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and Tonica Bončina 2,*
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Abstract: We studied the effect of friction stir processing (FSP) on the microstructure and properties
of high-speed twin-roll cast strips made of an experimental Al–Mn–Cu–Be alloy. The samples were
examined using light, scanning, and transmission electron microscopy, microchemical analysis, X-ray
diffraction, and indentation testing. During FSP, the rotational speed varied, while other parameters
remained constant. The uniformity of the microstructure increased with the growing rotational speed.
In the stir zone, several processes took place, and the most important were: recrystallisation of the
matrix grains, fragmentation of the primary intermetallic particles Al15Mn3Be2 and their more uni-
form distribution in the stir zone, fracture, and dispersion of the eutectic icosahedral quasicrystalline
phase (IQC), transformation of tiny Al15Mn3Be2 and IQC particles into the τ1-Al26Mn6Cu4 phase and
precipitation of Al–Mn–Cu precipitates. In the thermomechanically affected zone, new dislocations
formed as well as dispersion of the IQC eutectic phase and recrystallisation of the matrix grains. In
the heat-affected zone, dissolution of θ’-Al2Cu precipitates occurred. The hardness variation was not
severe between the stir and heat-affected zones.

Keywords: casting; microstructure; friction stir processing; hardness; transformation; aluminium

1. Introduction

Aluminium alloys are crucial in the modern world. Their use has been increasing
for decades due to their low density and outstanding specific strength and modulus [1].
One of the main disadvantages of conventional aluminium alloys is their relatively low
heat resistance, since most alloys lose their strength when heated above 250 ◦C [2]. We
developed Al–Mn–Cu–X alloys, which are experimental precipitation-hardened aluminium
alloys. They possess a high strength at room temperature and high creep resistance at
elevated temperatures [3]. They could be used as a heat resistance material in construction,
for fire-resistant buildings, and bridges. In such applications, weldability is an essential
technological property [4]. One of the possibilities is to use friction stir welding to join parts
of these alloys together as well as to join these alloys with other aluminium alloys [5,6].

The Al–Mn–Cu–X alloys are rather complex. In alloys of Al–Mn–Cu–Be, a very high
density of icosahedral quasicrystalline (IQC) precipitates can form during artificial ageing
(T5 treatment; artificial ageing after manufacturing) in the temperature range between
300 ◦C and 450 ◦C. In addition, θ’-Al2Cu, T-Al20Mn3Cu2, decagonal quasicrystalline, and
Be4Al(Cu,Mn) precipitates can form in other temperatures ranges or longer ageing times [7].
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Casting of these alloys by single- or twin-roll casting can enable manufacturing semi-
products of these alloys in larger quantities. The casting speed of bands (3–5 mm thick,
100 mm wide) can be up to 60 m/min [8]. However, they have a non-uniform as-cast
microstructure [9].

The uniformity of the as-cast bands can be considerably improved by friction stir
processing (Figure 1). Friction stir processing (FSP) is a thermomechanical process in
which material is exposed to extreme plastic deformation and high temperature due to the
transformation of mechanical work to heat [10]. There are several regions in the FSP-treated
material: stir zone (SZ), thermomechanically affected zone (TMAZ), and heat-affected zone
(HAZ). Even in each of these zones, different microstructures can form due to differences
in the degree of plastic deformation and thermal history. It is important to stress that
microstructures are similar to those obtained by friction stir welding.
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Figure 1. Friction stir processing: (a) schematic drawing of FSP, (b) drawing of the applied pin, and
(c) the equipment used for FSP.

The activity in the field of friction stir processing/welding is extremely high. Hei-
darzadeh et al. [10] provided a review on microstructural evaluation, while Kumar and
Kumar [11] conducted a review regarding the fabrication of surface composites using FSP.
Puviyarasan et al. [12] studied the effect of process parameters on the mechanical proper-
ties of AA 6061-T6. The FSP and FSW of flat semi-products is an established process, so
some studies have investigated the possible application of FSW for tubes and pipes [13,14].
Tao et al. [15] found that post weld artificial ageing strongly enhanced the mechanical
properties of AA 2198-T8 aluminium alloys. The microstructure and mechanical properties
also depend on the tool shape, which should be optimised for the specific materials and
shape of pieces to be processed [16–20]. The efficiency and optimisation of FSP and FSW
is intended to be improved. Thus, a lot of energy has been devoted to the development
of analytical and numerical models that takes into account the thermal field, material
flow, heat generated, distributed and losses, viscoplastic behaviour, and high-speed plastic
deformation [21,22].

The initial material for the study was an Al–Mn–Cu–Be alloy produced by twin-roll
casting [9]. It has a non-uniform microstructure, possessing coarse intermetallic particles
throughout the strip, especially at its centre. These particles can be crushed and uniformly
distributed in the microstructure to produce an in situ composite, which may have some
advantages compared to other in situ composites [23–25]. However, the main scientific
objective was to determine the effect of friction stir processing on the microstructure and
properties of the selected aluminium alloy. There is no information in the available literature
about the FSP of the Al–Mn–Cu–X alloys. Thus, investigating the FSP treated Al–Mn–Cu–X
alloys will produce new information for the scientific community.

2. Materials and Methods

Strips (3 mm thickness, 60 mm width) of an experimental Al–Mn–Cu–Be alloy were
produced by high-speed twin-roll casting with a casting speed of 30 m min−1. The compo-
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sition of the alloy is presented in Table 1. More details regarding the casting processes are
given in [9].

Table 1. The chemical composition of the investigated alloy as determined using AES-ICP (atomic
emission spectroscopy–inductively coupled plasma).

Element Wt.% At.%

Mn 4.21 2.14
Cu 4.26 1.87
Be 0.696 2.15
Si 0.02 0.02
Fe 0.03 0.02
Al balance balance

Afterwards, the strips were treated by FSP using a universal milling machine Prvo-
majska ALG 200, Zagreb, Croatia. The tool shoulder diameter was 17 mm, pin diameter
was 6 mm, and its length was 2.7 mm. Parameters are given in Table 2, while the process
scheme is presented in Figure 1a. The tests were performed at constant tool tilt angle of
1.5◦, constant traverse speed of 46 mm/min and with two rotation speeds. The rotation
speed of 95 min−1 was the minimum speed at which a high-quality processed region was
achieved without any macroscopic defects. The other rotation speed was ten times higher,
950 min−1, to obtain significant microstructure variations by higher energy input. The
samples were labelled with FSP 95 and FSP 950 for the rotation speed of 95 min−1 and
950 min−1, respectively.

Table 2. Friction stir processing parameters.

Parameter Value

tilt angle, α 1.5◦

traverse speed, v 46 mm/min
rotation speed, n 95 min−1, 950 min−1

pin length 2.7 mm
shoulder diameter 17 mm

Samples were prepared using metallography to make the FSP-zones visible. The
samples for light (LM) and scanning electron (SEM) microscopy were mechanically ground
and polished. After final polishing using a 3 µm diamond paste, the microstructure was
revealed by chemical etching with Weck’s reagent consisting of 2 g KMnO4 (Merck KGaA,
Darmstadt, Germany), 1 g NaOH (Merck KGaA, Darmstadt, Germany), and 50 mL of
distilled water. The samples were then examined using a light microscope Nikon EPIPHOT
300 (Tokyo, Japan), and scanning electron microscopes (SEM) Sirion 400 NC and Quanta
200 (FEI, Eindhoven, the Netherlands). During the SEM, we also carried out microchemical
analysis using energy dispersive spectroscopy (EDS, Oxford Analytical, Bicester, UK).

Electron transparent specimens for transmission electron microscopy (TEM) were
prepared using focused Ga ion beam (FIB) sputtering in a dual-beam scanning electron
microscope (FEI Helios 400; FEI, Eindhoven, The Netherlands). A standard lift-out prepa-
ration approach was followed by attaching the TEM specimen to a copper Omniprobe
support grid (Oxford Analytical, Bicester, UK). The preparation artefacts were reduced
by low-energy (<1 keV) Ar ion milling using a Fischione 1040 system (E.A. Fischione
Instruments, Inc., Export, PA 15632, USA). Microstructure and chemical composition analy-
ses were carried out using an electron probe aberration-corrected scanning TEM (STEM),
equipped with an in-column energy-dispersive X-ray spectroscopy (EDS) system (FEI Titan
80–200, Super-X, Eindhoven, The Netherlands). The STEM images and EDS spectrum
images were collected and processed using the commercial ThermoFisher Velox software
(Thermo Fisher Scientific, Waltham, MA, USA).
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X-ray diffraction was conducted at synchrotron Elettra (Elettra, Trieste, Italy) using
X-rays with a wavelength of 0.0999996 nm. XRD images were taken in transmission mode
at 24 ◦C. The samples were in the form of thin plates with thicknesses of 200–300 µm. The
sampling area was 500 × 500 µm2. The 2D-images were collected using a Dectris Pilatus
2M camera (Dectris Ltd., Baden-Daettwil, Switzerland) at a working distance of 100 mm.
LaB6 powder was used to calibrate the image. The 2D images were transformed into X-ray
patterns: intensity I versus diffraction angle 2θ by using software Fit2D (ESFR, Grenoble,
France). Programs CrystalMaker 9.2.8 (CrystalMaker Software Ltd., Oxfordshire, UK) and
CheckCell (Jean Laugier and Bernard Bochu, Saint-Martin-d’Hères, France) were used for
the data processing and analysis of the results.

Indentation tests were carried out using a Nano Test Vantage (Micro Materials Limited,
Wrexham, UK). The indentation load was provided with an electromagnetic force, and
the indentation displacement was measured by the change in the capacitance. A Vickers
indenter (Micro Materials Limited, Wrexham, UK) was used to measure hardness across
the processes area (maximum load 4903 mN, loading, holding at maximum load and
unloading each 10 s). Indentation properties at specific areas were measured using a
Berkovich indenter (Micro Materials Limited, Wrexham, UK) with the following parameters:
maximum load 10 mN, loading, holding at maximum load and unloading each 10 s;
25 measurements at each location.

3. Results
3.1. The Effect of FSP on the Modification of the As-Cast Structure

Figure 2a shows schematically different regions in the FSP strips, while Figure 2b,c
shows macrostructures of the FSP strips processed with the slowest and fastest rotation
speeds. The matrix consisted of aluminium-rich solid solution αAl incorporating different
phases. The darker areas, indicated by the arrows, are large individual or agglomerated
intermetallic particles, predominantly the quasicrystalline approximant phase Al15Mn3Be2.
Other phases were much smaller and could not be seen at this magnification.

The initial as-cast microstructure was not uniform and could be seen on both sides of
the processed zone. Since it was investigated in detail in our previous paper [9], only basic
information is given here. At the roll side, a thin outer equiaxed zone formed (E in Figure 2),
which was followed by elongated grains (region M, thickness around 900 µm) with the size
238 ± 80 µm × 63 ± 27 µm. In the central region (region C), small α-Al grains were present
(linear intercept length was 7.3 ± 1.3 µm), with approximately 20% of large Al15Mn3Be2
agglomerated into a central belt, often incorporating Be4Al(Mn,Cu) particles. The larger
particles were dispersed throughout the thickness of the twin-roll-cast strip; however,
they were more abundant at the centre. In Figure 3a–c, all other phases present in the
as-cast condition are indicated (the matrix Al-rich solid solution α-Al, tetragonal θ-Al2Cu,
icosahedral quasicrystalline phase IQC, cubic Be4Al(Mn,Cu) and hexagonal quasicrystalline
approximant Al15Mn3Be2).

There were several zones in the FSP-treated material: stir or mix zone (SZ), thermome-
chanically affected zone (TMAZ), and heat-affected zone (HAZ). Their size and distribution
strongly depend on the FSP parameters. There were also three subzones in the stir zone:
nugget zone (NZ), advancing side (AS), and retreating side (RS), all possessing slightly
different microstructures (Figure 2).

FSP caused considerable refinement of the initial microstructure, which became more
uniform (Figures 2 and 3). The reference as-cast microstructures at the three areas are
given in Figure 3a–c. During FSP, large primary intermetallic particles crashed and were
more uniformly distributed within the Al-rich solid solution matrix. The same happened
to the quasicrystalline eutectic phase (bright phase in Figure 3b). The most important
observation was that a fine dispersion of particles was present in the Al-rich solid solution
within the stir zone (Figure 3d–i). The microstructural investigation using high-resolution
SEM indicated that the particle sizes ranged between a few 10 nm and a few µm. Some
of those particles originated from the mechanical disintegration of the particles present
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in the as-cast condition, while others precipitated during FSP. SEM did not allow a clear
distinction between the crashed particles and precipitates.

Figure 4 shows the variation of Vickers indentation hardness for both casting condi-
tions. In both cases, the highest hardness coincided with the TMAZ, while the minimum
value occurred at the border TMAZ/HAZ. The hardness in the stir zone was higher in the
sample processed with the lowest rotation speed, but was less uniform. It also coincided
with the microstructure (Figure 2b). On the advancing side, the microstructure was heavily
changed, but was retained on the retreating side. We may conclude that a higher strain
rate caused stronger strengthening. Much higher energy input in sample FSP 950 caused
stronger softening. However, the properties were approximately at the same level as in the
base alloy.
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Figure 5 shows the variations in 2D diffraction images. In the as-cast state, large α-Al
grain prevailed in the microstructure, and consequently, only a few diffraction spots could
be seen in Figure 5a. Other diffraction rings, which were not continuous but consisted of
discrete diffraction spots, mainly belonged to the Al15Mn3Be2 phase. The processing with
95 min−1 did not change the phase composition, but all rings became continuous. This
observation can be explained by crushing larger Al15Mn3Be2 and other particles into a
very fine dispersion, which is consistent with the microstructural observations. On the
other hand, the size of the large α-Al crystal grains strongly decreased and could not
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even be observed in the light and scanning electron micrographs. The processing with
950 min−1 induced phase transformation of the Al15Mn3Be2 phase into the τ1-Al29Mn6Cu4
phase. Namely, the positions of inner rings in Figure 5c were at different positions than in
Figure 4a,b. These changes can be nicely seen in the XRD diffraction spectra (Figure 6).
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3.2. Characterisation of the Stir Zone

In the stir zone, the onion structure was observed to consist of wider, brighter, and
thinner darker bands. HR-SEM images (Figure 7) showed that the volume fractions of parti-
cles was higher in the brighter bands, while their sizes were smaller. The brighter particles
belonged to Al2Cu phase, while the others contained Al, Mn, and Cu, and were probably
the τ1-phase, which the XRD identified. The indentation hardness and reduced modu-
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lus were slightly higher in the brighter bands (brighter bands: hardness 1.32 ± 0.17 GPa,
Er = 85.09 ± 4.39 GPa; darker bands: hardness 1.29 ± 0.12 GPa, Er = 82.54 ± 4.61 GPa).
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Greater microstructural changes occurred at higher energy input. A detailed TEM
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nugget zone and the other at the retreating side. Figure 8 shows the bright-field STEM
micrographs. The microstructure consists of equiaxed crystal grains between 0.5 to 3 µm.
The particles were dispersed both in the grain interiors and at the grain boundaries. This
indicates that particles at the grain boundaries prevented grain growth during dynamic
recrystallisation.

Figure 9 shows the HAADF STEM image and the corresponding distribution of Al,
Cu, and Mn. Two types of particles prevailed. The red colour denotes Cu-rich particles,
which are Al2Cu. They do not contain any other elements (Figure 10). On the other hand,
the green particles contain both Mn and Cu, with a typical atomic ratio of Mn:Cu = 3:2
(Figure 10), which can be consistent with τ1-Al29Mn6Cu4. In the microstructure, we did
not observe IQC and Be4AlMn.

Figure 11 shows a detailed analysis of a spherical particle with a diameter of approxi-
mately 150 nm, which was positioned inside an αAl grain. It is very likely that this particle
precipitated during FSP. The particle contains both Mn and Cu, so it can be identified as τ1.
The particle did not show any specific orientation with α-Al. The particle may have formed
before recrystallisation, therefore, no specific orientation relationship can be expected with
the Al-matrix. In the matrix, individual dislocations were present. In addition, darker
bands can be observed in the matrix in the HAAD-micrograph. It can be inferred that a
higher content of Be was present in these bands. However, EDS was not able to detect Be.
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Figure 11. A spherical precipitate of sample FSP950 in the NZ. (a) The HAADF STEM micrograph,
(b) EDS linescans for Cu and Mn, (c) High-resolution STEM image at the interface between the matrix
and particle, (d) FFT of the matrix ([110] zone axis), and (e) FFT of the particle (only matrix diffraction
spots can be seen).
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3.3. Characterisation of the TMAZ

Figure 12 shows the transition from SZ to HAZ just below the nugget zone (below the
pin) where the border between SZ and TMAZ was sharp. In the TMAZ, the particles were
distributed in lines, showing the direction of plastic deformation. The smaller particles
were broken coral-like IQC and Al2Cu. Some cracks were occasionally observed in larger
Al15Mn3Be2 particles. The thickness of the TMAZ was around 150 µm. The distribution of
phases in the HAZ was, at that magnification, the same as before processing.

On the advancing side, a coarse band in the stir zone was observed; its thickness was
between 100 µm and 150 µm (Figure 13a). The thickness of the TMAZ layer was about
350 µm, which was more than below the NZ. A TEM sample was taken approximately
50 µm from the SZ–TMAZ interface (Figure 14). The results showed that in this region,
recrystallisation also took place. In this zone, Al2Cu and τ1 were also identified (Figure 15).
In the grain indicated in Figure 14b, darker lines indicate the enrichment with Be.

Plastic flow also caused the fracture of some previous particles, which were much
coarser than in the SZ. Spherical particles were much rarer than in the SZ. The parti-
cle contained Mn and Cu, and no mutual orientation relationship with the matrix was
observed.

3.4. Characterisation of the HAZ

No plastic deformation occurred in the HAZ. The distribution of phases at the mi-
crolevel did not change. However, it was observed that during exposure to heat, the
Al2Cu-based precipitates dissolved (Figure 16), which were almost completely dissolved
about 3 mm from the TMAZ. Thus, the drop of indentation hardness in HAZ, close to
the TMAZ, can be explained by the dissolution of θ’-Al2Cu precipitates present in the
as-cast state.
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3.5. Indentation Testing

Table 3 presents the indentation hardness using small loads. Typical indentation
depths were 550–650 nm, thus the size of the indents was 4–5 µm. Through measurements,
we avoided large particles, so the values corresponded to the properties in the microrange.
No significant differences were observed despite dissimilar microstructures in different
areas. The reduced modulus Er was around 80 GPa, which was larger than in pure
aluminium (68 GPa) because of the presence of other phases. The Berkovich indentation
hardness was in the range 1.1–1.3 GPa.

Table 3. Berkovich indentation hardness at specific positions. The average values and standard
deviations for 25 measurements, the maximum load was 10 mN.

FSP 95 FSP 950

Position Berkovich
Indentation Hardness/GPa

Reduced Indentation
Modulus/GPa

Berkovich
Indentation Hardness/GPa

Reduced
Indentation
Modulus/GPa

HAZ-AS 1.23 ± 0.06 75.27 ± 2.31 1.22 ± 0.07 80.43 ± 1.91
HAZ-RS 1.18 ± 0.07 81.69 ± 3.22 1.24 ± 0.05 78.56 ± 2.15
TMAZ-AS 1.19 ± 0.07 74.58 ± 2.39 1.14 ± 0.08 81.73 ± 2.61
TMAZ-RS 1.14 ± 0.07 79.26 ± 2.17 1.25 ± 0.19 84.23 ± 4.31
SZ-NZ 1.25 ± 0.05 80.09 ± 1.87 1.31 ± 0.15 85.09 ± 4.50
SZ-coarse - - 1.21 ± 0.12 82.08 ± 3.48
SZ-fine 1.19 ± 0.11 79.55 ± 2.98 1.21 ± 0.18 83.04 ± 6.34
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3.6. Microstructure Evolution during FSP

FSP zones are characterised by extremely high strain, strain rate, and temperature
as well as the gradients of these parameters. Generally, they decrease from the nugget
zones to the base alloy. The resulting variations in microstructure depend on the processing
parameters, alloy composition, and initial microstructure. In this part, we will try to
explain the observed results of the investigated quasicrystal-forming aluminium alloy. FSP
causes high strains, thus strengthening the alloy by work hardening. However, very high
temperatures can induce several processes that can soften the alloy. The processes are rather
complex in single-phase alloys, but the current alloy is multicomponent and multiphase.
Thus, additional explanations are required to understand the final microstructure.

The lowest rotation speed did not change the microstructure considerably, especially
on the retreating side (Figure 2). Nevertheless, it increased the alloy hardness by about
30%. Deformation increased the dislocation density, but the temperature was lower and
the softening was smaller than strengthening due to the lower energy input. On the other
hand, the highest rotation speed caused a very uniform microstructure in the whole stir
zone. The strengthening and softening were almost the same, so the hardness remained at
approximately the same level as in the base alloy. Some stronger variations of hardness
occurred only at the interface between TMAZ and HAZ. For the FSP, this is not of great
importance because with several parallel passes, the microstructure can be the same in
larger regions. The hardness variation can be of more importance in FSW, where TMAZ
and HAZ remain in the material after welding. Nevertheless, in this alloy, variations were
not pronounced.

3.6.1. Effect of FSP on the Matrix Al-Grains

Through the main part of the cast strip, elongated grains prevailed, with sizes of
250 µm × 60 µm. These grains transformed to equiaxed grains (about 2–3 µm in diameter)
in the SZ and TMAZ. The fragmented and precipitated particles strongly prevented grain
growth during dynamic recovery and recrystallisation. The mechanism is probably similar
to that observed in other aluminium alloys. The decrease in grain size can considerably
contribute to strengthening through the Hall–Petch relationship [26]. The size of grains did
not change in the HAZ.

3.6.2. Effect of FSP on the Hexagonal Quasicrystalline Approximant Al15Mn3Be2 Phase

The Al15Mn3Be2 phase was present predominantly as coarse particles (longest dimen-
sion from 5 µm to more than 100 µm) that formed in the liquid prior to the crystallisation of
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α-Al. The particles were present throughout the cross-section, especially at the strip centre
(area C in Figure 2). Such particles can be detrimental to mechanical properties, especially
ductility. This phase was stable in the Al–Mn–Be system [27–29], but with the addition of
Cu, it became metastable and transformed to τ1-Al29Mn6Cu4 [30–32] (in some aluminium
alloys, precipitates of this phase formed and are usually denoted as T-precipitates, with the
formula Al20Mn3Cu2 [33]). They did change in the HAZ, but in the TMAZ, cracks were
observed only in some particles. and were disintegrated into much smaller particles in
the stir zone. The metastable Al15Mn3Cu2 can transform to τ1 by the diffusion of Cu into
the particles and Be out of them, but it can also partly dissolve in the matrix, enriching it
with Be and Cu. The diffusivity of Cu in Al was relatively high [34], probably also of Be.
The temperature in the stir zone (around 600 ◦C) was high, but the time of exposure was
short; thus, the diffusion distance is limited. We observed that the composition of larger
particles (larger than 5 µm) did not change. Perhaps only a thin outer layer was enriched in
Cu. On the other hand, the particles smaller than 1 µm possessed a lot of Cu, thus, they
surely transformed to τ1.

3.6.3. Effect of FSP on the IQC

IQC was formed during the final stages of solidification in the intercellular or inter-
dendritic regions. It was principally present as a coral-like phase in the binary (α-Al + IQC)
eutectic, and branches was mainly of sub-micrometre size. IQC phase studied in other
alloys contained about 2 at.% Cu and 10 at.% Be, slightly less than Al15Mn3Be2. Under
strain, the branches fracture easily, which occurred in both the TMAZ and SZ. IQC is also
a metastable phase and it also transforms to τ1 by the diffusion of Cu into particles and
Be out of them. Since the branch thickness was very low, a complete transformation to τ1
is expected.

3.6.4. Effect of FSP on θ-Al2Cu and Be4Al(Mn,Cu)

The Al2Cu phase appeared brightest in all electron-backscattered micrographs due to
the high atomic number of copper, while the Be4Al(Mn, Cu) phase was darkest because
of the high atomic fraction of light beryllium atoms. Both phases were stable in this alloy.
Mechanical action can crush them into smaller particles, while elevated temperatures can
cause their partial dissolution in the matrix, thus, the contents of Be and Cu dissolved in
the matrix increased.

3.6.5. Processes in the Matrix

Partial dissolution of phases in the stir zone can cause a temporarily increase in
alloying contents in the matrix. The equilibrium solubility of Be in Al was 0.1 wt.% (0.29
at.%) [33]. It is likely that high strains cause even higher contents of Be, similar to what can
occur in mechanical alloying. Be does not form any compound with Al, since the enthalpy
of mixing is positive both in the liquid and solid-state. Thus, the supersaturation of Be in
Al can lead to demixing in the solid-state, with a spinodal type reaction. The brighter and
darker bands in the matrix can be a result of demixing. However, to prove it, we need to
use methods that will reveal Be.

In the matrix, precipitation of phases can also take place. The process is similar to
T5 temper. The possible precipitates found in previous studies are IQC, τ1 (or T-precipitates),
and Al2Cu-type precipitates. We found spherical precipitates with diameters of 50–150
µm. During FSP, Al2Cu-type precipitates cannot form because the solvus temperature is
lower than the temperature in the SZ. At temperatures above 400 ◦C, the formation of
T-precipitates is more likely than IQC. However, the orthogonal T-precipitates found in Al-
alloys are rodlike, with a much larger length along the b-axis. Since most of the precipitates
were spherical, it is not likely that T-precipitates would be formed, but spherical IQC
precipitates might be formed first and then transformed to Al–Mn–Cu precipitates.
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As shown by EDS, the Al-matrix contained more than 2 at.% Cu, which was close to its
maximum solubility in the Al [35]. Thus, upon cooling, and especially at room temperature,
natural ageing can occur through the precipitation of GP-zones or θ”-precipitates.

In the HAZ, only the dissolution of θ’-precipitates can dissolve in the matrix. The
solvus temperature for these precipitates is about 400 ◦C [36]. Thus, at 3 mm from the
TMAZ–HAZ interface, the temperature was at least 400 ◦C. Thus, the alloy was relatively
stable through short time exposure to temperatures at least up to 400 ◦C.

4. Conclusions

The main effects of FSP processing of the twin-cast Al–Mn–Cu–Be alloy are:

- Fragmentation and more uniform distribution of primary intermetallic phases;
- Dispersion of the eutectic icosahedral phase;
- Recrystallisation of the matrix grains in the stir zone and in the TMAZ;
- Transformation of small initial IQC and small fragments of Al15Mn3Be2 phases to

Al–Mn–Cu intermetallic phase τ1;
- Precipitation of spherical precipitates containing Al, Mn, and Cu. Possible formation

of IQC precipitates and their transformation to τ1;
- Within the Al-matrix, darker bands were observed, probably the decomposition of the

Al-matrix; some kind of a spinodal decomposition to Be-rich and Be-lean bands; and
- Dissolution of θ’-Al2Cu precipitates in the TMAZ and HAZ, present in the as-cast

state).

For FSP of a novel, multicomponent, and multiphase alloy, additional processes can
take place in comparison to that found in conventional aluminium alloys. Thus, further
fundamental studies are required to obtain a deeper insight into them.
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