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Abstract
Microstructure characterization and reconstruction (MCR) is an important prerequisite for empowering and accelerating 
integrated computational materials engineering. Much progress has been made in MCR recently; however, in the absence 
of a flexible software platform it is difficult to use ideas from other researchers and to develop them further. To address this 
issue, this work presents MCRpy as an easy-to-use, extensible and flexible open-source MCR software platform. MCRpy 
can be used as a program with graphical user interface, as a command line tool and as a Python library. The central idea is 
that microstructure reconstruction is formulated as a modular and extensible optimization problem. In this way, arbitrary 
descriptors can be used for characterization and arbitrary loss functions combining arbitrary descriptors can be minimized 
using arbitrary optimizers for reconstructing random heterogeneous media. With stochastic optimizers, this leads to varia-
tions of the well-known Yeong–Torquato algorithm. Furthermore, MCRpy features automatic differentiation, enabling the 
utilization of gradient-based optimizers. In this work, after a brief introduction to the underlying concepts, the capabilities 
of MCRpy are demonstrated by exemplarily applying it to typical MCR tasks. Finally, it is shown how to extend MCRpy by 
defining a new microstructure descriptor and readily using it for reconstruction without additional implementation effort.
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Introduction

Establishing and inverting process–structure–property (PSP) 
linkages is a central goal in integrated computational mate-
rials engineering (ICME) in order to accelerate the devel-
opment of new materials. With increasing computational 
resources and much development in data processing and 
machine learning, data-centric workflows for microstruc-
ture design receive more and more attention  [1]. These 
workflows rely on large databases that are created using 
numerical simulations. One central aspect to consider in 
this context is how to choose and create the microstructures 
to simulate from the extremely big set of possible struc-
tures. To avoid extremely time-consuming and cost-intensive 

experimental campaigns, an efficient microstructure charac-
terization and reconstruction (MCR) tool is therefore a key 
ingredient to making large-scale ICME workflows feasible. 
A very brief introduction to MCR is given in the following, 
and the reader is kindly referred to [2] for an in-depth review.

Microstructure characterization, the first aspect of MCR, 
is required to handle the stochasticity of the microstructures: 
Two distinct image sections of the same microstructure are 
similar from a visual and statistical perspective, but com-
pletely different in terms of a pixel-based representation. 
Thus, for operations like quantitative comparisons, it is rea-
sonable to map the pixel-based microstructure to a transla-
tion-invariant, stationary descriptor D that allows for these 
operations. In practice, D can range from simple volume 
fractions to advanced statistical descriptors such as spatial 
correlations. Therefore, D is a reasonable choice for repre-
senting structures in PSP linkages. Furthermore, it provides 
a possibility to explore the microstructure space in data-
driven materials development workflows.

Microstructure reconstruction, the second aspect of MCR, 
can be regarded as the inverse operation to microstructure 
characterization: The goal is to find a microstructure such 
that the corresponding descriptor equals the given value. 
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Microstructure reconstruction allows to (i) create a plausi-
ble 3D volume element from a 2D slice like a microscopy 
image, (ii) create a set of similar microstructures given one 
realization and (iii) interpolating between microstructures 
in terms of descriptors.

These two aspects of MCR, namely characterization and 
reconstruction, can be treated independently, for example 
using spatial correlations as descriptors and modern machine 
learning-based techniques for reconstruction. However, auto-
matic ICME workflows for complex materials highly benefit 
from a principled exploration of the descriptor space, where 
microstructures are selected for reconstruction, simulation 
and homogenization in a way that maximizes the expected 
information gain for the PSP linkage [3]. Therefore, it is 
important to combine characterization and reconstruction 
so that given arbitrary combinations of descriptors and 
their values, the reconstruction can be triggered from these 
descriptors. Furthermore, recent research indicates that there 
is no single best descriptor for microstructure reconstruc-
tion [4] and for PSP linkages [5], but that it is reasonable 
to choose descriptors based on the structure at hand. For 
this purpose, we present MCRpy1, a modular and extensible 
open-source tool that facilitates easy microstructure charac-
terization and reconstruction based on arbitrary descriptors.

Free open-source platforms are a great way of harnessing 
the advantages of digitization and modern computational 
infrastructure. The free accessibility allows researchers to 
quickly test each others’ ideas and to develop them further. 
The open-source nature of such a platform enables it to 
become a collaborative project, considerably leveraging its 
potential. Especially in complex scientific disciplines, such 
collaboration is indispensable. As an example, consider the 
field of machine learning, specifically neural networks [6]. 
In the beginning of research on neural networks, newcomers 
had to implement relatively complex procedures like back-
propagation before being able to reproduce results from the 
literature, let alone to develop them further. Later, easy-
to-use open-source libraries like TensorFlow and PyTorch 
have greatly lowered the hurdle, allowing more researchers 
to enter the field easily. This surely contributed to the rapid 
progress in the last decades and to the plethora of neural net-
work architectures and applications that is observed today.

The digital infrastructure of the materials science com-
munity has grown considerably as a consequence of the 
materials genome initiative [7] and similar projects. Despite 
the rapidly growing number of tools for materials innovation 
in general, MCR specifically is in a comparable position 
now as machine learning was 20 years ago: A great variety 
of methods exists, but in the absence of a common platform 
and interface, every newcomer in the field has to implement 

fundamental technologies like the lineal path function and 
the Yeong–Torquato algorithm by hand. This is a big hurdle 
and thwarts rapid progress. Thus, the goal of this contribu-
tion is to accelerate MCR research by providing MCRpy as 
an easy-to-use, extensible and flexible software solution that 
aims at realizing a seamless workflow by providing various 
interfaces to new and established techniques.

The work starts with Sect. Current Digital Infrastructure, 
where the current digital infrastructure is reviewed and it 
is outlined how MCRpy integrates into it. Then, MCRpy is 
presented in Sect. Overview of MCRpy. Typical application 
workflows are presented in Sect. Typical MCRpy Workflows 
and finally, a conclusion is drawn in Sect. Conclusions and 
Outlook.

Current Digital Infrastructure

After President Barack Obama announced the US-American 
Materials Genome Initiative [7] that provided substantial 
funding for accelerated materials development, collabora-
tive projects and digital frameworks were initiated all over 
the world. A non-exhaustive list includes the American 
NanoMine open data resource [8], the European NOMAD-
CoE [9] and its platform described in [10] and the Swiss 
NCCR MARVEL [11] with its AiiDA platform [12] described 
in [13]. The extremely popular and often-cited pymatgen 
library [14] can be mentioned as an early contribution to 
open-source materials science software infrastructure. This 
trend continues, as can be seen with the recent example 
radonpy [15]. However, much of this research is focused 
on deriving material properties from considerations on the 
atomistic length scale.

On the continuum length scale, the Python Materials 
Knowledge System (pyMKS) [16] is a notable open-source 
framework. Its efficient FFT-based implementation of the 
spatial two-point correlation S2 facilitates easy microstruc-
ture characterization. However, in pyMKS, microstructure 
characterization is limited to S2 and no further descriptors 
are available. Moreover, pyMKS does not allow for micro-
structure reconstruction, only characterization. A strong 
focus lies on efficient homogenization [17] and direct cou-
pling to an internal finite element solver, SfePy [18, 19]. 
This is very convenient for simple problems like elasticity. 
For advanced techniques like crystal plasticity, external soft-
ware like the Düsseldorf Advanced Materials Simulation 
Kit (DAMASK) [20] can be used. Furthermore, pyMKS pro-
vides an easy interface for dimensionality reduction of the 
descriptor space and for establishing structure-property link-
ages based on the reduced descriptors and the correspond-
ing homogenized properties. In summary, pyMKS acts as 
an overarching framework to implement ICME workflows.

1  https://​github.​com/​NEFM-​TUDre​sden/​MCRpy

https://github.com/NEFM-TUDresden/MCRpy
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For numerical simulation of microstructures, many open-
source tools are available, ranging from general and easy-to-
use packages like SfePy [18, 19] to special-purpose software 
like DAMASK [20], which comes with a highly optimized 
Fourier-based crystal plasticity solver. Furthermore, cur-
rent research on FFT-based homogenization [21] is making 
remarkable progress that might lead to an open-source tool 
soon. Thus, with pyMKS as an overarching framework and 
numerous tools and progress for numerical simulation and 
homogenization, an open-source MCR software package can 
be identified as a final component of ICME workflows.

To the authors’ best knowledge, the only widely used 
software tool for MCR is DREAM.3D [22], a long devel-
oped and full-fledged program. Its roots date back around 20 
years to the early works of Michael Groeber and the Car-
negie Mellon University microstructure builder. Despite 
this long history, DREAM.3D still enables numerous cur-
rent research activities in materials innovation and ICME, 
see for example [23]. This success is empowered by the 
many features, robustness, efficiency and easy user inter-
face of DREAM.3D, which may be partially attributable to 
its open-source core. Thus, DREAM.3D can be highly rec-
ommended for the workflows it implements. However, the 
internal microstructure representation and the available pipe-
lines in DREAM.3D are mainly intended for certain material 
systems and microstructure descriptors. The internal data 
format as well as the provided characterization and recon-
struction algorithms are centered around classical descrip-
tors like grain size distribution functions and orientation 
distribution functions. This makes DREAM.3D excellent at 
reconstructing geometric inclusions like ellipses and tex-
ture as in metallic materials, but multi-phase materials with 
complex morphology as shown in Fig. 8 cannot be realized. 
Furthermore, DREAM.3D is written in C++, which is not 
common among engineering researchers due to its complex-
ity. In recent research, new microstructure descriptors or 
reconstruction algorithms are sometimes provided as Python 
or Matlab code in a GitHub repository, but are hardly ever 

implemented in C++ as a DREAM.3D pipeline2. Even if 
that was the case, then these descriptors could not be readily 
used for reconstruction since the DREAM.3D reconstruction 
pipelines are tailored toward specific descriptors and would 
need to be re-implemented. Thus, DREAM.3D is an excel-
lent and robust program, but it is mainly suited for specific 
practical applications and for certain materials.

In contrast, the present work aims at creating a flexible 
research platform for multiphase materials of high mor-
phological complexity. Thus, MCRpy clearly differs from 
DREAM.3D regarding the targeted audience and the scope of 
materials systems. As a Python package, it integrates natu-
rally with numerous tools for numerical simulation, machine 
learning or materials science workflows. Especially pyMKS 
can act as an overarching ICME framework, where the pre-
sent work provides an MCR solution. In summary, MCRpy 
attempts to fill a striking gap in the ICME software land-
scape. A theoretical understanding of MCRpy is provided 
in Sect. Overview of MCRpy, followed by an illustration 
of typical workflows in Sect. Typical MCRpy Workflows.

Overview of MCRpy

Microstructure characterization and reconstruction in Python 
(MCRpy) is an open-source software tool accessible under 
https://​github.​com/​NEFM-​TUDre​sden/​MCRpy. It is released 
under the Apache 2.0 license and can be used

(i) as a program with graphical user interface (GUI), 
intended for non-programmers and as an easy introduc-
tion to MCR,

Fig. 1   Schematic overview of MCRpy: Microstructures can be characterized by descriptors and reconstructed by optimization. Herein, descrip-
tors, losses and optimizers can be provided as flexible plugin modules

2  Note, however, ongoing developments with the eventual goal of 
allowing DREAM.3D pipelines to be coded purely in Python: https://​
github.​com/​BlueQ​uartz​Softw​are/​dream​3d-​conda-​feeds​tock.

https://github.com/NEFM-TUDresden/MCRpy
https://github.com/BlueQuartzSoftware/dream3d-conda-feedstock
https://github.com/BlueQuartzSoftware/dream3d-conda-feedstock
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(ii) as a command line tool, intended for automated and 
large-scale application on high-performance computers 
without graphical interface, and
(iii) as a regular PIP-installable Python module, intended 
for performing advanced and custom operations in the 
descriptor space.

A schematic overview is given in Fig. 1: The main func-
tionalities of MCRpy, characterization and reconstruction, 
are explained in Sect. Characterization and Reconstruction, 
respectively. Furthermore, additional functions are provided 
to manipulate the microstructures and descriptors and to 
visualize data. A complete set of the available operations 
is given in Table 1, and supported inputs and outputs for 
selected functions are summarized in Table 2. The core idea 
of MCRpy is its extensibility in that arbitrary descriptors 
can be used for characterization and arbitrary loss functions 
combining arbitrary descriptors can be minimized using 
arbitrary optimizers for reconstructing random heterogene-
ous media. This is outlined in Sect. Extensibility.

Characterization

The characterization function

assigns a given pixel-based microstructure M to a set of nD 
corresponding descriptors Di . These descriptors, sometimes 
referred to as statistical descriptors, quantify the microstruc-
tural morphology in a statistical and translation-invariant 
manner3. Hereby, a microstructure with np different phases 
is represented as a set of n

p
 indicator functions

(1)fC ∶ M ↦ {Di}
nD
i=1

For example, the volume fraction vf of a microstructure is a 
very simple descriptor. Of course, the volume fraction cap-
tures some but not all information needed to describe the 
microstructure. Several other quantities matter, for example 
the size and shape of inclusions and the degree to which 
distinct phases, are spatially clustered. Besides these clas-
sical descriptors, in the light of increasing computational 
resources, recent research has been focused on more uni-
versal high-dimensional descriptors that are less dense in 
information, but have higher descriptive capabilities in 
total. As an early example for high-dimensional descrip-
tors, spatial correlations [24] have proven to be a versatile 
tool that is still used today [2]. A good introduction can be 
found in [25]. A differentiable generalization of spatial cor-
relation is presented in [26] and used in this work. Spatial 
correlations have inspired a range of conceptually similar 
descriptors like the lineal path function [27], cluster corre-
lation function [28] and polytope function [29]. The reader 
is referred to [2] for a comprehensive overview. Finally, the 
Gram matrices of the feature maps of pre-trained convo-
lutional neural networks have been shown to contain rel-
evant microstructural information [30]. Remarkable results 
in microstructure reconstruction have been achieved using 

(2)Ip(x) =

{
1, if x in phase p

0, else.

Table 1   Functions Function Explanation

characterize characterize a microstructure, see Sect. Characterization
reconstruct reconstruct a microstructure given the descriptors, see Sect. Reconstruction
match characterize and reconstruct immediately, for validation and for 2D-to-3D workflows
view plot microstructures, descriptors and convergence data interactively or save to a file
smooth smooth a microstructure
merge merge different descriptors to prescribe them on orthogonal sections for reconstruct-

ing anisotropic structures
interpolate interpolate between given descriptors

Table 2   Possible inputs and outputs for selected MCRpy functions

Function Input Output

Characterize 2D M → {Di}

3D M → {Di}

3D M → {Dx
i
D

y

i
Dz

i
}

merge 2 or 3 orthogonal {Di} → {Dx
i
D

y

i
Dz

i
}

Reconstruct {Di} → 2D M
{Di} → 3D M
{Dx

i
D

y

i
Dz

i
} → 3D M

2D M → 2D M
Match 2D M → 3D M

3D M → 3D M

3  While some descriptors, such as the volume fractions, are also rota-
tion-invariant, this property does not apply in the general case. For 
example, the spatial correlations in MCRpy are not rotation-invariant.
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such Gram matrices alone [31, 32] and in combination with 
other descriptors [4, 33].

Finding a microstructure description that is both dense 
and contains all relevant information is an active field of 
research [2]. Examples are the recently developed entropic 
descriptors [34] or polytope functions [29]. Thus, besides 
the currently available descriptors listed in Table 3, users can 
add a descriptor plugin to MCRpy. If the descriptor plugin 
is defined with an indicator function as input, it is applied to 
the indicator function of each phase separately. Furthermore, 
a 2D descriptor is automatically applied on and averaged 
over 2D slices of a 3D structure. The only requirement posed 
on new descriptors is that they must be computable on a 
pixel or voxel geometry. More details on extensibility can be 
found in Sect. Extensibility. All of the available and added 
descriptors can be used for microstructure reconstruction, 
which is discussed in the following section.

Reconstruction

In MCRpy, microstructure reconstruction is fundamentally 
regarded as an optimization problem

where the reconstructed microstructure Mrec minimizes a 
loss function L . The loss function depends on nD different 
descriptors {Di}

nD
i=1

 and quantifies the distance between their 
current and desired values. Herein, Di(M) denotes the value 
of the i-th descriptor associated with the current microstruc-
ture and its desired value Ddes

i
 . Naturally, as in the charac-

terization step, arbitrary descriptors can be used, for exam-
ple the volume fractions vf , the spatial correlations S or the 
Gram matrices G. For the loss function L , a simple choice 
is a weighted sum over the mean squared error norm. Differ-
ent loss functions are available in MCRpy and the user can 
implement additional ones. Finally, given a set of descriptors 
and a loss function, an optimization problem emerges as a 
special case of Equation 3. This optimization problem can 
be solved using an optimizer, which is provided as a plugin 
module. If all descriptors are differentiable, then a gradient-
based optimizer like L-BFGS-B [36] can be used, leading to 
the very efficient differentiable MCR [4, 26]. Otherwise, the 

(3)Mrec = argmin
M

L
(
{(Di(M), Ddes

i
)}

nD
i=1

)
,

choice is limited to gradient-free optimizers like simulated 
annealing.

As a simple example, if only the spatial two-point cor-
relation S2 is used as a descriptor and the loss function is 
formulated as a mean squared error norm of the descriptor 
difference, the following optimization problem emerges:

If simulated annealing is chosen as an optimizer, MCRpy 
effectively performs the well-known Yeong–Torquato algo-
rithm as used in [37].

As a more recent example, if the Gram matrices G of the 
feature maps of the VGG-19 convolutional neural network 
are chosen as a descriptor [30] for the same loss function, 
the emerging optimization problem

allows for a gradient-based optimizer. If L-BFGS-B [36] is 
chosen for this purpose, MCRpy effectively performs the 
approach of Li et al. [31], which is a special case of differ-
entiable MCR [26].

As a final example, the differentiable three-point corre-
lations S3 , the above-mentioned Gram matrices G and the 
normalized total variation V are combined. The loss func-
tion accumulates the weighted mean squared error norm, 
where �Di

 denotes the weight of the i-th descriptor. If the 
resulting optimization problem

is solved using the gradient-based L-BFGS-B optimizer, 
MCRpy effectively performs the differentiable MCR algo-
rithm as used in [4].

As can be seen, different parameter settings allow to re-
create well-known reconstruction algorithms as well as to 
try out new ones by simply changing the arguments. As an 
overview, all descriptors, optimizers and loss functions are 
listed in Table 4.

(4)Mrec = argmin
M

||S2(M) − Sdes
2
||MSE .

(5)Mrec = argmin
M

||G(M) − Gdes||MSE

(6)

Mrec = argmin
M

�S||S3(M) − Sdes
3
||MSE

+�G||G(M) − Gdes||MSE

+�V||V(M) − V
des||MSE

Table 3   Microstructure 
descriptors that are 
implemented in MCRpy 

Descriptor Differentiable Comment

v
f

VolumeFractions ✓ -
S̃ Correlations ✓ S̃

2
 and S̃

3
 ; see [26]

S FFTCorrelations ✗ only S
2
 ; FFT-based; from pyMKS [16]

G GramMatrices ✓ using VGG19 [35]; see [31]
V Variation ✓ normalized total variation; see [4]
L̃ LinealPath ✓ see Appendix A
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Extensibility

The central advantage of MCRpy is its extensibility in 
that descriptors, loss functions and optimizers can be eas-
ily provided by anyone. For example, new optimization-
based reconstruction algorithms like the work of Cecen 
at al.  [43] can be implemented as an optimizer plugin 
to combine them with all the available microstructure 
descriptors. This is achieved by a plugin architecture, 
which is sketched in Fig. 2. In this section, we explain the 
underlying software pattern, whereas exact instructions 
and an example on how to write a plugin are given in 
Sect. Defining a custom descriptor. In the following, the 
plugin architecture is explained for the case of descrip-
tors. The same idea is employed for loss functions and 
optimizers.

A descriptor plugin can be written by simply inherit-
ing from the abstract Descriptor class. Consequently, 
the available descriptor plugins are not known at the time 
of writing the MCRpy core code, so they must be loaded 
dynamically as soon as the characterization or reconstruc-
tion module demands the plugin. This is done by means of 
a loader module based on importlib. Upon import, a 
descriptor plugin registers itself at a descriptor factory. After 
that, the descriptor factory can be queried to create descrip-
tor instances from the plugin. The descriptor factory then 
returns a callable which computes the descriptor value given 

a microstructure. This callable can now be used to char-
acterize microstructures, compose loss functions, compute 
gradients using automatic differentiation and to reconstruct 
microstructures.

Thus, adding a descriptor plugin to MCRpy merely con-
sists of adding a file with the plugin definition to the right 
directory, while the rest of the code does not need to be 
changed. The descriptor immediately becomes available for 
characterization and for reconstruction in combination with 
arbitrary other descriptors, arbitrary loss functions and arbi-
trary optimizers.

Typical MCRpy Workflows

Typical use-cases and workflows of MCRpy are illustrated 
in this section by means of three representative examples. 
First, in Sect. Obtaining a 3D domain from a 2D microstruc-
ture slice, a plausible 3D volume element is reconstructed 
from a 2D microstructure slice. This very relevant, since 3D 
information can be very time- and cost-intensive to obtain 
experimentally. Secondly, in Sect. Obtaining a set of similar 
volume elements, a statistically similar set of small volume 
elements is generated from a single example. This greatly 
reduces the computational effort for numerical homogeni-
zation. Thirdly, in Sect. Manipulating the descriptor space, 
descriptor values are directly manipulated and used for 
reconstructing novel structures. Techniques like this may 
be explored in the future to augment data sets and explore 
PSP linkages. These three examples are demonstrated in 
the three modes of operating MCRpy, namely via a GUI, as 
a command line tool and as a Python library, respectively. 
Note that this order is chosen for demonstration purposes 
only and it is possible to execute all three workflows with all 
three modes of operation. Finally, in Sect. Defining a custom 
descriptor, it is demonstrated how to add a custom descriptor 
to MCRpy and how to use it for characterization and recon-
struction. The original structures are taken from pyMKS [16] 
for Sect. Obtaining a 3D domain from a 2D microstructure 
slice to Manipulating the descriptor space and from [31] for 
Sect. Defining a custom descriptor.

Table 4   Microstructure descriptors, optimizers and loss functions 
that are implemented in  MCRpy. Simulated annealing is the only 
optimizer in the list that is not gradient-based. More details on the 
descriptors are given in Table 3.

Descriptors Optimizers Loss functions

Volume fractions L-BFGS-B [36] 2D/3D weighted MSE
Correlations TNC [38] 2D/3D weighted RMS 

error
Lineal path Adam [39], Adag-

rad [40], Adadelta [41]
2D/3D weighted L1 

distance
Gram matrices RMSprop [42] 2D/3D weighted L2 

distance
Variation SGD [42]

Simulated Anneal-
ing [24]

Fig. 2   Schematic overview 
of the plugin architecture in 
MCRpy 
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Obtaining a 3D Domain from a 2D Microstructure 
Slice

As a first example, MCRpy is used to reconstruct a plausi-
ble 3D volume element given a segmented 2D slice. This is 
a common task since experimental observations are often 
available only in 2D. The 3D volume element can be used 
for example for numerical simulations. From an algorithmic 

perspective, this goal is achieved by computing the descrip-
tor on the given slice and prescribing it on every slice of the 
microstructure, details cf. [4].

This task is solved using the MCRpy GUI as shown in 
Fig. 3. A simple approach would be characterization and 
immediate reconstruction, but as mentioned in Table 1, 
MCRpy provides a shortcut for this in the match function. 
After selecting the match-action on the left, the relevant 
options can be set in the center. The name of each option is 
identical to the command line and the Python library, allow-
ing users to easily switch interfaces. By default, a 2D struc-
ture is reconstructed in 2D. However, by using the option 
add_dimension, the extent of the reconstructed structure 
in z-direction is set to the desired value. The differentiable 
three-point correlations S̃3 as proposed in [26] are chosen as 
descriptor. Furthermore, as discussed in [4], the variation V 
is employed as a descriptor in order to suppress noise in the 
3D reconstruction. The weights of S̃3 and V are empirically 

Fig. 3   Screenshot of the MCRpy graphical user interface. After selection an action on the left, all options can be set in the center and performed 
upon clicking start. The options are identical to the command line interface and the Python library

(a) (b)

Fig. 4   Results for the example in Section  Obtaining a 3D domain 
from a 2D microstructure slice
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set to 1 and 100, respectively4. Finally, the role of the set-
ting limit_to needs to be discussed. The parameter is 
introduced in [26] as P and Q and quantifies the length in 
pixels up to which spatial correlations are computed with the 
highest-possible precision. All longer-ranged correlations 
are computed on a lower-resolution version of the structure 
in order to save computational resources, cf. [26]. With a 
default of 16, it allows a flexible trade-off between accuracy 
and efficiency. A quantitative analysis of wallclock time and 
memory requirements is given in Appendix D. In this exam-
ple, it is lowered to 8 in order to accelerate the computations.

After setting all options, the reconstruction can be started 
and the results can be viewed from the GUI by selecting 
the view-action on the left. 2D microstructures are plotted 
directly, whereas 3D structures are exported to and opened 
in ParaView  [44]. The original 2D slice and the recon-
structed 3D volume are shown in Fig. 4. Note that for 2D-to-
3D reconstruction using multiple orthogonal 2D slices, an 
additional descriptor merging step is required as discussed 
in Sect. Manipulating the descriptor space and carried out 
in Appendix C.

In addition to the final microstructure, a convergence 
data file is written, which can be viewed interactively 
with MCRpy as shown in Fig. 5. On the left, the loss is 
plotted over iterations along with blue dots indicating inter-
mediate results. The user can click on these dots to have 
the corresponding microstructure displayed on the right. 

For 3D structures, only one slice is plotted and the user can 
scroll through the microstructure using the mouse wheel. For 
displaying the raw phase indicator functions of multiphase 
structures and other functionalities, the user is referred to the 
documentation. In summary, the MCRpy GUI constitutes an 
easily accessible solution for microstructure reconstruction.

Obtaining a Set of Similar Volume Elements

As a second example, a statistically similar set of volume 
elements is created from a single microstructure example. 
In numerical homogenization, a volume element can only be 
called representative if it is large enough for the stochastic-
ity of the microstructure to have no effect on the effective 
properties. In practice, this requirement can imply unfeasible 
computational effort. If smaller volume elements are used, 
it is still possible to quantify the effective behavior by using 
sufficiently many smaller volume elements and statistically 
aggregating the results. An example for structure-property 
linkages based on this idea can be found in [45]. From an 
MCR perspective, this requires characterizing the given 
structure and reconstructing different random realizations 
from it5.

This task is solved using MCRpy as a command 
line tool as shown in Listing 1. First, the original 2D 

Fig. 5   Interactive window for 
inspecting convergence data. 
By selecting the highlighted 
dot on the left at iteration 60, a 
slice of the intermediate result 
is displayed on the right. In this 
example, the indicator function 
of phase 1 is displayed for 
slice 18 of 64

5  In [26], the reconstruction was shown to converge to the exact same 
microstructure that was used for the characterization. The same can 
be seen for some cases in Fig. 8. However, this only happens in 2D 
reconstruction (not in 3D) and only for certain descriptors and micro-
structures. In these cases, the desired descriptor prescribed for recon-
struction needs to be varied statistically in order to create a diverse 
set of microstructure realizations. This aspect is not considered in the 
following because in application, it is most useful to reconstruct 3D 
structures.

4  The role of the weights is discussed in [4]. If the weight of the vari-
ation is too small, the noise is not suppressed well enough. If it is too 
large, the optimization problem becomes harder to solve and more 
iterations are needed for convergence.
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microstructure stored as ms_slice.npy is character-
ized using the same parameters as in Sect. Obtaining a 3D 
domain from a 2D microstructure slice (line 1). Then, nine 
different 3D structures are generated by a simple loop over 
the reconstruction script (lines 2-7). Note that the extent 
of the reconstructed structures in voxels is set indepen-
dently of the original slice (line 5). Furthermore, the loop 
index is passed to the reconstruction script in order to have 
it added to all result filenames and prevent to overwrite 
previous results (line 5). Because the chosen descriptors 
are differentiable, the standard optimizer L-BFGS-B [36] 

(a) (b)

Fig. 6   Input and results generated from the code in Listing 1

can be used, allowing to harness the computational effi-
ciency of DMCR [4, 26]. On an Nvidia A100 GPU, the 
reconstructions take around 25 minutes per structure for 
500 iterations. The original structure and the results can be 
seen in Fig. 6. In summary, the command line interface is 
analogous to the GUI and allows for easy automation and 
large-scale application.
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Manipulating the Descriptor Space

As a third example, the explicit availability of the 
descriptor is exploited by directly manipulating it. Spe-
cifically, MCRpy is used to interpolate between two 
given microstructures in a morphologically meaningful 
way. Consider two microstructures that could stem from 
different sets of process parameters. It can be interest-
ing to create a morphology that is a mix between these 
two structures. For example, if numerical simulations 
and homogenization of the interpolated structure predict 
favorable effective properties, it might be worth to fine-
tune the process parameters or try to establish a PSP 
linkage to manufacture these structures. Direct inter-
polation of the microstructures in terms of pixel values 
is meaningless. As a simple alternative, we interpolate 
linearly in the descriptor space and reconstruct micro-
structures from the interpolated descriptors.

This task is solved using MCRpy as a Python library 
as shown in Listing 2. After defining the settings (lines 

4-10), the original 2D microstructure slices are 
loaded (lines 13-14) and characterized (lines 17-18). For 
reconstructing elongated 3D structures, the 2D descrip-
tors need to be combined such that different descriptors 
are used in different directions. The order thereby mat-
ters and mistakes can lead to geometrically unrealizable 
descriptors6. In order to avoid confusion and mistakes, 
MCRpy provides the function merge for this task. The 
merged descriptors (lines 21-22) are then interpolated 
in 5 steps including start and end (line 25). Each descrip-
tor is used for a 3D reconstruction, which returns the 
convergence data and the final microstructure (line 29). 
The convergence data is viewed in an interactive window 
as shown in Fig. 5 (line 31). Finally, the microstructures 
are smoothed by a Gaussian filter (line 32) and saved to 
a file (line 33). The results are shown in Fig. 7. It can be 
confirmed that linear interpolation in the descriptor space 
leads to a visually reasonable transition between the cor-
responding microstructures.

(a) (b) (c) (e)

(f) (g) (i) (j)(h)

(d)

Fig. 7   The original descriptors (a, e) are linearly interpolated (b-d) and used for reconstruction to create a smooth transition between an iso-
tropic and an elongated microstructure (f-j). For the descriptor S̃3(�a, �b) , only the case that �a = �b = � is plotted for clarity

6  For example, consider the three planes x − y , x − z and y − z . Struc-
tures that are elongated in x-direction can be created by prescribing 
horizontally elongated descriptors in planes 1 and 2 and an isotropic 
descriptor in plane  3. However, if the same horizontally elongated 
descriptors are prescribed in planes 1 and 3, the structure cannot be 
realized: Plane  1 requires elongations in the  y-direction, whereas 
plane 3 requires the elongations to be in the z-direction and not in y.
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(a) (b) (c) (d)

(e)

(k) (l)(i) (j)

(h)(f) (g)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 8   Comparison between original microstructures and reconstruction results from different descriptors. For a clearer visualization, the recon-
structed microstructures are shifted periodically to match the original structure as closely as possible
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7  By default, low-dimensional descriptors are visualized via bar plots 
and high-dimensional descriptors are reshaped to an approximately 
quadratic array and plotted as a heatmap. This behavior can be over-
written for each descriptor subclass separately.

Defining a Custom Descriptor

MCRpy can be easily extended by adding custom plugin 
modules. In this section, the procedure is demonstrated 
by means of a descriptor plugin. Similar concepts apply to 
loss functions and optimizers. First, the implementation of 
a descriptor plugin is discussed for the volume fraction vf . 
Secondly, a differentiable approximation to the lineal path 
function is developed and tested.

Listing 3 shows the plugin source code for the volume 
fraction vf . Like all descriptors in MCRpy, the volume frac-
tion must inherit from the abstract Descriptor class (line 
5). This base class provides

(i) a wrapper that applies descriptors defined for single 
phases to the indicator function of each phase,
(ii) a wrapper to compute multigrid descriptors as dis-
cussed in [26] and
(iii) default functions for visualizing descriptors7.

In this case, it is reasonable to define the descriptor for a 
single phase and let the superclass handle the generalization 
to multiple phases. For this purpose, the subclass function 
make_singlephase_descriptor is defined (line 9). 
This function receives information about the microstructure, 
like the resolution, which is not needed in this case and 
therefore summarized via **kwargs. It returns a call-
able which computes the descriptor given the indicator 
function of a phase (line 12). In order to allow for automatic 
differentiation of the descriptor with respect to the micro-
structure, this callable needs to be implemented in Ten-
sorFlow. In contrast, a non-differentiable descriptor would 
be implemented in Numpy and integrated into the com-
putation graph by MCRpy using the TensorFlow function  
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tf.py_function. Finally, the plugin is required to regis-
ter itself at the descriptor factory using its class name (lines 
16-17).

In the following, the same procedure is applied to a differ-
entiable approximation L̃ to the lineal path function L, which 
is developed in Appendix A. Naturally, the code for defin-
ing L̃ is much longer than Listing 3 and is not given in this 
paper. Instead, the reader is referred to the GitHub repository 

for viewing the code. After adding the descriptor definition 
to the mcrpy/descriptors directory, it is accessible for 
characterization and reconstruction via the MCRpy GUI, the 
command line interface and the Python library.

In the Yeong–Torquato algorithm, the lineal path function 
is often employed to compensate for the shortcomings of 
the two-point correlation S2 alone [2, 24]. As an alternative 
approach to enriching S2 , the differentiable three-point cor-
relations S̃3 are used in [26]. Furthermore, Gram matrices G 
have become a common descriptor recently [4, 31–33]. In 
order to determine a best-practice for gradient-based recon-
struction, S̃3 is compared to G and a combination of S̃2 and L̃ 
in Fig. 8. It can be seen that S̃3 yields perfect reconstructions 
except for the copolymer, which can only be reconstructed 
well from G. In contrast, G yields acceptable results for 
all structures. The combination of S̃2 and L̃ performs very 
poorly for the alloy and the copolymer and is relatively noisy 
for the carbonate and ceramics. However, it outperforms G 
for the polymer composite. In summary, the results in Fig. 8 
indicate that including higher-order information to S̃2 via S̃3 
is more promising for gradient-based reconstruction than 
via the newly proposed differentiable approximation to the 
lineal path function L̃.

The more relevant aspect, however, is how easily new 
descriptors can be assessed using MCRpy. After defin-
ing a plugin as shown in Listing  3, it can be used for 

characterization and reconstruction and evaluated seam-
lessly. This extensibility facilitates quick and easy experi-
mentation, allowing researchers to assess new MCR tech-
niques easily and provide them to their colleagues.

Conclusions and Outlook

MCRpy is a powerful and extensible open-source Python 
library and toolkit for microstructure characterization and 
reconstruction. Besides these core features, MCRpy pro-
vides a plethora of convenient tools for inspecting and com-
paring descriptors, analyzing reconstruction results and 
controlling the descriptor space. It is easily applied via a 
GUI and brought to automated large-scale application on 
high-performance computers through a command line inter-
face. For advanced and custom operations in the descriptor 
space, MCRpy can be imported and used as a Python module 
with direct access to the structures and descriptors. Typical 
workflows for these interfaces are presented in this work by 
means of different MCR tasks.

A central design aspect in  MCRpy is its extensibil-
ity in that descriptors, loss functions and optimizers can 
be provided by the community as simple plugin modules. 
An example for a simple plugin is given in this work. We 
hope that the open source nature of the code and the plugin 
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architecture will make MCRpy an international collabora-
tive project with contributions from numerous researchers. 
This growth can leverage the potential of the presented tool 
to facilitate faster and easier MCR research and ultimately 
help accelerating materials development.

Appendix 1: Differentiable Approximation 
to Lineal Path Function

The lineal path function L is a well-established microstruc-
ture descriptor [27] that is often used in the Yeong–Torquato 
algorithm to compensate for the shortcomings of the two-
point correlation S2 alone [2, 24]. Given a vector � = (rx, ry) , 
it yields the probability that � lies entirely within a single 
phase if it is placed randomly in the structure. In contrast 
to S2 , which considers only the start and end point of the 
vector, L incorporates information about the connectedness 
of the phases. In this section L̃ is presented as a differenti-
able approximation to L.

The lineal path function is approximated using a  
convolve-threshold-reduce pipeline similarly to [26]. For 
this purpose, the vector or line � is discretized to a pixel 
grid as shown in Fig. 9 and divided by the length of the 
line. In this work, the Bresenham line algorithm [46] is 
used, but alternative approaches like the Xiaolin Wu line 
algorithm [47] might be equally viable options that can be 
investigated in future works. In the convolve step, the dis-
cretized line from Fig. 9 is used as a mask for a convolu-
tion with periodic boundary conditions. The output of the 
convolution is an image where each pixel corresponds to 
the discretized line being placed at the pixel’s location. The 
pixel value is 0 if no part of the line lies in phase 1 and 1 if 
the line lies completely in phase 1. If only parts of the line 
are in phase 1, the value is between 0 and 1. These pixels 
can be set to zero by thresholding the image with a value t, 
where 1∕(1 − ||�||∞) < t < 1 . The threshold step thus yields 
an image which can be interpreted as an ensemble of realiza-
tions, where each pixel takes the value 0 or 1. In the reduce 
step, this ensemble is averaged to obtain the probability of a 
randomly placed line being entirely in phase 1.

To make the convolve-threshold-reduce pipeline differen-
tiable, only the thresholding needs to be modified. The hard 
thresholding is therefore approximated using a scaled and 
shifted differentiable sigmoid function8 as shown in Fig. 10. 
This introduces errors, because the ensemble to average does 
not contain only ones and zeros but also intermediate values. 
Unlike in [26], where a similar error for S̃ could be elimi-
nated by deriving a correction step, the difference between L 
and L̃ cannot be quantified easily. Thus, it is clear that L̃ is 
only an approximation to L, not a generalization. This is not 
problematic if the same descriptor is used for characteriza-
tion and reconstruction.

To the authors' best knowledge, this concludes the first 
differentiable approximation to the lineal path function.

Appendix 2: Underlying Technologies

MCRpy is programmed in Python and based on very com-
mon packages like Numpy, Scipy, Matplotlib and Tensor-
Flow. While simulated annealing is implemented from 
scratch, the gradient-based optimizers are taken from Scipy 
and TensorFlow. Furthermore, TensorFlow is used for auto-
matic differentiation of the loss function and the descrip-
tors as well as for just-in-time compilation via AutoGraph. 
This allows MCRpy to run highly optimized code on GPUs 
despite being written entirely in Python. As optional depend-
encies, Gooey is required to run the MCRpy GUI and pyMKS 
is used in a descriptor plugin for FFT-based 2-point correla-
tions. A summary of required and optional dependencies and 
their versions is given in Table 5.

Fig. 9   A discretization of the vector � to a discrete pixel grid using 
Bresenham’s method [46]

Fig. 10   Approximation of a hard threshold by a scaled and shifted 
differentiable sigmoid function

Table 5   Software dependencies for the current version of MCRpy 

Package Required Version

numpy yes ≥ 1.20.1

matplotlib yes ≥ 3.3.4

scipy yes ≥ 1.6.2

tensorflow yes ≥ 2.3.1

pymks for FFT-based correlations ≥ 0.4.1

gooey for GUI ≥ 1.0.8.1

8  We use the same function as in [26].
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Appendix 3: 2D‑to‑3D Reconstruction 
from Multiple Images

Reconstructing a 3D microstructure from multiple orthogo-
nal 2D slices requires one step more than direct isotropic 
2D-to-3D reconstruction. As discussed in Sect. Manipulat-
ing the descriptor space, after characterization, the descrip-
tors need to be merged using the merge function before 
reconstruction. Like any operation, this can be done in the 
graphical interface, on the command line or via Python as 
shown in Listing 2. An exemplary result is shown in Fig. 11.

Appendix 4: Computational Efficiency

The computational efficiency of MCRpy is measured in terms 
of wallclock time and memory requirements on an Nvidia 
A100 GPU. Note that both quantities depend on the chosen 
descriptor and its accuracy controlled by the limit_to 
parameter as well as the microstructure resolution.

The wallclock time and memory requirements are 
reported in Table  6 for varying limit_to  and in 
Table 7 for varying microstructure resolution. While the 
descriptor-based reconstruction in MCRpy is not as fast as 
machine learning-based methods such as [48, 49] it lies 
in a similar order of magnitude as a numerical simula-
tion of the generated structures. Regarding the memory 
requirements, it should be mentioned that the just-in-time 
compilation of TensorFlow trades off available memory 
for improved wallclock time if possible. Furthermore, it 
should be noted that the memory requirements depend on 
the chosen optimizer. While L-BFGS-B [36] is chosen 
here due to its fast convergence, the Adam optimizer [39] 
can be used to save memory by increasing the number of 
iterations.

Finally, the scalability for a number of indicator func-
tions p > 2 is discussed. The wallclock time per iteration 
as well as the memory consumption both grow linearly 
in p because the reconstruction cost is governed by the 

computation of the descriptors and their gradients. The 
requirement that the sum of all indicator functions should 
be 1 at each position causes negligible computational over-
head per iteration. However, depending on how it is enforced 
during optimization, it can influence the wallclock time by 
an increased number of required iterations. While Simulated 
Annealing fulfills this requirement by construction, all cur-
rently implemented gradient-based optimizers use a penalty 
method. In practice, the authors have observed a slightly 
increased number of iterations for p = 3 , but have no experi-
ence with p ≥ 4.
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Fig. 11   Results for reconstructing a 3D microstructure from 3 orthogonal 2D slices

Table 6   Wallclock time and memory requirements for reconstructing 
the structure from Sect.  Obtaining a 3D domain from a 2D micro-
structure slice with different values of limit_to. Note that Tensor-
Flow trades off memory for speed and lower memory consumption is 
possible.

Note that TensorFlow trades off memory for speed and lower memory 
consumption is possible.

Limit_to in px Time in min RAM in GB

4 5 4.2
8 7 4.2
16 11 4.4
32 51 5.1

Table 7   Wallclock time and memory requirements for reconstructing 
the structure from Sect.  Obtaining a 3D domain from a 2D micro-
structure slice with different microstructure resolutions and limit_
to = 8. Note that  TensorFlow trades off memory for speed and 
lower memory consumption is possible.

Resolution in px Time in min RAM in GB

64 7 4.2
128 20 5.9
256 102 18.1
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