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Microstructure and Mechanical 
Properties of High-Entropy Alloy 
Co20Cr26Fe20Mn20Ni14 Processed by 
High-Pressure Torsion at 77 K and 
300 K
Jongun Moon1,2, Yuanshen Qi3, Elena Tabachnikova4, Yuri Estrin5,6, Won-Mi Choi1, Soo-Hyun Joo7, 
Byeong-Joo Lee  1, Aleksey Podolskiy4, Mikhail Tikhonovsky8 & Hyoung Seop Kim  1,2

In this work, the mechanical characteristics of high-entropy alloy Co20Cr26Fe20Mn20Ni14 with low-

stacking fault energy processed by cryogenic and room temperature high-pressure torsion (HPT) were 
studied. X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy 
(TEM) analyses were performed to identify the phase and microstructure variation and the mechanical 
properties characterized by Vickers hardness measurements and tensile testing. Cryogenic HPT was 
found to result in a lower mechanical strength of alloy Co20Cr26Fe20Mn20Ni14 than room temperature 
HPT. Microstructure analysis by SEM and TEM was conducted to shed light on the microstructural 
changes in the alloy Co20Cr26Fe20Mn20Ni14 caused by HPT processing. Electron microscopy data 
provided evidence of a deformation-induced phase transformation in the alloy processed by cryogenic 
HPT. Unusual softening phenomena induced by cryogenic HPT were characterized by analyzing the 
dislocation density as determined from X-Ray diffraction peak broadening.

High-entropy alloys (HEAs) composed of �ve or more principal elements with an elemental concentration of 
5 to 35 at% each are novel materials with a simple single phase face-centered cubic (FCC), body-centered cubic 
(BCC), or hexagonal close-packed (HCP) structure1–3. Speci�cally, FCC alloy CoCrFeMnNi, also known as the 
Cantor alloy, has outstanding mechanical properties at low temperatures4,5 and the extensive research of the alloy 
was undergone so far6–13. �e observed enhancement of strength and tensile ductility at cryogenic temperatures 
is largely attributed to high activity of twinning owing to a low stacking fault energy (SFE) of the alloy14, which is 
a common feature of HEAs5,15.

Since the inception of the concept of HEAs, numerous studies have been conducted to characterize their 
mechanical properties and microstructure evolution, chie�y of coarse-grained HEAs16–18. Recently, e�orts to 
study ultra�ne-grained (UFG) HEAs produced by severe plastic deformation (SPD) have been undertaken19–22. 
HEAs with nano or sub micron-grained structure have been shown to result in excellent mechanical proper-
ties13,14. In addition, since more conventional, coarse-grained HEAs exhibit a good combination of high strength 
and high fracture toughness at low temperatures4,23, an even better property pro�le can be expected of HEAs 
processed by SPD at cryogenic temperatures. High-pressure torsion (HPT) is one of the most popular SPD 
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techniques as it is very e�cient in reducing the grain size through a combination of high pressure and giant shear 
strain24–26. Previously, nanocrystalline states were produced in a single phase CoCrFeMnNi HEA using HPT 
at ambient temperature22. It was shown by tensile testing22 that a transition to a nanocrystalline structure gives 
rise to a signi�cant increase of the room temperature strength accompanied with moderate ductility. Additional 
improvement of mechanical characteristics was achieved by decreasing the temperature of HPT to the cryogenic 
region27.

It is therefore of great interest to produce a nanocrystalline or UFG structure in the CoCrFeMnNi HEA by 
cryogenic HPT (‘cryo-HPT’) and to study the e�ect of the processing temperature on its microstructure and the 
mechanical properties. In our previous study28, the deformation-induced FCC-to-HCP phase transformation of 
the Co20Cr26Fe20Mn20Ni14 alloy with low-SFE (3.5 mJ/m2)15 processed by cryo-HPT was investigated. �e pres-
ent follow-up work investigates the microstructure and mechanical properties of the Co20Cr26Fe20Mn20Ni14 alloy 
processed by HPT at both liquid nitrogen temperature and room temperature have been investigated. �e results 
of this in-depth investigation are reported below.

Results
Vickers hardness and tensile properties. Figure 1(a–d) display the variation of the Vickers hardness at 
the surface of the disc, from the center to the edge a�er various holding time a�er HPT. �e applied shear strain 
is calculated as πNr

h

2 , where N is the number of anvil turns, r is the distance from the axis of the HPT sample, and 
h is its thickness. �us, the applied shear strain increases with the distance from the center of the disc. As seen 
from these diagrams, there is a general trend for the hardness to increase with shear strain and to saturate at large 
strains. Figure 1(a) indicates the measured Vickers hardness values one day and one month a�er HPT at room 
temperature. As the holding time after HPT at room temperature increased from one day to one month, a 
decrease in Vickers hardness was not observed. �is ensures the stability of microstructure and mechanical prop-
erties a�er HPT processing at room temperature.

�e evolution of hardness with ‘natural aging’ time a�er cryo-HPT was also monitored. It were presented in 
Fig. 1(b–d), showing the Vickers hardness measured from the center to the edge a�er 10 minutes, one day, two 
weeks, one month, and two months following HPT by 1, 3, and 5 anvil turns at 77 K. An appreciable drop in hard-
ness with the natural aging time is seen. It is evident from Fig. 1(b–d) that the Vickers hardness 10 minutes a�er 
the cryo-HPT (at 77 K) was originally higher than that for the room temperature HPT (at 300 K) and eventually 
kept decreasing with natural aging time. Notably, the drop a�er two weeks following cryo-HPT was precipitous, 
followed by a less drastic decrement a�er one month of natural aging. Vickers hardness stabilized then, and 

Figure 1. Mechanical properties of Co20Cr26Fe20Mn20Ni14 alloy a�er the HPT processing at 77 K and 300 K. 
Variation of Vickers hardness with the distance from the center of the HPT sample (a) one day, one month a�er 
HPT processing of Co20Cr26Fe20Mn20Ni14 alloy at 300 K and (b–d) 10 minutes, one day, two weeks, one month 
and two months a�er HPT process at 77 K. Room temperature stress-strain curves for Co20Cr26Fe20Mn20Ni14 
alloy: (e) in the initial annealed state; (f) two weeks a�er the HPT processing at 77 K and 300 K.
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continued natural aging beyond this time did not lead to its further decrease. As a matter of fact, the saturation 
hardness a�er cryo-HPT was higher than that of the as-annealed alloy.

�e results of tensile testing for the annealed and the HPT-processed Co20Cr26Fe20Mn20Ni14 alloy conducted 
two weeks a�er HPT processing are presented in Fig. 1(e,f) and Supplementary Table S1. �e lower tensile 
strength of cryo-HPT processed material compared to that pre-deformed by room temperature HPT supports 
the Vickers hardness data. A slightly higher tensile elongation of the cryo-HPT processed specimen is also noted. 
A further observation to be mentioned is that the specimens that experienced the largest shear strains under 
cryo-HPT, i.e. those deformed by �ve turns of the anvil, exhibited the least drops of hardness a�er two weeks of 
natural aging.

Microstructure evolution of the alloy after HPT at 300 K and 77 K. Figure 2(a) shows the inverse 
pole �gure (IPF) map of the annealed Co20Cr26Fe20Mn20Ni14 alloy obtained by Electron backscattered di�raction 
(EBSD) analysis. �e average grain size in this condition was calculated to be 31.8 ± 15.9 µm.

�e microstructures observed two hours and two weeks a�er cryo-HPT processing were analysed to reveal 
the microstructure evolution with natural aging. Figure 2(b–g) shows an IPF image, a grain boundary map, and 
kernel average misorientation (KAM) maps. Figure 2(b–e) were obtained two hours a�er cryo-HPT. Coarse 
grains with a large amount of low angle grain boundaries (LAGBs) were observed in Fig. 2(b,c). In Fig. 2(d,e), 
the KAM was calculated up to the third-nearest neighbour shell with a maximum misorientation angle of 5°11. 
Most of the grains, including the grains below 1 µm in size, exhibit large KAM values, indicating a high density of 
geometrically necessary dislocations due to dislocation rearrangement. However, the KAM maps for the material 
studied a�er two hours and two weeks of natural aging following cryo-HPT processing were entirely di�erent. 
Figure 2(f,g) show the KAM maps taken a�er two weeks following HPT. �e KAM values were signi�cantly lower, 
especially for grains under 1 µm in size for which they dropped to nearly zero.

Figure  3(a–f ) show scanning electron microscopy-backscattered electron (SEM-BSE) images of 
Co20Cr26Fe20Mn20Ni14 alloy a�er 1 turn, 3 turns, and 5 turns of cryo-HPT at 77 K, respectively. �e activation of 
the slip systems with planar glide of dislocations and the formation of a dislocation Taylor lattice with features 
of a cellular structure a�er the �rst HPT turn is observed in Fig. 3(a,d). With an increasing number of turns, the 
density of slip traces increased and their spacing decreased signi�cantly to accommodate the strain imposed by 
HPT. Furthermore, as shown in the high magni�cation images of Fig. 3(d–f), the arrays evolve from straight to 
curved ones. �is suggests that further slip systems and microbands were activated with increasing number of 
HPT revolutions.

Figure 2. Microstructural evolution of Co20Cr26Fe20Mn20Ni14 alloy with natural aging time a�er 5 turns of HPT 
at 77 K. (a) IPF map of the annealed Co20Cr26Fe20Mn20Ni14 alloy. (b) IPF, (c) grain boundary map, and (d,e) 
KAM maps two hours a�er HPT processing at 77 K, (f,g) KAM maps for the material naturally aged for two 
weeks a�er HPT processing at 77 K. Note: (e,g) show the grains with a size smaller than 1 µm.
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Figure 3(g,h) show, respectively, transmission electron microscopy (TEM) bright �eld (BF) and dark �eld 
(DF) micrographs of the alloy processed by �ve turns of HPT at 300 K. �e average grain size was calculated to 
be 61 ± 25 nm, indicating extreme grain re�nement down to nanometer scale. In the BF image of Fig. 3(g), grain 
boundaries are not well-de�ned, which suggests that dynamic recrystallization was not fully developed. From 
Fig. 3(h), it is seen that the grains are elongated in the shearing direction. �e continuous ring pattern in Fig. 3(i) 
indicates that the nano-grains have random orientations.

Figure 4(a–f) show inverse pole �gures of the alloy a�er 1, 3, and 5 turn(s) of cryogenic HPT, respectively. 
Similar to Fig. 3(a–c), no signi�cant microstructure evolution with the number of cryo-HPT turns is discernible 
in Fig. 4(a–c). However, when inspecting the grains whose size is smaller than 1 µm in Fig. 4(d–f) one can see that 
the total area of such grains increased �ve-fold as the sample went from 1 turn to 3 turns and was further doubled 
when the sample went from 3 to 5 cryo-HPT turns. �e average grain size dropped from 27.53 ± 3.37 µm (the 
value it had a�er 1 turn) to 13.59 ± 1.93 µm and 5.42 ± 1.69 µm a�er 3 and 5 turns, respectively. �e maximum 
texture intensity increased with the number of anvil revolutions from 3 mrd (multiple of random distribution) 
a�er 1 turn to 3.17 and 3.93 mrd a�er 3 and 5 turns (Fig. 3(g–i)). Another observation of note is that the volume 
fraction of twins was rather insigni�cant. �e deformation twin volume fraction was calculated based on the 

Figure 3. Microstructures of Co20Cr26Fe20Mn20Ni14 alloy a�er HPT at 77 K and 300 K. SEM-BSE images of 
Co20Cr26Fe20Mn20Ni14 alloy a�er (a,d) 1 turn, (b,e) 3 turns, and (c,f) 5 turns of cryo-HPT at 77 K. (d–f) are the 
magni�ed images of the corresponding areas highlighted in (a–c). TEM images of the Co20Cr26Fe20Mn20Ni14 
alloy a�er 5 turns of HPT at 300 K (g) bright �eld image, (h) tilted dark �eld image, and (i) inset showing the 
corresponding SADP.
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EBSD results. �e measured area of the identi�ed deformation twins was divided by the total measured area. �e 
twin volume fraction of annealed Co20Cr26Fe20Mn20Ni14 alloy was around 48%; it decreased with the number of 
cryo-HPT turns down to 2.3%, 1.4%, and 0.6% a�er 1, 3, and 5 turns, respectively.

Deformation-induced and/or annealing twins were also found to contribute to grain re�nement. Indeed, a 
close inspection of Fig. 4(j,l) shows that a�er one HPT turn at 77 K, strain-induced fragmentation of twins gave 
rise to grain re�nement, as indicated by the white arrows. Fragmentation of shear bands is yet another mechanism 
of grain re�nement, which is apparent for higher strains. It is indicated by the white arrows in Fig. 4(k,m). Some 
ultra�ne grains located at grain boundaries of the severely bent coarse grains, marked by the yellow arrows, are 
also discernible in Fig. 4(k,m). �is could be caused by the interaction between the planar dislocations or shear 
bands and grain boundaries.

�e nano scale microstructural features of the sample that went through 5 HPT turns at 77 K are presented 
in high-magni�cation TEM BF images in Fig. 5. Equiaxed grains with a size around 100 nm are marked by the 
yellow arrows in Fig. 5(a,b). A microband exhibiting a slip system that is di�erent from those operating outside of 
the microband on either side is highlighed by a yellow arrow in Fig. 5(c).

Figure 6(a,b) present an ultra�ne grain as an evidence of subdivision of a microband during cryo-HPT. It can 
be seen that the active slip system in the microband is di�erent from the ones operating in the bulk of the material 

Figure 4. Evolution of microstructures and the corresponding textures of Co20Cr26Fe20Mn20Ni14 alloy with 
the number of cryo-HPT turns. IPF images and (100) pole �gures of (a,d,g) 1 turn, (b,e,h) 3 turns, and (c,f,k) 
5 turns. Note: (d–f) show the grains with size smaller than 1 µm (labeled GS < 1 µm). �e maximum texture 
intensity is indicated for each pole �gure in the units of multiple random distribution (mrd). IPF images of 
Co20Cr26Fe20Mn20Ni14 alloy a�er (j,l) 1 turn and (k,m) 5 turns of HPT at 77 K. Note: (l,m) show the grains with a 
size smaller than 1 µm.

Figure 5. TEM BF images of Co20Cr26Fe20Mn20Ni14 alloy a�er 5 turns of HPT at 77 K. (a–c) Typical nano-sized 
grains, lamellar twin structures, and coplanar slip traces in the Co20Cr26Fe20Mn20Ni14 alloy a�er 5 turns of HPT 
at 77 K.
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on either side of it. A high density of dislocations tangled within the band is also seen. �e ultra�ne grain was 
tilted to its [011] zone axis and its corresponding selected area di�raction pattern is shown in Fig. 6(c). �e 
selected area di�raction pattern (SADP) in Fig. 6(d) was taken slightly above that in Fig. 6(c). �e di�use streaks 
in that pattern indicate a continual lattice rotation originating from the planar glide of dislocations. However, in 
Fig. 6(e), instead of the pattern for FCC zone axis [011], that of the zone HCP axis [2110] is detectable.

X-ray diffraction results and dislocation density evolution. Figure 7(a,b) show X-ray di�raction 
(XRD) patterns of alloy Co20Cr26Fe20Mn20Ni14 in the annealed state and a�er HPT by 1, 3, and 5 anvil turns at 

Figure 6. TEM micrographs of the alloy deformed by 5 HPT turns at 77 K. (a,b) BF images and (c–e) SADPs 
showing grain subdivision and a phase transformation from FCC to HCP. �e red dashed circles in (b) show 
where the SADPs presented in (c–e) were taken.

Figure 7. X-ray di�raction patterns and dislocation density evolution of Co20Cr26Fe20Mn20Ni14 alloy. X-ray 
di�raction patterns of alloy Co20Cr26Fe20Mn20Ni14 in the annealed state and a�er HPT by 1, 3, and 5 anvil turns 
conducted (a) at 300 K and (b) at 77 K. �e peak intensity is shown in arbitrary units. (c) Dislocation density 
evolution with natural aging time measured by the CMWP method a�er processing by cryo-HPT.
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300 K and 77 K. �e XRD results for the annealed Co20Cr26Fe20Mn20Ni14 HEA reveal FCC peaks with additional 
minor peaks around the FCC (111) peak. Based on the work by Pickering et al.29, the minor peaks can be attrib-
uted to the topologically close packed σ phase. Tsai et al.30 suggested a criterion for the formation of σ phase in Cr- 
and/or V-containing HEAs using the average valence electron concentration (VEC). �e Co20Cr26Fe20Mn20Ni14 
HEA has a VEC of 7.76, which falls in the VEC range (6.88–7.84) favoring σ phase formation. However, the low 
intensity of the σ phase peaks suggests that the alloy is mainly comprised by FCC phase.

�e XRD peaks of alloy Co20Cr26Fe20Mn20Ni14 processed by 1, 3, and 5 revolutions of the HPT anvil were 
lower and broader than those of the as-annealed sample. �is is associated with peak broadening caused by grain 
re�nement and residual microstrains. It is evident that the XRD peaks of the σ phase almost disappeared as a 
result of HPT processing at 77 K and 300 K, while most of the FCC peaks sustained this deformation. As shown 
in Fig. 7(b), the XRD peaks of the HCP structure were observed a�er HPT by 1, 3, and 5 anvil revolutions at 
77 K. �is con�rms that a deformation-induced phase transformation occurred in accordance with the previous 
result28.

By combining the XRD (Fig. 7(a)), SADP (Fig. 6), fast Fourier transform (FFT), and atomic resolution TEM data 
(see Supplementary Figs S1–S3), the lattice parameters of the observed HCP structure, a and c, were calculated to be 
0.2536 nm and 0.4116 nm, respectively. �ese values are consistent with those reported by Zhang et al.31.

Line pro�le analysis of the obtained XRD data to measure the variation of the dislocation density of the 
cryo-HPT specimens with natural aging time was performed using the convolutional multiple whole pro�le 
(CMWP) program32,33. All parameters used for the CMWP analysis are given in Supplementary Table S2. �e 
values of the lattice parameters and the Burgers vectors of FCC and HCP structures were calculated using the 
XRD data in Fig. 7(a,b), while the average contrast factors of dislocations, Ch00  and Chk0, were calculated using 
atomistic simulation based on the second nearest-neighbor modi�ed embedded-atom method (2NN MEAM)34. 
Figure 7(c) shows the dislocation densities measured using the CMWP method as a function of natural aging 
time a�er processing by cryo-HPT. Natural aging for 10 min a�er the cryo-HPT process resulted in a very high 
dislocation density (~1.0 to 2.5 × 1016 m−2) in both FCC and HCP phases. Decrease of the dislocation density with 
natural aging time was observed for all numbers of anvil revolutions of cryo-HPT. It is noted that the dislocation 
density in the FCC phase is higher than that in the HCP phase.

Discussion
According to previous studies4,5,35–37, strain hardening of HEAs of the CoCrFeMnNi system is governed by dislo-
cation glide for room temperature deformation, whereas at cryogenic temperatures it is a�ected by both disloca-
tion glide and nanoscale twinning. Low temperature activity of twinning usually is associated with an increase of 
the deforming stresses at low temperatures due to thermally activated type of plastic deformation38. However, the 
present results for alloy Co20Cr26Fe20Mn20Ni14 show an opposite trend.

Low room-temperature strength characteristics of cryo-HPT processed materials39, referred to as 
‘self-annealing’39–41, were observed for pure metals. Edalati et al.39 reported this unusual so�ening and grain 
coarsening phenomenon in terms of natural aging a�er cryo-HPT, i.e., self-annealing due to static recrystalli-
zation to relieve the high stored energy imposed by cryo-HPT. It was suggested that the following factors cause 
a metal to be prone to self-annealing: (i) low melting temperature promoting higher mobility of dislocations, 
(ii) low stacking fault energy leading to increased stored energy of deformation, and (iii) low HPT processing 
temperature giving rise to increased applied stress. �e current HEA system has a moderate melting temperature 
(1284 °C) compared with the melting temperatures of the metals considered by Edalati et al.39. It also has the 
lowest stacking fault energy (3.5 mJ/m2)15 among the HEAs of the CoCrFeMnNi system. �us, it is to be expected 
that it may exhibit self-annealing, especially in the case of cryo-HPT. In addition, in the present work, abnormal 
so�ening e�ect and hardness degradation with natural aging was observed in the mechanical properties of alloy 
processed by cryo-HPT. To establish whether such self-annealing does apply to the current HEA system, electron 
microscopy studies by SEM and TEM, as well as dislocation density measurements using the CMWP analysis, 
were performed.

Studies have shown that FCC alloys with a medium magnitude of the SFE, typically from 18 to 45 mJ/m2, are 
more likely to form deformation twins, while those with a low SFE below 18 µmJ/m2 have the propensity to an 
FCC to HCP phase transformation42. �is may be rationalized using an analogy with the low SFE austenitic steels, 
for which twinning is associated with the formation of intrinsic stacking faults43. As this process is inhibited at low 
deformation temperatures and for low SFE44, the occurrence of deformation twinning was not very pronounced 
in cryo-HPT of the HEA considered. Still, the lamellar twin structure found may have contributed to the coplanar 
slip character of the deformation of the grains under cryo-HPT. �ere is also an alternative explanation for the 
low volume fraction of twins observed in this condition. According to Gu et al.45, in conventional alloys plastic 
strain can be localized in micro shear bands. Should this apply to HEA alloys as well, destruction of deformation 
twins by these shear bands intersecting them might be a possible reason why no evidence of pronounced defor-
mation twinning was found in the present case46.

�e occurrence of nano-grains with random crystallograhpic orientations in the alloy processed by room 
temperature HPT can be considered in terms of the concepts broadly accepted for alloys processed by SPD47–50. 
Despite the low SFE of the HEA studied, twinning was obviously not the predominant deformation mode under 
severe plastic deformation by 300 K HPT. Rather, plastic deformation was furnished by dislocation slip, leading 
to the formation of subgrains. �e observed increase of strength and decline of ductility with growing number of 
HPT turns (from 1 revolution to 3 and 5 revolutions) at 300 K reported above can be rationalized in terms of the 
grain re�nement and increased dislocation density.

A remarkable �nding is that the overall grain re�nement e�ect – unlike in the case of room temperature HPT 
– was not signi�cant a�er processing by cryo-HPT. �is is in line with the lower mechanical strength observed 
a�er cryo-HPT and can be viewed as a result of “self-annealing” of the grain structure during natural aging 
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that occurred over the time between the formation of the cryo-HPT induced grain structure and the electron 
microscopy measurements. �is time was typically of the order of two months. �e observed slip pattern in 
the cryo-HPT processed alloy is associated with the low SFE of this HEA possesses. It gives rise to a large dis-
tance between partial dislocations into which perfect dislocations dissociate in their glide planes, thus inhib-
iting cross-slip and causing the dislocations to arrange in planar arrays. �e LAGBs observed in the EBSD are 
believed to have formed by dynamic recovery processes during cryo-HPT as the formation of Taylor lattice and 
microbands.

�e exact mechanisms of grain re�nement by severe plastic deformation are not entirely understood. One 
possible scenario is the formation of a dislocation cell structure that gradually transforms to a new �ne grain 
structure through the accumulation of misorientation between the neighboring cells47. Moreover, according to 
Hughes51 and Park et al.52,53, intersection of microbands that develop at large strains may cause grain subdivision, 
thus giving rise to ultra�ne and even nano-sized grains. For the nano-grains found in the alloy processed by 300 K 
HPT, it is evident that they were not formed by intersection of microbands, but are rather a result of dynamic 
recrystallization that originated from dislocation cell structures or Taylor lattice domains and gradually trans-
formed to �ne grain structures. Another possible grain re�nement mechanism is the formation of microbands at 
Tayor lattice boundaries and their subdivision is a further grain re�nement mechanism. It is thus quite possible 
that for the HEA considered, both mechanisms may be activated during cryo-HPT.

�e occurrence of an HPT-induced FCC to HCP phase transformation may be rationalized using an analogy 
with the mechanism proposed by Talonen and Hänninen for low SFE stainless steel46. According to these authors, 
overlapping of stacking faults on {111} planes in an FCC austenitic steel during plastic deformation leads to the 
formation of shear bands or micro-shear bands. When the overlapping develops in a regular fashion on every 
second {111} plane, the HCP crystal structure forms. In case the overlapping is irregular, stacking fault bundles 
would form.

�e observed phase transformation under cryo-HPT is also consistent with the recent �ndings of Zhang et al.31  
who reported a polymorphic transition from FCC to HCP in an equiatomic CoCrFeMnNi alloy. �ey made a 
point that despite the high mixing entropy of an equiatomic HEA system, high-pressure and/or low temperature 
can help overcoming the energy barrier between its HCP and FCC polymorphs31. It can be conjectured that sim-
ilar considerations apply for our Co20Cr26Fe20Mn20Ni14 alloy, in which the cryo-HPT makes a transition from the 
FCC phase to a thermodynamically more favourable HCP phase kinetically possible. �e structural changes from 
co-existing FCC and σ phases to a sole FCC phase by room temperature HPT, or to HCP phase by cryo-HPT, are 
expected to a�ect the mechanical properties of the Co20Cr26Fe20Mn20Ni14 alloy studied.

Edalati et al.39 argued that self-annealing is hardly detectable by microstructural analysis because it occurs 
very rapidly. An alternative way to con�rm the self-annealing phenomenon is by measuring the variation of the 
dislocation density with natural aging time by means of the CMWP analysis, which was employed in the present 
work.

The large dislocation densities are consistent with those obtained in a recent study by Heczel et al. 
(1.94 × 1016 m−2 a�er two HPT turns)54. It can be argued that the high concentration of the di�erent alloying 
elements and the low SFE (3.5 mJ/m2) are the reason for the very high dislocation density found.

�e observed decrease of the dislocation density with natural aging time for all numbers of anvil revolutions 
of cryo-HPT is seen as a clear indication of self-annealing. �is trend is further supported by a drop of hardness. 
It is noted that the dislocation density in the FCC phase is higher than that in the HCP phase. �is observa-
tion can be rationalized in terms of dislocation emission from phase boundaries into the FCC phase55 during 
deformation-induced phase transformation.

The results on microstructure and dislocation density evolution driven by the tendency of the 
Co20Cr26Fe20Mn20Ni14 alloy to accommodate the stored strain energy during and a�er cryo-HPT are summarized 
schematically in Fig. 8. �e microstructural evolution is subdivided into four steps: �rst, dislocation rearrange-
ment occurs by the formation of a Taylor lattice at the early stage of cryo-HPT (step I, Fig. 3(d)); with increasing 
strain, the Taylor lattice structure develops into a Taylor lattice domain with a single dislocation wall consisting 
of geometrically necessary dislocations. An energetically favorable structure is then formed through the forma-
tion of a second dislocation wall parallel to the �rst one, giving rise to a microband56 (step II, Fig. 3(e,f)). With 
further straining, grain re�nement occurs by intersection of microbands and dynamic recrystallization (step 
III, Fig. 2(e)). Finally, with increasing natural aging time, static recovery and static recrystallization occur. �is 
leads to a reduction of the dislocation density and the attendant drop of hardness (step IV, Figs 1(b–d) and 3(c)).  
It should be noted that the fragmentation of twins is yet another possible mechanism for grain re�nement. 
However, for the sake of clarity, this process was not included in Fig. 8.

�e abnormal grain structure that emerges a�er the application of high strains by cryo-HPT can be explained 
by low SFE of the alloy. �e low SFE inhibits cross-slip of screw dislocations and, as a result, the mobility of dis-
locations decreases57,58. It is noted that low deformation temperature of cryo-HPT also lowers the SFE. �e low 
mobility of dislocations in the HEA considered is also believed to suppress grain boundary migration – a process 
that is required for dynamic recrystallization to occur. �erefore, dynamic recovery processes such as the forma-
tion of a Taylor lattice and microbands prevailed over dynamic recrystallization during cryo-HPT. In addition, 
the rate of static recovery and self-annealing a�er cryo-HPT was slower in alloy Co20Cr26Fe20Mn20Ni14 than in 
pure copper39–41. It can be explained by the SFE di�erence between the present alloy and its pure constituents. 
�e alloy in this study has the lower SFE than pure Cu. �e SFE of Co20Cr26Fe20Mn20Ni14 alloy is 3.5 mJ/m215, 
while that of pure Cu is 45 mJ/m2 39. As mentioned above, low SFE-alloys have a low mobility of dislocations. 
�erefore, static recovery and static recrystallization, which may be conjectured to be the main processes under-
lying self-annealing, are sluggish during natural aging of alloy Co20Cr26Fe20Mn20Ni14.
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Conclusions

•	 It was established that room temperature and cryogenic HPT processing of Co20Cr26Fe20Mn20Ni14 had an 
e�ect on its microstructure and the attendant mechanical properties. However, the consequences of room 
temperature HPT and cryo-HPT for microstructure and mechanical properties were distinctly di�erent. 
�us, unlike in the case of room temperature HPT, a coarse grained structure supposedly stemming from 
static recovery co-existing with recrystallized grains was observed in the cryo-HPT processed alloy. �is is 
consistent with the lower tensile strength, Vickers hardness, and dislocation density found a�er cryo-HPT.

•	 �is surprising result may suggest that extreme grain re�nement was hindered by the FCC to HCP phase 
transformation in the course of cryo-HPT. However, the occurrence of extreme grain re�nement during the 
cryo-HPT process cannot be ruled out. Indeed, if nano-grained structures were produced in situ, they might 
have been unstable at room temperature and underwent recovery process before the electron microscopy 
characterization and the mechanical testing were done.

•	 �e picture of the microstructural evolution leading to relaxation of the stored strain energy during and 
a�er cryo-HPT that was proposed based on the analysis of the experimental data obtained is as follows. �e 
process is considered to occur in four major steps. First, under cryo-HPT, a Taylor lattice is formed, followed 
by the emergence of microbands and dynamically recrystallized grains. A�er processing by cryo-HPT, highly 
deformed grains undergo static recovery and self-annealing progressing with natural aging time.

Materials and Methods
Materials and high-pressure torsion. �e annealed Co20Cr26Fe20Mn20Ni14 alloy was prepared by means 
of the method using in the previous work28. �e HPT of the samples from the annealed HEA plate (discs with 
diameter of 10 mm and thickness of 1 mm) was performed at a cryogenic temperature (77 K) in liquid nitrogen 
and at room temperature (300 K) in air by N = 1, 3, and 5 revolutions of the HPT anvil under a pressure of 5 GPa 
normal to the disc-shaped sample. A thermocouple was located 2.5 mm away from the center of the disc to con-
�rm that the temperature reached the steady-state level of 77 K during the HPT process. �is site of the thermo-
couple corresponds to the location at which specimens for tensile testing were extracted from a disc. No slippage 
in processing by HPT was con�rmed and the method in detail is presented in Supplementary Material.

X-ray diffraction and dislocation density measurements. For phase identi�cation, XRD was con-
ducted before and a�er the HPT processing. �e surfaces of samples for the XRD measurement were �rst pol-
ished using 600, 800, and 1200 SiC grit papers, then �ne polished by 1 µm diamond powders in order to eliminate 
surface roughness. Rigaku D/MAX-2500 XRD equipment was used with the incident beam of Cu Kα radiation 
(wavelength = 1.5418 Å). �e scans were performed from 40 to 100° of 2θ with a step size of 0.02° and a scan 
speed of 1°/min. Line pro�le analysis of the obtained XRD data to calculate dislocation densities of the cryo-HPT 
specimens was performed using the CMWP program32,33. XRD measurements for the CMWP analysis were car-
ried out over time a�er processing cryo-HPT.

Vickers hardness and tensile testing. Following the HPT process, the Vickers hardness was measured 
at the surface of the disc at various locations, from the center to the edge, 10 minutes, one day, two weeks, one 
month, and two months a�er HPT. Ahead of the Vickers hardness measurements, samples were polished using a 
1200 SiC grit paper. �e hardness was measured using an FM-700 microhardness tester with a load of 300 g and a 
dwell time of 10 s. Tensile testing was conducted with a strain rate of 10−3 s−1 on miniaturized specimens extracted 

Figure 8. A schematic diagram illustrating the microstructural evolution of Co20Cr26Fe20Mn20Ni14 alloy. �e 
microstructural evolution of Co20Cr26Fe20Mn20Ni14 alloy which accommodates the stored strain energy during 
and a�er cryo-HPT.
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from the HPT-processed discs. Dog-bone shaped samples with a gauge length of 1.5 mm and a width of 1 mm 
were used for tensile testing. Tensile tests for each condition corresponding to a particular number of HPT revo-
lutions were conducted in triplicate to ensure reproducibility of results. During the tensile tests on miniaturized 
specimens, the strain measurements were done by a digital image correlation (DIC) method59. �e specimens for 
electron microscopy characterization were prepared two months a�er they had been HPT processed.

Microstructure characterization. SEM characterization was performed using a JEOL 7001F and a Philips 
XL30S devices. BSE images based on the di�raction contrast were taken to identify the evolution of grains and 
twins for the di�erent processing schedules. EBSD measurements were performed using AztecHKL and TSL/
OIM so�ware. �e data obtained were analyzed using HKL/Channel 5 and TSL/OIM. Texture analysis was con-
ducted using JTEX60. SEM samples were prepared by grinding with SiC paper up to 2400-grit, followed by pol-
ishing with a colloidal silica suspension for 2 h. EBSD samples were subsequently polished by argon ion beam 
using a GATAN precision etching-coating system to remove the strained layer. TEM characterization was carried 
out using an FEI Tecnai F20 FEG TEM operating at an acceleration voltage of 200 kV. TEM foils were prepared 
by focused ion beam (FIB) li�-out performed on an FEI Quanta 3D FEG SEM. �e area of the SEM and EBSD 
observation was 3 mm away from the center of the specimen. TEM foils were li�ed out at this location, as well.
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