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Abstract: In this paper, we studied the effect of the Cr/Mn ratio on the microstructure, crystal struc-
ture and hydrogen absorption properties of the quaternary alloys of compositions Ti30V60Mn(10−x)Crx

(x = 0, 3.3, 6.6 and 10) + 4 wt.% Zr. The addition of Hf instead of Zr was also investigated. We found
that all alloys are single-phase BCC (Body Centred Cubic) but with regions of high concentration of
Zr (or Hf). The first hydrogenation at room temperature under 2 MPa of hydrogen happens quickly
without any incubation time. The Ti30V60Mn3.3Cr6.6 + 4 wt.% Zr alloy showed the fastest kinetics
and highest hydrogen absorption (3.8 wt.%). For this composition, replacing Zr with Hf made the
first hydrogenation slower and reduced the capacity to 3.4 wt.%. No activation was observed for the
same alloy without additives. As the alloy without additives did not absorb hydrogen at all, it means
that the presence of these high concentrations of Zr (or Hf) is essential for quick first hydrogenation.

Keywords: hydrogen storage; metal hydride; first hydrogenation; BCC alloys

1. Introduction

For hydrogen storage applications, metal hydrides have the benefit of storing hydro-
gen with high volumetric storage density, low cost [1] and safety [2]. Several types of
intermetallic compounds have been investigated for hydrogen storage: AB2 [3], AB5 [4],
LaNi5 [5,6] TiFe [7,8], and ZrV2 [9]. Mg-based alloys have a large capacity, but their temper-
ature of operation is usually too high for most practical applications [10–13]. Solid solution
alloys such as Ti–V-based Body Centred Cubic (BCC) alloys have a hydrogen-to-metal
ratio (H/M) of about 2 at low pressure and room temperature [14–17]. However, poor
activation (first hydrogenation) at ambient conditions increases the cost of these metal
hydrides for commercial applications. Several approaches have been attempted to enhance
the activation such as microstructural refinement [18,19] or adding other elements such as
Zr [20,21]. The substitution of a small amount of transition elements such as Fe, Co, Ni, Mn
or Cr could be beneficial for the first hydrogenation but usually changes the hydrogenation
thermodynamics [22–26]. One BCC Ti–V–M system that has been intensively studied is
Ti–V–Mn [27–31]. For example, a small change in composition in Ti0.5V0.5±xMn (x = −0.04
and 0.01) alloy results in a significant change in plateau pressure and hysteresis [28].

According to many investigations, introducing a secondary C14 Laves phase into
the BCC solid solution by adding alloying elements promotes hydrogen diffusion and
its absorption in the material [28,32–36]. Substitution may lead to an easy activation of
the alloys, but the hydrogen storage capacity could be reduced. For instance, it has been
reported that increasing the Zr content in Ti10V(84−x)Fe6Zrx (x = 1, 2, 4, 6, 8) alloys leads
to an increase in the ratio of C14/BCC which results in a better activation behaviour
although it decreases the hydrogen capacity [37]. Mouri and Iba investigated the hydrogen
storage properties of Ti1VxMn2−x (x = 1.4–0.6) and found that the fresh surfaces formed in
Laves phases promote the activation, and that increasing the Mn content leads to the total
elimination of the BCC phase and the reduction of the capacity of the alloy [38].
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Miraglia et al., have shown that in the Ti–V–Cr BCC alloy, adding 4 wt.% of Zr7Ni10
could improve the activation process under mild temperature and hydrogen pressure [39].
More recently, it was reported that by adding only 4 wt.% of Zr to Ti–V–Cr BCC alloy,
a Zr-rich secondary phase was found in the as-cast alloy [40,41]. This phase is probably
responsible for the fast activation kinetics and the high hydrogen capacity.

One of the aims of the current work is to improve the properties of Ti–V–Mn in terms
of activation and hydrogen capacity by substituting Mn with the transition metal Cr. In
this paper, we present the microstructure, crystal structure and hydrogenation properties
of Ti30V60Mn(10−x)Crx (x = 0, 3.3, 6.6 and 10) alloy added with 4 wt.% of Zr. Such a
small amount of Zr was added in order not to drastically change the crystal structure and
hydrogen capacity of the alloy. The effect of using Hf instead of Zr as an additive was also
investigated. This was justified because Hf is a common impurity in Zr. In addition, as the
atomic radius of Hf and Zr are practically identical, this enables us to distinguish the effect
of atomic radius and the element chemistry.

2. Materials and Methods
2.1. Alloy Synthesis

Alloys with nominal composition Ti30V60Mn(10−x)Crx (x = 0, 3.3, 6.6 and 10) + 4 wt.%
Zr were prepared by arc melting under an argon atmosphere. The raw materials vanadium
(irregular pieces, 99.7%), titanium (sponge, 3–19 mm, 99.95%), manganese (irregular pieces,
99.5%), chromium (irregular pieces, 99.0%) and zirconium (sponge 0.8–25.4 mm, 99.95%)
were purchased from Alfa Aesar (Ward Hill, MA, USA) and used as received. Each
ingot (≈3 g) was turned over and remelted three times to ensure good homogeneity. To
compensate for the loss of the manganese during arc melting due to its boiling point
(2061 ◦C) which is close to the melting point of the other elements, an excess of 20 wt.% was
added to the nominal abundance of manganese. The alloy Ti30V60Mn3.3Cr6.6 + 8 wt.%Hf
was cast, using hafnium (irregular pieces 99.7%) from Alfa Aesar (Ward Hill, MA, USA).
The as-cast alloys in button shape were hand-crushed in an argon-filled glovebox using a
hardened steel mortar and pestle.

2.2. Crystal Structure and Morphology

The phase composition and crystal structure of the alloys were investigated by X-ray
diffraction (XRD) using a Bruker D8 Focus powder diffractometer (Madison, WI, USA) with
Cu Kα radiation. The XRD patterns were analyzed by the Rietveld method using Topas
V6 software [42]. The microstructure of each sample was observed using a Hitachi SU1510
scanning electron microscope (SEM) (Hitachi High-Tech Canada, Toronto, Ontario, Canada)
in the backscattered electron mode (BSE). The chemical composition was measured by
Energy Dispersive X-ray Spectroscopy (EDX) using Oxford Instrument X-Max (Abingdon,
UK) analytical resolution.

2.3. Hydrogen Absorption and Desorption Measurements

First hydrogenation tests were performed by using a homemade Sievert apparatus. In
this type of apparatus, the quantity of hydrogen absorbed or desorbed is measured by the
pressure change in a calibrated volume during the reaction. Crushed samples weighing
around 1 g were placed in a sample holder and evacuated for 15 min at room temperature
prior to kinetic measurement under 2 MPa of hydrogen at room temperature (25 ◦C). This
mode was chosen because one of the goals of this investigation was to find alloys that could
be easily hydrogenated under mild conditions.

3. Results
3.1. Morphologie

The backscattered electron SEM images of the as-cast alloys are shown in Figure 1. For
the composition Ti30V60Mn3.3Cr6.6 cast without zirconium shown in Figure 1a, the alloy is
basically a single phase. With the addition of 4 wt.% Zr, all alloys show a microstructure
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consisting of a grey matrix and bright regions. For the Ti30V60Mn10 alloy, black regions are
also present. It is noticeable that, with an increasing amount of chromium, the number of
bright regions is also increasing. The dark spots in Figure 1a,c–e are holes formed during
the synthesis process.
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Figure 1. Backscattered electron images of (a) Ti30V60Mn3.3Cr6.6 and Ti30V60Mn(10−x)Crx + 4 wt.% Zr
with (b) x = 0, (c) x = 3.3, (d) x = 6.6, (e) x = 10.

Elemental mapping and area analysis were performed on the alloys to determine the
distribution of the elements. The quantitative assessment of the chemical composition of
the bulk and the individual phases was performed by EDX measurements and the results
are shown in Table 1.
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Table 1. Elemental abundance of the alloys for bulk and individual region compositions as measured
from EDX. Error on the last significant digit is indicated in parentheses.

Sample Region Ti (at.%) V (at.%) Mn (at.%) Cr (at.%) Zr (at.%)

Ti30V60Mn10
+ 4 wt.% Zr

nominal 30.9 58.2 8.9 - 2
Bulk measured 32.2(1) 57.9(1) 6.3(1) - 3.7(1)

Ti30V60Mn10
+ 4 wt.% Zr

Matrix 31.2(8) 60(1) 6.5(3) - 2.3(3)
Bright region 41.4(1) 28(1) 3.6(1) - 27(1)
Black region 78.7(1) 10.7(8) 0.7(1) - 9.9(5)

Ti30V60Mn6.6Cr3.3
+ 4 wt.% Zr

nominal 30.8 58.1 6 3.1 2
Bulk measured 30.4(1) 57.1(1) 6.2(1) 2.9(1) 3.4(1)

Ti30V60Mn6.6Cr3.3
+ 4 wt.% Zr

Matrix 30.7(4) 57.5(4) 6(6) 2.90(4) 2.9(1)
Bright region 38.7(1) 29.2(1) 3(1) 1.4(1) 27.7(1)

Ti30V60Mn3.3Cr6.6
+ 4 wt.% Zr

nominal 30.8 58 2.9 6.3 1.9
Bulk measured 28.7(1) 58.5(1) 3.6(1) 6.2(1) 3.3(1)

Ti30V60Mn3.3Cr6.6
+ 4 wt.% Zr

Matrix 27.8(8) 62(1) 3.2(1) 6.10(5) 1.1(2)
Bright region 39.9(5) 26(1) 2.7(1) 3.0(2) 28(1)

Ti30V60Cr10
+ 4 wt.% Zr

nominal 30.7 58 - 9.5 1.9
Bulk measured 29.6(1) 57.7(1) - 9.9(1) 2.8(1)

Ti30V60Cr10
+ 4 wt.% Zr

Matrix 29.2(9) 59(1) - 9.8(2) 2(5)
Bright region 41.6(4) 29.5(2) - 4.9(2) 24(3)

Ti30V60Mn3.3Cr6.6 (Zr-free)
nominal 31.4 59.2 3 6.4 -

Bulk measured 31.0(1) 59.1(1) 3.5(1) 6.4(1) -
Ti30V60Mn3.3Cr6.6 (Zr-free) Matrix 31.1(3) 59(3) 3.6(4) 6.3(1) -

For Ti30V60Mn10 + 4 wt.% Zr (Figure 2) the titanium, vanadium and manganese are
homogeneously distributed throughout the matrix. The bright areas are rich in zirconium
while the black regions are titanium-rich.
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Figure 2. Backscattered electron micrograph of Ti30V60Mn10 + 4 wt.% Zr alloy with EDX mappings
and chemical compositions at different sites.

Figure 3 shows the Ti30V60Mn6.6Cr3.3 + 4wt.% Zr alloy. The matrix composition is
very close to the nominal value. Zirconium is mainly in the bright region. There is no
titanium-rich region. The dark spots are holes formed during casting.

The Ti30V60Mn3.3Cr6.6 + 4 wt.% Zr alloy shown in Figure 4 has a grey matrix with
basically the nominal composition. The bright areas have a very high proportion of Zr.

The microstructure of Ti30V60Cr10 + 4 wt.% Zr is presented in Figure 5. The matrix
has a chemical composition close to the nominal value. The bright regions have a high
proportion of Zr.
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mappings and chemical compositions at different sites.
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Figure 5. Backscattered electron micrograph of Ti30V60Cr10.+ 4 wt.% Zr alloy with EDX mappings
and chemical compositions at different sites.

For all the alloys, there was a good agreement between the bulk chemical compositions
and the nominal values. As seen in Table 1, the bright regions of these alloys have similar
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values. Compared to the matrix, in the bright areas, the proportion of Ti and Zr increases
while the proportion of V, Mn and Cr decreases. In fact, a detailed inspection of these
regions shows that they have a general composition close to Ti≈0.4 V≈0.3(Mn+Cr)≈0.05
Zr≈0.28.

To get a better view of the relationship between the matrix and the bright area, a
line analysis was performed on the as-cast Ti30V60Mn3.3Cr6.6 + 4 wt.% Zr alloy. Figure 6
shows a continuous change in composition between the matrix and the bright area. The
proportion of Ti and Zr increases in the brighter region while the proportion of V, Mn and
Cr decreases. The biggest difference in proportion between the matrix and the bright region
is for V and Zr. It is important to notice that there is no sharp boundary between the matrix
and the bright area. We were not able to find a stable phase with similar composition in the
literature. This may be an indication that this is a metastable phase. We are planning to
synthesize an alloy with this nominal composition. This will give us some indication of the
stability of this phase and also its crystal structure.
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As zirconium is mainly present in the bright regions, we wanted to know if another
group 4 element would have the same behaviour. Therefore, the effect of adding hafnium
instead of zirconium was also investigated. The addition of 8 wt.% Hf was selected in order
to keep the same at.% as for the Zr addition. Figure 7 shows the dendritic microstructure
of the as-cast Ti30V60Mn3.3Cr6.6 + 8 wt.% Hf alloy. Similar to zirconium, the addition of
hafnium produced a system consisting of a grey matrix and bright regions.
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Figure 7. Backscattered electron images of Ti30V60Mn3.3Cr6.6 + 8 wt.% Hf alloy.

Figure 8 shows a higher magnification image and element mapping of Ti30V60Mn3.3Cr6.6
+ 8 wt.% Hf alloy. The chemical composition of the bulk and each specific region was mea-
sured by EDX, and the results are presented in Table 2. As for the Zr addition, the matrix
composition is close to the nominal value. The bright regions are hafnium rich. Compared
with the bright regions of Ti30V60Mn3.3Cr6.6 + 4 wt.% Zr, we see that the abundance of
titanium, manganese, and chromium is basically the same in the two alloys. The abundance
of hafnium is lower than the zirconium abundance while the abundance of vanadium in
the bright regions of Ti30V60Mn3.3Cr6.6 + 8 wt.% Hf is higher than in the Zr added alloy.
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Table 2. Chemical composition in at.%, of Ti30V60Mn3.3Cr6.6 + 8 wt.% Hf alloys with EDX analysis
(uncertainty is ±0.1 for all values).

Sample Region Ti (at.%) V (at.%) Mn (at.%) Cr (at.%) Hf (at.%)

Ti30V60Mn3.3Cr6.6
+ 8 wt.% Hf

nominal 31 58 3 6 2
Bulk measured 30.4 57.4 3.4 6.3 2.5

Ti30V60Mn3.3Cr6.6
+ 8 wt.% Hf

Matrix 29.7 57.4 3.1 5.9 3.9
Bright Region 41.2 32.6 1.8 3.3 21.1

3.2. Crystal Structure of As-Cast Alloys

The XRD patterns of the alloys as synthesized are shown in Figure 9. For all alloys,
only a BCC phase was seen despite the fact that the electron microscopy seems to indicate
regions of different chemical compositions. However, as seen in Figure 6, the bright region
and the main (matrix) phase smoothly merge into each other. Therefore, considering also
the stoichiometry of the bright region, it is possible that it also has a BCC structure with
a lattice parameter close to the one of the matrix. However, more proof is needed to
support this affirmation. The lack of clear evidence of the existence of a secondary phase
leads us to perform the Rietveld refinement assuming a single BCC phase. In the patterns
x = 3.3 and 10, there may be small peaks at 36◦, 38◦ and 46◦ but they are too small to be able
to clearly assign them to a particular crystal structure. The results of Rietveld refinements
are shown in Table 3.

Table 3. Crystal structure parameters of the BCC phase of as-cast alloys Ti30V60Mn(10−x)Crx (x = 0,
3.3, 6.6, 10) + 4 wt.% Zr. The number in parentheses represents the error on the last digit.

Alloy Lattice
Parameter (Å) Cell Volume (Å)3 Crystallite Size

(nm)
Microstrain

(%)
Average Atomic Radius

r (Å)
Ratio

r/a

x = 0 3.1037(5) 29.90(1) 13.7(4) 0.256(6) 1.3708(4) 0.4416(2)

x = 3.3 3.0979(5) 29.71(2) 12.8(2) 0.254(7) 1.3687(4) 0.4418(2)

x = 6.6 3.0859(7) 29.52(2) 10.8(2) 0.254(6) 1.3657(4) 0.4425(2)

x = 10 3.0962(6) 29.68(2) 11.4(3) 0.252(7) 1.3627(4) 0.4401(2)

Table 3 shows that the lattice parameter of the BCC phase linearly decreased with x
value except for x = 10 where the lattice parameter increased compared to x = 6.6. The
reduction of lattice parameters could be explained by the average atomic parameter. Taking
the atomic radius of the elements as: Ti (1.46 Å), V (1.32 Å), Mn (1.35 Å), Cr (1.25 Å) and Zr
(1.6 Å) [43], the average atomic radius was calculated. The ratio of the lattice parameter
to the average atomic radius is reported in Table 3. We see that this ratio is practically
constant for x = 0, 3.3 and 6.6 but significantly smaller for x = 10. Therefore, the change
in lattice parameter is partly due to the change in average atomic radius but there are
other factors that determine the lattice parameter value. One possibility may be that the
x = 10 alloy is a ternary alloy while the x = 3.3 and 6.6 are quaternary. The crystallite size
and microstrains are similar for all compositions. Taking the chemical composition of the
bright regions, we calculated the average atomic radius and assuming the same r/a ratio
we found that if these regions also have a BCC structure, then the main peak should be
at around 38.5 degrees. This seems to correspond to a very small broad peak on the x = 0
and x = 6.6 patterns. However, this should not be considered reliable proof. More detailed
measurements are needed.
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3.3. First Hydrogenation Properties

The first hydrogenation kinetics of alloys Ti30V60Mn(10−x)Crx + 4wt.% Zr (with x = 0,
3.3, 6.6 and 10) were measured at 25 ◦C under a hydrogen pressure of 2 MPa and are shown
in Figure 10. All alloys demonstrated a short incubation time and relatively fast kinetics.
The alloys without Mn-Cr substitution i.e., x = 0 (Ti30V60Mn10) and x = 10 (Ti30V60Cr10) have
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a capacity of 3.4 wt.%. This translates to a H/M value of about 1.7. The alloys having both
Cr and Mn (x = 3.3 and 6.6) presented the fastest kinetics and highest capacity. The alloy
Ti30V60Mn6.6Cr3.3 has a capacity of 3.6 wt.% (H/M = 1.8) and the alloy Ti30V60Mn3.3Cr6.6 a
capacity of 3.8 wt.% (H/M = 1.9).
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Figure 10. First hydrogenation kinetics of as cast Ti30V60Mn(10−x)Crx (x = 0, 3.3, 6.6, and 10) + 4 wt.%
Zr alloys under 2 MPa of hydrogen at 25 ◦C.

The fastest kinetics and the highest capacity were observed for the alloy containing
6.6 at.% Cr. Therefore, the x = 6.6 alloy was selected to study the effect of hafnium addition
on the first hydrogenation kinetics. The wt.% of Hf was adjusted in such a way that the
same at.% of Hf and Zr was studied. Figure 11 presents the first hydrogenation kinetics
of the alloy Ti30V60Mn3.3Cr6.6 without additive and with 4 wt.% Zr or 8 wt.% Hf. The Zr
addition reaches a maximum capacity of 3.8 wt.% in less than 400 s. For the alloy with
8 wt.% Hf the incubation time is longer, and the maximum capacity is reduced to 3.4 wt.%
of hydrogen. Clearly, the variation of hydrogen absorption kinetics is strongly dependent
on the nature of the additive.

It is clear from Figure 11 that the alloy x = 6.6 with no zirconium or hafnium does not
show activation even after exposing the sample to hydrogen for 17 h. As shown in Figure 1a,
the as-cast x = 6.6 without additives has a single-phase microstructure without any bright
regions. Therefore, it could be concluded that the presence of Zr or Hf-rich regions has
a positive effect on activation. However, it is clear from Figure 11 that, for the same at.%
addition, Zr is more effective than Hf in terms of capacity and first hydrogenation kinetics.
The reason may be that the main (matrix) and secondary (bright) phases are different. From
Tables 1 and 2, we see that the matrix composition of the sample with Zr addition has a much
lower abundance of Zr (1.9 at.%) than Hf abundance in the Hf added sample (3.9 at.%). In
the same way, the bright phase of the Zr-added sample has a drastically different chemical
composition than the secondary phase in the Hf-added sample. Therefore, as the matrix
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and secondary phases have different chemistry, the capacity of these phases may be distinct.
This may explain the difference in incubation times.
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3.4. Crystal Structure of Hydrogenated Alloys

To determine the crystal structure of fully hydrided alloys, the activated Ti30V60Mn(10−x)Crx
+ 4 wt.% Zr alloys were exposed to hydrogen at room temperature under a hydrogen pres-
sure of 2 MPa. The powder diffraction patterns of fully hydrided samples are shown in
Figure 12. The refined crystal parameters are listed in Table 4. All the fully hydrogenated
alloys crystallize in face-centred cubic (FCC) structures. The unit cells are almost identical,
with their volume differing by less than 1.3%. The lattice parameter of the FCC phase is
about

√
2 times the BCC lattice parameter which is consistent with full hydrogenation

(dihydride) of a BCC phase.

Table 4. Crystal structure parameters of hydrogenated alloys Ti30V60Mn(10−x)Crx (x = 0, 3.3, 6.6, 10) +
4 wt.% Zr. The number in parentheses represents the error on the last digit.

Alloy Lattice
Parameter (Å)

Cell Volume
(Å)3

Crystallite Size
(nm) Microstrain (%)

x = 0 4.3388(8) 81.68(4) 14.5(6) 0.378(7)

x = 3.3 4.3289(5) 81.12(3) 20.4(6) 0.24(4)

x = 6.6 4.3219(5) 80.73(3) 20.6(6) 0.268(4)

x = 10 4.3276(6) 81.05(3) 15.5(5) 0.312(6)
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4. Discussion

The microstructure, crystal structure and first hydrogenation of Ti30V60Mn(10−x)Crx
(x = 0, 3.3, 6.6, 10) with the addition of Zr and Hf were investigated. It was found that Zr and
Hf do not mix well in the Ti–V–Cr BCC structure. Instead, they are concentrated in small Zr
or Hf-rich regions. The crystal structure of these regions could not be identified but it is spec-
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ulated that it may have the BCC structure. The lattice parameter of the BCC phase decreases
as the Cr/Mn ratio increases (x increases) and is due to the reduction of the average atomic
radius. The first hydrogenation kinetics of Ti30V60Mn(10−x)Crx + 4 wt.% Zr is rapid and
without any incubation time. Among the four alloys, the Ti30V60Mn3.3Cr6.6 + 4 wt.% Zr
alloy shows the fastest kinetics and highest hydrogen absorption capacity of 3.8 wt.%.
For this composition, adding Hf instead of Zr made the first hydrogenation slower and
reduced the capacity to 3.4 wt.%. No activation was observed for the same alloy without
additives. This indicates that the presence of a Zr (or Hf) rich region is crucial for fast
first hydrogenation.
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