluate the

local F̆ and H̆ fields in a periodic RVE. The finite-element framework requires a well-defined geometry with a suitable
mesh. For the magnetostrictive two-phase composites at hand, we consider a three dimensional cubic periodic RVE,
which occupies a reference volume of V#

0 = L3. We then generate a random distribution of non-overlapping spherical
particles of different size in the RVE using the random sequential adsorption (RSA) algorithm (Rintoul and Torquato,
1997; Segurado and Llorca, 2002; Anoukou et al., 2018; Zerhouni et al., 2019). For efficient meshing and to avoid excessive
mesh distortions, the minimum distance between two particles is considered to be 1.05 times the average diameter of
the two particles. Moreover, a particle position is also rejected if it lies very close to the edge of the RVE. These two
conditions give a sufficiently easy-to-mesh 3D particle-filled RVE.

Periodic boundary conditions are applied across the RVEs by constraining suitably the nodal displacement ŭ(X) and
scalar potential ϕ̆(X) fields at the boundary and the corner nodes of the RVE as discussed extensively in Danas (2017)
and Keip and Rambausek (2015). Note from (27) and (28) that all the admissible ŭ and ϕ̆ can be additively decomposed
into their average field u and ϕ and periodic perturbations ũ and ϕ̃, respectively. Owing to their periodicity in space,
the perturbation fields ũ and ϕ̃ assume the same value on the opposite boundary/corner nodes of the cubic RVE. By

exploiting these periodicity conditions one can constrain the ŭ and ϕ̆ fields on ∂V#
0 . Moreover, the effective u and ϕ

fields in the RVE are set to be directly proportional to the local ŭ and ϕ̆ of the four corner nodes, also termed as the
master nodes. Thus, by controlling the ŭ and ϕ̆ of the master nodes one can apply the boundary conditions in terms of
the effective stress, stress and/or magnetic fields. The reader is referred to the Appendix B of (Danas, 2017) for more
details on the application of the periodic boundary conditions in a coupled magneto-mechanical boundary value problem.

Once a suitable mesh and corresponding periodic boundary conditions are defined over the RVE, the local ŭ and ϕ̆
can be computed from the augmented variational principle (35). The solution procedure initiates by constructing the
local force vector and stiffness matrix for each element and followed by assembling the local stiffness matrix and applying
the suitable boundary constraints (see Javili et al. (2013) for more details on the construction of the element matrices).

After the local ŭ and ϕ̆ are computed at each node for a given loading, the local fields F̆, S̆, σ̆, H̆, h̆, B̆ and b̆ are readily
computed by utilizing the local kinematic and constitutive relations at the Gauss points of each element. Then, the
effective mechanical and magnetic fields can be computed by direct application of (22) and (29) and volume averaging.

So far we lay out a fairly general computational framework, which is utilized to compute the effective response of
an active particle-filled elastomer. Of course, the computed response depends on the specific RVE geometry, the mesh,
the properties of the constituents and finally on the loading to which the RVE is subjected to. In order to assess the
homogenization and the proposed phenomenological models, we compare them with the computed effective response of
certain RVEs in the following section. Therein, we provide more details on the RVE geometry and the boundary and
loading conditions.

5. Results: assessment of the theoretical models

This section provides a rigorous assessment of the proposed phenomenological models by comparison with both the
analytical homogenization and the numerical finite-element (FE) estimates. The analysis is carried out in three parts.
First, in Section 5.1, we assess the accuracy of the homogenization models by comparing the effective magnetization and
effective magnetostriction response under zero overall mechanical pre-stress with the corresponding FE estimates. Upon
this validation, in Section 5.2, we explore the accuracy of both F-H and F-B phenomenological models with the F-H
homogenization model again for zero average pre-stress. Finally, in Section 5.3, we superpose mechanical pre-stressing
and investigate the accuracy of the phenomenological models by comparison with the analytical homogenization model.

5.1. Comparison between numerical FE and analytical homogenization results

In this section, we compare the numerical FE computations with the analytical homogenization estimates for the
effective magnetization and magnetostriction response for zero mechanical pre-stress. As discussed in the previous section,
we work exclusively with the F-H model for the numerical and analytical homogenization estimates. In contrast to the
analytical homogenization, we carry out the numerical computations for the RVEs by considering nearly incompressible
matrix and particle phase having both a bulk modulus G′

i ≫ Gi (i = m, p). This assumption of nearly incompressible
phases simplifies the FE computations considerably by avoiding the use of pressure Lagrange multipliers, which lead to
additional degrees-of-freedom of the system.
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Specifically, for the numerical FE computations, we consider polydisperse spherical particles comprising three different
size families with a size ratio of 1 : 7/9 : 4/9 and whose relative proportions with respect to the total particle volume
are taken to be 0.6, 0.3 and 0.1, respectively (Lopez-Pamies et al., 2013; Anoukou et al., 2018). We consider three
distinct particle volume fractions, c = 0.1, 0.2 and 0.3. In order to define the maximum particle radius, we consider a
reference number of monodisperse particles, denoted with Nmono = 60. Then, the radius of the maximum particle size
family is simply Rmax/L = (3c/4πNmono)

1/3. This readily leads to Rmax/L = 0.074, 0.093, 0.106 and a total number of
particles Ntot ∼ 130, 280 and 290 for c = 0.1, 0.2 and 0.3, respectively. In Fig. 6, we show three such representative
microstructures and the corresponding mesh, which uses standard 10-node tetrahedral quadratic elements.

Figure 6: (top) Three representative polydisperse microstructures for c = 0.1, 0.2 and 0.3 having approximate number of polydisperse particles
Ntot ∼ 130, 280 and 290, respectively. (bottom) The corresponding unstructured meshes with quadratic ten-node tetrahedral elements leading
to 1.55× 106, 1.62× 106 and 1.50× 106 degrees of freedom, respectively, for c = 0.1, 0.2 and 0.3.

In the numerical computations, we choose to work with a matrix that resembles a moderately soft silicone and thus
exhibits a shear modulus in the order of 0.3MPa. The particles, in turn, are made of carbonyl iron, which exhibit a shear
modulus in the order of ∼ 200GPa. On the other hand, the silicone matrix is magnetically inert having zero magnetic
susceptibility, whereas the iron particles exhibit a Langevin saturating m–h response. Following the recent work of
Psarra et al. (2017), the initial susceptibility and saturation magnetization of the iron particles is reported in Table 2.
In the following, we have chosen the material parameters as indicated in Table 2. It is noted here that use of lower shear
moduli for the matrix phase leads to very large local strains, especially between two closely adjacent particles. This, in
turn, leads to an extreme distortion of the mesh in those regions rendering the numerical simulations extremely difficult.
Perhaps the use of a meshfree method such as the one developed by Arroyo and Ortiz (2006) and recently extended to
composite-type materials Kumar et al. (2019) might allow for such computations involving very soft matrices.

Table 2: Material parameters for the silicone matrix and the carbonyl-iron particles

Gi (MPa) G′
i/Gi χi µ0m

s
i (T) µ0 (µN·A2)

Matrix (i = m) 0.3 500 0.0 – 4π10−1

Particle (i = p) 300 500 30.0 2.5 4π10−1

In turn, due to the large actual contrast between the matrix and the particles, it is sufficient to consider Gp = 1000Gm

to ensure numerical convergence as well as a sufficiently rigid response of the particles (see work of Lopez-Pamies et al.
(2013)). The bulk modulus of the matrix and the particle phase are chosen to be 500 times their respective shear
modulus. Such a choice for G′ ensures a nearly incompressible material response leading to J ≈ 1. In order to avoid
volumetric locking, the volumetric term, i.e., the term involving the (J − 1)2 term in (14), is under integrated by using
a single Gauss point at the center of the element. The remaining of the terms in (12) are integrated using a standard
4-point Gauss quadrature for the tetrahedral elements. Finally, the effects of the two augmented terms in (35) are taken
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care of by introducing a fictitious element connecting the master nodes (see details of implementation in Danas (2017)).
The FE computations are carried out by developing a user-element (UEL) subroutine, which is then coupled with the
commercially available finite element package ABAQUS/Standard. The developed code is rigorously benchmarked with
analytical uniaxial loading solutions under both mechanical and magnetic loading. Moreover, the present comparison
with the analytical homogenization estimates also serves as a benchmarking of our code.

Subsequently, we prescribe a loading path where the normal components of the average mechanical traction are
equal to zero. In addition, the shear components of the deformation gradient are also blocked to ensure a uniaxial
magnetostriction response. The Eulerian h-field ha is applied in direction 1, while the response in the other directions is
on average the same due to isotropy of the RVE. These boundary and loading conditions imply

Smech
11 = Smech

22 = Smech
33 = 0, Fij = 0, ∀ i 6= j, h = ha = he1. (78)

The last condition is applied by constraining |ha−F−TH| to be zero via the penalty term in (35). In all the computations,
the penalty parameter ζ is taken to be 10−3.

Figure 7: Numerically computed effective response of cubic RVEs comprising of random polydisperse spherical magnetizable inclusions, coming
from three distinct families. The composite is subjected to an Eulerian h-field along the X1 direction and zero overall mechanical traction.
The overall Eulerian h-field is applied from 0 to 0.5ms

p with a maximum increment of 0.01ms
p . (a) The effective magnetization for different

particle volume fractions. Average of the (b) parallel and (c) transverse magnetostrictions (solid lines) obtained from 10 different realizations
of the RVEs with c = 0.1, 0.2 and 0.3, along with the 95% trust regions (light patches) associated with each estimates.

First, we study the evolution of the effective magnetization and magnetostriction of a numerical RVE with the
applied h for volume fractions c = 0.1, 0.2 and 0.3. As discussed by Danas (2017) in the context of 2D RVEs, a converged
magnetostriction response (i.e. in terms of scatter of the response for different realizations) necessitates an substantially
large number of particles in the unit cell. The present 3D computations also show a highly fluctuating magnetostriction
response in both parallel (see Fig. 7b) and transverse (see Fig. 7c) directions of the applied h-field. Evidently, in 3D, the
computations become extremely costly by further increase of the number of particles beyond Nmono > 60. Therefore, we
follow a second approach to obtain a converged average response. This consists in computing the effective response of the
unit-cells for a sufficiently large number of realizations but a smaller number of particles (e.g., Nmono = 60, which leads
to a total number of polydisperse particles Ntot ∼ 130, 280 and 290 for c = 0.1, 0.2 and 0.3, respectively). Subsequently,
by considering the average magnetostriction out of all the realizations, we assume that the response is representative in
terms of a volume element. While this approach does not constitute a rigorous method to estimate the response of the
RVE in a highly nonlinear setting, it still provides a useful assessment tool for the analytical solutions, even though any
differences found between the numerical and the analytical homogenization model should be rationalized with extreme
caution.

In this regard, we employ 10 different realizations for each volume fraction and show the average effective magnetiza-
tion, parallel and transverse magnetostrictions in Fig 7a, b and c, respectively. In accord with previous studies by Danas
(2017), the fluctuations in the effective magnetization m1 are negligible and thus are not shown in Fig. 7a. Therein, the
effective saturation magnetization ms of the composite is observed to be directly proportional to the particle volume
fraction, i.e., ms = cms

p. In turn, the fluctuations in the parallel magnetostriction are not negligible. The continuous lines
in Fig. 7b indicate the average magnetostriction extracted from 10 realizations, whereas the light blue patches indicate
the 95% trust region of the random RVE response. The trust regions of the transverse magnetostriction components are
even larger (see Fig. 7c) as compared to the parallel magnetostriction one. Moreover, the transverse stretch components
λ2 and λ3 of a unit cell may differ considerably. However, the average transverse magnetostriction components are
very close indicating an acceptable convergence to isotropy (see Fig. 7c). Note that the scatter of the results observed
in the average magnetostriction response is substantially larger than the one observed for the average magnetization
response as well as the average purely mechanical response (not shown here but can be found in Lopez-Pamies et al.
(2013)). Nonetheless, the scatter in the parallel and transverse components of the magnetostriction tend to vanish with
the increase of Ntot. For completeness, in Appendix B, we present representative particle and mesh convergence studies
for the case of c = 0.3 and Gm = 0.3 MPa.

We attempt to rationalize further the previous results by showing in Fig. 8 representative contour plots for the three
volume fractions c = 0.1, 0.2 and 0.3 at an overall applied macroscopic field h/ms

p = 0.5. The Figs. 8a-f, show the
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Figure 8: Numerically computed (a-c) normalized local magnetic field b̆1/µ0ms
p and (g-i) local nominal mechanical strain λ̆1 − 1 for three

particle volume fractions c = 0.1, 0.2 and 0.3 at an overall applied macroscopic field h/ms
p = 0.5. (d-f) and (j-l) correspond to a given

cross-section of the unit-cell as depicted in (a).

normalized local component b̆1/µ0m
s
p, whereas Figs. 8g-l, show the local nominal mechanical strain λ̆1 − 1. A first

observation in the context of Figs. 8a-f is that the particle interactions exhibit a long range, which can be larger than 4
radii of the largest particle along the direction of the applied field. This interaction is stronger at higher volume fractions
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(see for instance Fig. 8f), while it reveals that extreme caution needs to be taken when such material systems are

analyzed with simpler dipole-dipole models. Also, the concentration of the b̆1 field, which can reach rather high values,
is strongly dependent on local particle distributions, thus explaining partially the difficulty in obtaining a converged
isotropic response under such loading conditions and magneto-mechanical loads. In other words, by slightly changing
the positions of the particles, one can change substantially the corresponding interactions. In turn, Figs. 8g-l, reveal
the strong concentration of strains in-between particles. These strains can reach values higher than |0.1|, whereas the
overall straining of the RVE is |0.03|. Due to particle rearrangement, we also observe significant tensile strains at various
points in the unit-cell. It is further noted that these strains can exceed the value of 1 when the matrix is softer, as was
recently discussed by Danas (2017). Such high strains can lead to debonding and final loss of efficiency in the magneto-
mechanical coupling, unless specific fabrication steps are not taken (for a more detailed discussion see Bodelot et al.
(2018)). Unfortunately, in the present 3D study, we were not able to carry out such computations for softer matrices
(e.g., Gm < 0.1MPa) due to computational convergence problems.

Figure 9: (a) Effective magnetization and effective (b) parallel and (c) transverse magnetostrictions as obtained from the numerical homog-
enization (discrete points), analytical homogenization (firm lines) for the particle volume fractions c = 0.1, 0.2 and 0.3. Eulerian h-field is
applied at a local point in the MRE, which is free from mechanical tractions.

Next, we compare the average FE magnetization and magnetostriction response of Fig. 7 with those obtained from
the analytical F-H homogenization model, defined in (39). Note that, the homogenization model is incompressible. Thus,
we consider F = λ1e1 ⊗ e1 + 1/

√
λ1e2 ⊗ e2 + 1/

√
λ1e3 ⊗ e3 and subsequently, for a given h, we compute λ1 and the

arbitrary pressure p by solving the first two equations given by the traction conditions (78)1. The magnetization and
the magnetostriction response from the analytical homogenization model and the FE simulations are compared in Fig. 9.
In this figure, for volume fractions c = 0.1 and 0.2, we observe an excellent agreement between the analytical and FE
homogenization models for both the magnetization and the magnetostriction. In turn, for the higher particle volume
fractions, c = 0.3, the analytical homogenization estimates for λi (i = 1, 2, 3) are significantly lower in absolute value
than that obtained from the FE calculations, as shown in Figs. 9b and c. Instead, the agreement in the magnetization
response is excellent even for c = 0.3.

In this regard, given the fact that the analytical homogenization estimates are very accurate at volume fractions of
practical interest (i.e. c ≤ 0.2), we choose them in the following to calibrate our phenomenological models even for larger
volume fractions but more importantly for much lower matrix shear moduli that the FE calculations do not converge.
Note, however, that the phenomenological models may be calibrated using available experimental results or directly
numerical FE computations.

5.2. Comparison between the phenomenological and homogenization estimates without mechanical pre-load

This section assesses the F-H (see equation (58)) and F-B (see equation (70)) incompressible phenomenological models
for a large range of matrix shear moduli, spanning a range of 0.003 < Gm < 0.3 MPa (or equivalently 0.003 < G∗

m < 0.3).
In particular, we choose for illustration purposes, three shear moduli Gm = 0.003, 0.03, 0.3MPa. We set the magnetic
properties of the iron particles, i.e., χp and ms

p unaltered (see Table 2). Finally we apply the boundary/loading conditions
described in (78).

The effective magnetization and magnetostriction for G∗
m = 0.3, 0.03 and 0.003 and four different volume fractions

c = 0.05, 0.1, 0.2 and 0.3 are shown as a function of the applied Eulerian h−field h/ms
p in Figs. 10a,d,g and Figs. 10b,e,h,

respectively. The transverse magnetostriction components, λ2 and λ3, are equal to 1/
√
λ1 since we consider the MRE

to be incompressible in both the analytical homogenization and the phenomenological models. We find an excellent
agreement between the analytical homogenization estimates and the proposed phenomenological ones, both in terms of
m1 and λ1 for all c considered here.

In Figs. 10c,f,i, we show the magnetostriction λ1 − 1 at various values of the applied Eulerian field h/ms
p. At

h = 0.2ms
p, the phenomenological estimates are slightly different from the corresponding homogenization estimates for

particle volume fractions c > 0.25. In turn, at higher h-fields such as h = 0.5ms
p or h = 1.5ms

p, the phenomenological
models are in very close agreement with the homogenization estimates, even for higher particle volume fractions such
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Effective (a,d,g) magnetization and (b,e,h) magnetostriction as a function of the applied normalized Eulerian field h/ms
p obtained

by the analytical F-H homogenization model (39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological
F-B model (70) (dashed-dot lines) for particle volume fractions c = 0.05, 0.1, 0.2 and 0.3 for matrix shear moduli of Gm = 0.3, 0.03 and
0.003MPa. Zero average axial mechanical pres-stress is applied. (c,f,i) Effect of particle volume fractions c on the magnetostrictions at various
values of h/ms

p .

as c = 0.35. Hence, the slight mismatch between the phenomenological and the homogenization estimates at moderate
fields and large volume fraction can be directly attributed to the specific functional form of the coupling free energy
(61) and (72). In turn, the calibrated coupling coefficients βH

2 and βB
2 manage to model very accurately the saturation

magnetostriction, even for c > 0.25, as indicated by the almost perfect overlap of the λ1 curves in Figs. 10c,f,i at higher
applied h-fields. Thus, the overall performance of the phenomenological models is found to be excellent up to c = 0.25
and even sufficiently accurate for particle volume fraction of c = 0.35. We recall, here, that the homogenization estimates
were found to underestimate the magnetostriction by comparison to FE results for volume fraction c = 0.3. Hence, the
use of the proposed phenomenological models for volume fractions c > 0.2 should be done with caution.

Finally, an important observation in the context of Fig. 10 is that the computed magnetization response is fairly
independent of the matrix shear modulus G∗

m , as easily observed by comparing parts (a), (d) and (g). Instead, the
magnetostriction response is a very strong function of G∗

m .

5.3. Comparison between the phenomenological and homogenization estimates with mechanical pre-load

The final step in the assessment of the proposed phenomenological models is to probe the model for mechanical
pre-loads that lie outside the previous calibration range. We, thus, consider three different mechanical pre-loads, namely,
the uniaxial pre-stress, the equibiaxial pre-stress and the pre-shear stress. In this regard, Fig. 11, 12 and 13 show the
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effective magnetization and pure magnetostriction (i.e. λ1 − λ0
1 with λ0

1 denoting the initial pre-stretching due to the
applied pre-stress) for Gm = 0.003 and 0.03MPa at a volume fraction c = 0.2 as a function of the applied Eulerian
h−field h/ms

p. In all subsequent cases, the direction of magnetic loading is prescribed along e1, while the direction
of applied pre-stresses are varied. The magnitude of the applied pre-stresses is selected in accord with experimentally
relevant pre-stress conditions(see Danas et al. (2012)). The corresponding pre-stretches λ0

i (i = 1, 2, 3) can be easily
computed numerically or analytically for Neo-Hookean solids and are not presented explicitly here (see e.g., Danas and
Triantafyllidis (2014)).

Uniaxial pre-stress load : The uniaxial pre-stresses are applied along the direction 1 or 2, i.e., Smech
11 /Gm 6= 0 or

Smech
22 /Gm 6= 0, respectively, retaining the rest of the boundary conditions the same as those described in (78). As

Figure 11: Effective (a,d) magnetization and (b,c,e,f) magnetostriction as a function of the applied normalized Eulerian field h/ms
p obtained

by the analytical F-H homogenization model (39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological
F-B model (70) (dashed-dot lines) for particle volume fraction c = 0.2 and for matrix shear moduli of Gm = 0.03 and 0.003MPa. (a-c) and
(d-f): Two sets of average uniaxial mechanical pres-stress are applied as Smech

11
/Gm = −0.3, 0, 0.3 and Smech

22
/Gm = −0.3, 0, 0.3, respectively.

discussed before and in agreement with the earlier results of Danas et al. (2012), the magnetization response in Fig. 11a
and d are independent of the matrix shear modulus Gm and the pre-stress (not labeled in the figure for clarity). All
models are in excellent agreement in this case of magnetization response.

In turn, in Fig. 11b, c, e and f, the magnetostriction response depends on the pre-stress as expected. We observe
that application of a tensile pre-stress Smech

11 /Gm along the direction of the magnetic loading leads to an enhancement
of compression, while application of a compressive pre-stress moves the magnetostriction curve upwards, i.e. to less
compression. These results are in qualitative agreement with the reported experimental results in Danas et al. (2012). On
the other hand, applied transverse tensile and compressive pre-stresses Smech

22 /Gm leads to a reduction and an enhancement
in the magnetostriction, respectively (see Fig. 11e and f). Moreover, the variability of the magnetostriction due to the
transverse pre-stress Smech

22 is found to be weaker than the axial one, Smech
11 .

In all these magnetostriction responses we observe that the phenomenological model, while remaining in very good
agreement with the homogenization model for small to moderate values of h, it tends to underestimate (in absolute value)
the saturating magnetostriction at higher fields. The differences between the phenomenological and homogenization
estimates are larger for the higher matrix shear modulus Gm = 0.03MPa, while they become much smaller for the lower
one Gm = 0.003MPa. Even so, the phenomenological model retains the correct characteristics even at large pre-stresses.

Equibiaxial pre-stress load : Equibiaxial mechanical loading together with a transverse applied magnetic field along the
third direction is often encountered in layered MRE structures (Danas and Triantafyllidis, 2014; Psarra et al., 2017, 2019).
Thus, motivated from such practical loading situations, we probe, next, the phenomenological model under applied equi-
biaxial pre-stress along directions 2 and 3, such that Smech

22 /Gm = Smech
33 /Gm ≡ Smech

Bi /Gm 6= 0, while the remaining boundary
conditions are given by (78). Similar to the uniaxial pre-loading, no significant change in the magnetization is observed in
Fig. 12a. The magnetotsriction obtained from the homogenization model is found to change in Fig. 12b and c depending
on the direction of Smech

Bi /Gm. In turn, a very weak change is observed in the phenomenolgical magnetostriction response.
We note that an equibiaxial pre-tension (pre-compression) along directions 2-3 leads to a pre-compression (pre-tension)
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Figure 12: Effective (a) magnetization and (b,c) magnetostriction as a function of the applied normalized Eulerian field h/ms
p obtained by

the analytical F-H homogenization model (39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological
F-B model (70) (dashed-dot lines) for particle volume fraction c = 0.2 and for matrix shear moduli of Gm = 0.03 and 0.003MPa. (a-c) Three
average equibiaxial mechanical pres-stress are applied, so that Smech

22
/Gm = Smech

33
/Gm = Smech

Bi /Gm = −0.3, 0, 0.3.

along 1, which is the direction of magnetic loading. Hence, the magnetostriction is observed to decrease (increase) for
Smech
Bi /Gm > 0 (Smech

Bi /Gm < 0), which is in agreement with the previous observations in the context of uniaxial pre-stresses.
Again the phenomenological model is in better agreement with the homogenization model at softer matrices.

Shear pre-stress load : The magneto-mechanical measurements in (Danas et al., 2012) also consider mechanical loading
paths where a shear pre-stress is applied transverse to the applied magnetic field. Thus, a shear pre-loading is considered
in this section by applying Smech

21 /Gm > 0, while keeping the rest of the boundary conditions identical to (78). In agreement
with the previous observations, the magnetization remains unaffected by the applied Smech

12 (see Fig. 13a). In Figs. 13b

Figure 13: Effective (a) magnetization and (b,c) magnetostriction as a function of the applied normalized Eulerian field h/ms
p obtained by

the analytical F-H homogenization model (39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological
F-B model (70) (dashed-dot lines) for particle volume fraction c = 0.2 and for matrix shear moduli of Gm = 0.03 and 0.003MPa. (a-c) Three
overall pre-shear stresses are applied: Smech

21
/Gm = 0, 0.3, 0.5.

and c, the magnetostriction estimates obtained by both models are completely independent of Smech
21 . Furthermore,

the application of Smech
21 leads to a shear stain and a transverse magnetization along e2. The resulting shear strain is

interestingly found by both models to be completely independent of the applied magnetic field and thus is not included
in Figs. 13b and c. Similarly, the transverse magnetization remains considerably lower (∼ 10−3ms

p) than the parallel
magnetization and thus is not included in Fig. 13a. We note in passing that very similar results are also obtained by
both models for a shear pre-stress Smech

12 /Gm 6= 0 and thus is not included here for brevity.
In summary, the above results are in qualitative agreement with those in Danas et al. (2012) and suggest that MRE

devices that are based on a shearing mechanical load exhibit very weak coupling along that direction and thus negligible
magnetorheological stiffening. This is one of the substantial differences between MR elastomers and MR fluids, since
the latter can mainly operate in shearing conditions. Instead, the MR solids can mainly operate under uniaxial and
multi-axial ones.

6. Concluding remarks

In this work, we present explicit phenomenological models both in the F − H and the F − B space, which are
based on a rigorous homogenization solution, which, in turn, lies in the space of the deformation gradient, F, and
Lagrangian h−field, H. We analyze the magnetization and magnetostriction problem using an augmented variational
principle in an effort to retrieve the pure microscopic “material” magneto-mechanical coupling in magnetorheological
elastomers (MREs). We then use this framework to study numerically and analytically the homogenized response of
isotropic MREs comprising I1−based hyperelastic matrix and mechanically rigid iron particles that exhibit negligible
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magnetic hysteresis (i.e. magnetically soft). The most important part of this study consists in proposing simple explicit
homogenization-guided phenomenological models in both F − H and F − B variable space. Those phenomenological
models are proposed both in the context of incompressible and nearly incompressible setting making them highly versatile
and easy-to-implement in finite element user material subroutines.

Specifically, we show by comparison with full field FE RVE calculations that the analytical homogenization model
of Lefèvre et al. (2017) is sufficiently accurate for small to moderate particle volume fractions (i.e., 0 < c ≤ 0.2).
While this model is general since it is based on a rigorous homogenization procedure, it is implicit for the case of
magnetically saturating particles and thus requires the solution of an additional nonlinear algebraic equation for the
complete description of the MRE response. Also it is only proposed in the F−H variable space since a Legendre-Fenchel
transform is not analytically feasible in the general nonlinear magnetic saturation context. Nonetheless, it offers an
extremely valuable base to investigate the response of isotropic MREs and to help calibrate phenomenological models.

In this regard, in the present study, we propose explicit phenomenological models that are based on the homogenization
model. In particular, the proposed energy functions recover three main features of the Lefèvre et al. (2017) homogenization
model: (i) they recover the exact (in the sense of homogenization) effective magnetization response at small and very
large (i.e. at magnetization saturation) magnetic fields, (ii) they predict the exact magnetostriction response at small-
to-moderate magnetic fields for any mechanical pre-loads and (iii) their purely mechanical response is exactly that of the
homogenization model, which has been originally obtained in Lopez-Pamies et al. (2013). In turn, in order to maintain
the simplicity of the models, we choose not to recover exactly the magnetostriction response at very large saturating
magnetic fields (but see along these directions the recent work in the F−H space of Lefèvre et al. (2019)). In particular,
in a number of applications that the geometry plays a predominant role (see for instance Psarra et al. (2019)) or the
coupling is weak (i.e., at fairly large shear moduli of the matrix phase, e.g. larger than 0.3MPa for instance), the coupled
part of the energy can be easily dropped while maintaining the dependence on the volume fraction of the particles in the
mechanical and magnetic energy. This last modeling approach is straightforward and fairly accurate for such applications
and requires a minimum set of calibration such as the mechanical and purely magnetic constitutive parameters of the
MRE.

Specifically, in order to obtain the nontrivial behavior of the magnetostrictive response as a function of the applied
Eulerian magnetic field (i.e., is initially quadratic, subsequently increases in a slower non-quadratic manner reaching a
saturating value), we propose a coupling energy that is a nonconvex function of its argument. It is noted, however, that
the coefficient multiplying this coupling part is rather small thus leading to an overall convex magneto-elastic energy
function. Even so, it is evident from that observation that for more complex MREs (i.e. with non-spherical particles or
particle-chain distributions) such nonconvexities could lead to instabilities and loss of ellipticity (see for instance Otténio
et al. (2007), Danas and Triantafyllidis (2014) and Psarra et al. (2017, 2019)). Such an analysis is beyond the scope of
the present manuscript and is left for a future study.

Furthermore, the proposed phenomenological model comprises very few calibration parameters, which in the present
study are reduced to a single one, i.e., βH,B

2 . This parameter is then calibrated numerically by comparison with the
analytical homogenization model of Lefèvre et al. (2017). Nevertheless, the form of the phenomenological energy functions
is more universal and can be used more generally in fitting any experimental or numerical estimates that may be available.
As also been shown, extrapolation of the phenomenological estimates in a regime that lies rather far from the calibration
process (e.g. significant applied pre-stresses) gives very satisfactory and accurate results at small and moderate applied
magnetic fields and even large fields particularly for softer matrices.

By using the simple explicit energy functions together with the variational framework of Danas (2017) that allows
to study the pure material magneto-mechanical coupling, we have obtained several interesting results. SPecifically, all
presented models show that in the context of isotropic MREs, the magnetization response is insensitive to the shear
modulus of the matrix material even when the latter ranges from values between 0.003-0.3MPa (this observation is also
valid for the larger range 0.001-1MPa not explicitly shown here). On the other hand, the magnetostriction response
is highly dependent of the shear modulus of the matrix Gm, as intuitively expected. A second observation, which
is consistent with the recent work of Danas (2017), is that the microscopic deformation of isotropic MREs leads to
compressive magnetostriction for zero overall mechanical tractions in the RVE. Hence, the observed overall extensive
response of MRE specimens in experiments (see for instance Bodelot et al. (2018)) is a result of the specimen shape
and the entire set of boundary conditions and geometry of the experimental setup. This has been discussed in detail in
Lefèvre et al. (2017), who showed that in zones of (almost) zero mechanical tractions, the MRE exhibits compressive
strains. Finally, application of pre-stresses results in the phenomenological models becoming less accurate especially at
larger magnetic fields, even though their predictions become increasingly better for softer matrices. Finally, we find that
the effect of a mechanical pre-load is maximum for uniaxial pre-stressing and negligible for shearing ones.

In closing, it is worth mentioning that the actual MREs may be viscoelastic in nature and thus the extension of the
present work to that context is necessary. Recent studies towards that direction revealed several interesting features (see
for instance Saxena et al. (2013) and Sánchez et al. (2018)), however, no constitutive micromechanical models that take
into account the particle volume fraction and microstructure have been proposed yet. Furthermore, in even more recent
works, the iron particles have been replaced by hard magnetic particles such as NdFeB-particles adding one more level
of complexity, that of magnetic hysteresis (see recent work of Mukherjee and Danas (2019)). Such a study that builds
upon the present one is underway.
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Appendix A: Pull-back transformation of effective Eulerian field h

The effective Eulerian h-field is defined by (24), such that

h =
1

V#

∫

V#

h̆(x) dv. (A.1)

Substituting h̆(x) by its pull-back transformation (2)2 and expressing the current volume V# = JV#
0 in the above, we

obtain

h =
1

JV#
0

∫

V#

0

J̆(X)F̆−T (X) · H̆(X) dV =
1

JV#
0

∫

V#

0

∂J̆

∂F̆
(X) · H̆(X) dV, (A.2)

where the microscopic deformation gradient F̆ is defined in Section 2 via F̆(X) = Grad y(X), with y(X) denoting the
continuous and twice differentiable one-to-one mapping from the reference to the current configuration. The deformation
gradient tensor F̆ can then be expressed in index notation as F̆mn = ym,n, where the comma “,” in the subscript denotes

partial differentiation with respect to X, such that ym,n = ∂ym/∂Xn. Furthermore, J̆ = det F̆ in (A.2) can be expressed
in index notation as

J̆ =
1

6
ǫijkǫpqryi,pyj,qyk,r, (A.3)

where ǫijk is the standard permutation symbol.
To obtain the pull-back transformation of h in terms of F and H in the average context, we first show that the tensor

∂J̆/∂F̆ is divergence-free and then utilize this condition along with the kinematically admissible boundary conditions on

H̆ or ∂J̆/∂F̆ and the Hill-Mandel lemma.

Divergence of ∂J̆/∂F̆: The tensor ∂J̆/∂F̆ is readily evaluated from (A.3), such that

∂J̆

∂F̆mn

=
1

2

[
ǫmjkǫnqryj,qyk,r

]
. (A.4)

In turn, Div(∂J̆/∂F̆) can be computed by taking the divergence on both sides of the above equation, such that

(
∂J̆

∂F̆mn

)

,n

=
1

2

[
ǫmjkǫnqryj,qnyk,r + ǫmjkǫnqryj,qyk,rn

]
.

By interchanging the dummy indices in the previous equation, one gets the desired divergence-free result

(
∂J̆

∂F̆mn

)

,n

=
1

2
ǫmjkyj,q

[
ǫnqryk,rn − ǫnqryk,nr

]
= 0. (A.5)

Application of the Hill-Mandel lemma: We express (A.2) in index notation as

hi =
1

JV#
0

∫

V#

0

∂J̆

∂F̆ij

H̆j dV = − 1

JV#
0

∫

V#

0

∂J̆

∂F̆ij

ϕ̆,j dV. (A.6)

Here, the curl-free condition on H̆ allows to write the latter in terms of a scalar potential ϕ̆ such that H̆ = −Gradϕ̆ (or

equivalently, H̆i = −ϕ̆,i). From the divergence theorem and the divergence-free property of ∂J̆/∂F̆, we recast (A.6) to
read

hi = − 1

JV#
0

∫

∂V#

0

∂J̆

∂F̆ij

ϕ̆Nj dS, (A.7)

where Nj is the unit normal on the reference boundary ∂V#
0 . Notice that, in V#

0 , the scalar potential ϕ̆ is defined by
(23)2 to be ϕ̆ = −HkXk + ϕ̃ with ϕ̃ periodic (i.e. takes identical values in opposite faces of the periodic boundary).
Next, substituting this last expression in (A.7), we obtain

hi =
1

JV#
0

{∫

∂V#

0

∂J̆

∂F̆ij

HkXkNj dS −
∫

∂V#

0

ϕ̃
∂J̆

∂F̆ij

Nj dS

}
, (A.8)
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where we recall that the effective Hk is constant. The second term in (A.8) is identically zero since ϕ̃ is periodic and the
term Nj∂J̆/∂F̆ij is anti-periodic (by simple use of the divergence-free property of ∂J̆/∂F̆ij). In turn, by employing the

divergence theorem in the first term of (A.8) together with the divergence-free property of ∂J̆/∂F̆ij , we obtain

hi =
1

JV#
0

∫

V#

0

∂J̆

∂F̆ij

Hkδkj dV =
1

J

[
1

V#
0

∫

V#

0

∂J̆

∂F̆ij

dV

]
Hj . (A.9)

Again, using the divergence-free property of ∂J̆/∂F̆ij , the last term in the square brackets is simply equal to the average
∂J/∂Fij , such that

hi =
1

J

∂J

∂Fij
Hj = F−1

ji Hj , or h = F−T ·H. (A.10)

Appendix B: Particle and mesh convergence

This section presents a convergence study of the computed effective magnetization and magnetostriction for a particle
volume fraction c = 0.3 in terms of the overall number of particles in the RVE and the number of degrees of freedom. It
has been observed in Section 5.1 as well as in former numerical homogenization estimates (Danas, 2017) that the effective
magnetization exhibits negligible scatter when different realizations of RVEs are considered. We thus exclude for brevity
the convergence study in terms of the effective magnetization and focus only on the magnetostriction results.

For all the computations performed hereafter, the material parameters for the particle and the matrix phases are
those presented in Table 2. Moreover, the applied overall (macroscopic) boundary conditions remain the same with those
described in equation (78).

Convergence of the number of particles : In addition to a set of 10 realizations of the polydisperse RVEs having
Nmono = 60 (Ntot ∼ 290) considered in Section 5.1, we analyze here two additional sets of 10 RVEs each. As defined in
Section 5.1, in the first set of RVEs, we use the same three different families having the same size ratio (i.e. (1, 7/9, 4/9))
and relative volume proportion (0.6, 0.3, 0.1)c, respectively. Furthermore, it comprises polydisperse spherical particles
obtained by setting Nmono = 100, which leads to a Rmax/L = 0.0895 (with L = 1 denoting the size of the cubic unit cell)
and a total number of actual particles Ntot ∼ 450. The last set has 10 RVE realizations with polydisperse spherical
particles from four different families of size ratio 1.0, 0.778, 0.556, and 0.333 whose relative proportion in the total
particle volume being 0.6, 0.3, 0.2 and 0.1, respectively. This last set is obtained by considering Nmono = 120, which
leads to a maximum sphere radius Rmax/L = 0.0842 and a total number of particles Ntot ∼ 750. The average value of
the total degrees of freedom for each set of RVEs is 1.5 × 106, 2.7 × 106 and 8.5 × 105 for Ntot ∼ 290, 450 and 750,
respectively. Notice that, the Ntot in these polydisperse RVEs is not a primary variable, rather, is a derived quantity.
The primary variables that define a polydisperse RVE is given by the particle volume fraction c, the equivalent number
of monodisperse particles Nmono, the size ratio of different families and their relative volume proportions. For a detailed
discussion of these RVE constructions the reader is referred to the recent works of Anoukou et al. (2018), Zerhouni et al.
(2019) and Tarantino et al. (2019).

The average of the computed magnetostriction responses for the three aforementioned sets of RVEs are shown in
Fig B.1a. Here we observe that, with increasing number of particles, the average parallel (λ1 − 1) and transverse
(λ2 − 1, λ3 − 1) magnetostrictions converge to that reported in Fig 7b and c, respectively. Furthermore, the scatter of
the computed magnetostrictions are observed to decrease considerably (see Fig. B.1b) with the increase of the number of
particles. It should be noted here that the convergence of the computed magnetostriction in Fig. B.1a and b is valid for

Figure B.1: (a) Average effective parallel and transverse magnetostriction stretches, (b) scatter in the parallel magnetostrictions as obtained
from the numerical homogenization for the particle volume fraction of c = 0.3 and the total number of particles Ntot ∼ 290 (firm lines),
Ntot ∼ 450 (dashed lines) and Ntot ∼ 750 (chain-dotted lines). Eulerian h-field is applied at a local point in the MRE, which is free from
mechanical tractions.

the present use of energy functions (e.g. Neo-Hookean mechanical response defined in (14)). A different hyperelastic law
27



with more pronounced nonlinearities (such as Gent hyperelasticity) for the matrix phase may need additional convergence
studies and perhaps even larger number of particles.

Figure B.2: Computed (a) effective magnetization and (b-c) effective parallel and transverse magnetostrictions for a RVE with c = 0.3 and
Ntot ∼ 290 having four different meshes with total degrees-of-freedom 0.8 × 106 (dashed-dotted lines), 1.5 × 106 (dotted lines), 3.4 × 106

(dashed lines) and 5.1× 106 (solid lines).

Mesh convergence: Next, we investigate the mesh convergence of the computed effective magnetization and mag-
netostriction for a specific RVE given by Fig. 7 for c = 0.3. In addition to the given mesh in Fig. 7, we perform the
computations for three additional meshes; one with a coarser mesh with total number of degrees of freedom equal to
0.8×106 and two with finer meshes having 3.4×106 and 5.1×106 degrees of freedom. As shown in Fig. B.2a, the effective
magnetization is converging rapidly for all meshes, whereas, the parallel and transverse magnetostrictions in Fig. B.2b
and c are seen to be slightly underestimated when the coarse mesh with 0.8×106 degrees-of-freedom is used. Nevertheless,
the magnetostriction response is observed to converge rapidly with the subsequent mesh refinements. Notice that in all
the reported results in Section 5.1, we use the RVEs with approximately 1.5 × 106 degrees of freedom, which leads to
fully converged magnetization and magnetostriction responses as observed in Fig. B.2.
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