
Vol:.(1234567890)

Integrating Materials and Manufacturing Innovation (2022) 11:450–466
https://doi.org/10.1007/s40192-022-00273-4

1 3

TECHNICAL ARTICLE

Microstructure Characterization and Reconstruction in Python: MCRpy

Paul Seibert1 · Alexander Raßloff1  · Karl Kalina1  · Marreddy Ambati1 · Markus Kästner1,2,3 

Received: 1 July 2022 / Accepted: 10 August 2022 / Published online: 15 September 2022
© The Author(s) 2022

Abstract
Microstructure characterization and reconstruction (MCR) is an important prerequisite for empowering and accelerating
integrated computational materials engineering. Much progress has been made in MCR recently; however, in the absence
of a flexible software platform it is difficult to use ideas from other researchers and to develop them further. To address this
issue, this work presents MCRpy as an easy-to-use, extensible and flexible open-source MCR software platform. MCRpy
can be used as a program with graphical user interface, as a command line tool and as a Python library. The central idea is
that microstructure reconstruction is formulated as a modular and extensible optimization problem. In this way, arbitrary
descriptors can be used for characterization and arbitrary loss functions combining arbitrary descriptors can be minimized
using arbitrary optimizers for reconstructing random heterogeneous media. With stochastic optimizers, this leads to varia-
tions of the well-known Yeong–Torquato algorithm. Furthermore, MCRpy features automatic differentiation, enabling the
utilization of gradient-based optimizers. In this work, after a brief introduction to the underlying concepts, the capabilities
of MCRpy are demonstrated by exemplarily applying it to typical MCR tasks. Finally, it is shown how to extend MCRpy by
defining a new microstructure descriptor and readily using it for reconstruction without additional implementation effort.

Keywords  Microstructure · Characterization · Reconstruction · Descriptor · Software · ICME

Introduction

Establishing and inverting process–structure–property (PSP)
linkages is a central goal in integrated computational mate-
rials engineering (ICME) in order to accelerate the devel-
opment of new materials. With increasing computational
resources and much development in data processing and
machine learning, data-centric workflows for microstruc-
ture design receive more and more attention [1]. These
workflows rely on large databases that are created using
numerical simulations. One central aspect to consider in
this context is how to choose and create the microstructures
to simulate from the extremely big set of possible struc-
tures. To avoid extremely time-consuming and cost-intensive

experimental campaigns, an efficient microstructure charac-
terization and reconstruction (MCR) tool is therefore a key
ingredient to making large-scale ICME workflows feasible.
A very brief introduction to MCR is given in the following,
and the reader is kindly referred to [2] for an in-depth review.

Microstructure characterization, the first aspect of MCR,
is required to handle the stochasticity of the microstructures:
Two distinct image sections of the same microstructure are
similar from a visual and statistical perspective, but com-
pletely different in terms of a pixel-based representation.
Thus, for operations like quantitative comparisons, it is rea-
sonable to map the pixel-based microstructure to a transla-
tion-invariant, stationary descriptor D that allows for these
operations. In practice, D can range from simple volume
fractions to advanced statistical descriptors such as spatial
correlations. Therefore, D is a reasonable choice for repre-
senting structures in PSP linkages. Furthermore, it provides
a possibility to explore the microstructure space in data-
driven materials development workflows.

Microstructure reconstruction, the second aspect of MCR,
can be regarded as the inverse operation to microstructure
characterization: The goal is to find a microstructure such
that the corresponding descriptor equals the given value.

 *	 Markus Kästner
	 markus.kaestner@tu-dresden.de

1	 Institute of Solid Mechanics, TU Dresden, 01062 Dresden,
Germany

2	 Dresden Center for Computational Materials Science, TU
Dresden, 01062 Dresden, Germany

3	 Dresden Center for Fatigue and Reliability, TU Dresden,
01062 Dresden, Germany

http://orcid.org/0000-0002-9134-4874
http://orcid.org/0000-0001-6170-4069
http://orcid.org/0000-0003-3358-1545
http://crossmark.crossref.org/dialog/?doi=10.1007/s40192-022-00273-4&domain=pdf

451Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

Microstructure reconstruction allows to (i) create a plausi-
ble 3D volume element from a 2D slice like a microscopy
image, (ii) create a set of similar microstructures given one
realization and (iii) interpolating between microstructures
in terms of descriptors.

These two aspects of MCR, namely characterization and
reconstruction, can be treated independently, for example
using spatial correlations as descriptors and modern machine
learning-based techniques for reconstruction. However, auto-
matic ICME workflows for complex materials highly benefit
from a principled exploration of the descriptor space, where
microstructures are selected for reconstruction, simulation
and homogenization in a way that maximizes the expected
information gain for the PSP linkage [3]. Therefore, it is
important to combine characterization and reconstruction
so that given arbitrary combinations of descriptors and
their values, the reconstruction can be triggered from these
descriptors. Furthermore, recent research indicates that there
is no single best descriptor for microstructure reconstruc-
tion [4] and for PSP linkages [5], but that it is reasonable
to choose descriptors based on the structure at hand. For
this purpose, we present MCRpy1, a modular and extensible
open-source tool that facilitates easy microstructure charac-
terization and reconstruction based on arbitrary descriptors.

Free open-source platforms are a great way of harnessing
the advantages of digitization and modern computational
infrastructure. The free accessibility allows researchers to
quickly test each others’ ideas and to develop them further.
The open-source nature of such a platform enables it to
become a collaborative project, considerably leveraging its
potential. Especially in complex scientific disciplines, such
collaboration is indispensable. As an example, consider the
field of machine learning, specifically neural networks [6].
In the beginning of research on neural networks, newcomers
had to implement relatively complex procedures like back-
propagation before being able to reproduce results from the
literature, let alone to develop them further. Later, easy-
to-use open-source libraries like TensorFlow and PyTorch
have greatly lowered the hurdle, allowing more researchers
to enter the field easily. This surely contributed to the rapid
progress in the last decades and to the plethora of neural net-
work architectures and applications that is observed today.

The digital infrastructure of the materials science com-
munity has grown considerably as a consequence of the
materials genome initiative [7] and similar projects. Despite
the rapidly growing number of tools for materials innovation
in general, MCR specifically is in a comparable position
now as machine learning was 20 years ago: A great variety
of methods exists, but in the absence of a common platform
and interface, every newcomer in the field has to implement

fundamental technologies like the lineal path function and
the Yeong–Torquato algorithm by hand. This is a big hurdle
and thwarts rapid progress. Thus, the goal of this contribu-
tion is to accelerate MCR research by providing MCRpy as
an easy-to-use, extensible and flexible software solution that
aims at realizing a seamless workflow by providing various
interfaces to new and established techniques.

The work starts with Sect. Current Digital Infrastructure,
where the current digital infrastructure is reviewed and it
is outlined how MCRpy integrates into it. Then, MCRpy is
presented in Sect. Overview of MCRpy. Typical application
workflows are presented in Sect. Typical MCRpy Workflows
and finally, a conclusion is drawn in Sect. Conclusions and
Outlook.

Current Digital Infrastructure

After President Barack Obama announced the US-American
Materials Genome Initiative [7] that provided substantial
funding for accelerated materials development, collabora-
tive projects and digital frameworks were initiated all over
the world. A non-exhaustive list includes the American
NanoMine open data resource [8], the European NOMAD-
CoE [9] and its platform described in [10] and the Swiss
NCCR MARVEL [11] with its AiiDA platform [12] described
in [13]. The extremely popular and often-cited pymatgen
library [14] can be mentioned as an early contribution to
open-source materials science software infrastructure. This
trend continues, as can be seen with the recent example
radonpy [15]. However, much of this research is focused
on deriving material properties from considerations on the
atomistic length scale.

On the continuum length scale, the Python Materials
Knowledge System (pyMKS) [16] is a notable open-source
framework. Its efficient FFT-based implementation of the
spatial two-point correlation S2 facilitates easy microstruc-
ture characterization. However, in pyMKS, microstructure
characterization is limited to S2 and no further descriptors
are available. Moreover, pyMKS does not allow for micro-
structure reconstruction, only characterization. A strong
focus lies on efficient homogenization [17] and direct cou-
pling to an internal finite element solver, SfePy [18, 19].
This is very convenient for simple problems like elasticity.
For advanced techniques like crystal plasticity, external soft-
ware like the Düsseldorf Advanced Materials Simulation
Kit (DAMASK) [20] can be used. Furthermore, pyMKS pro-
vides an easy interface for dimensionality reduction of the
descriptor space and for establishing structure-property link-
ages based on the reduced descriptors and the correspond-
ing homogenized properties. In summary, pyMKS acts as
an overarching framework to implement ICME workflows.

1  https://​github.​com/​NEFM-​TUDre​sden/​MCRpy

https://github.com/NEFM-TUDresden/MCRpy

452	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

For numerical simulation of microstructures, many open-
source tools are available, ranging from general and easy-to-
use packages like SfePy [18, 19] to special-purpose software
like DAMASK [20], which comes with a highly optimized
Fourier-based crystal plasticity solver. Furthermore, cur-
rent research on FFT-based homogenization [21] is making
remarkable progress that might lead to an open-source tool
soon. Thus, with pyMKS as an overarching framework and
numerous tools and progress for numerical simulation and
homogenization, an open-source MCR software package can
be identified as a final component of ICME workflows.

To the authors’ best knowledge, the only widely used
software tool for MCR is DREAM.3D [22], a long devel-
oped and full-fledged program. Its roots date back around 20
years to the early works of Michael Groeber and the Car-
negie Mellon University microstructure builder. Despite
this long history, DREAM.3D still enables numerous cur-
rent research activities in materials innovation and ICME,
see for example [23]. This success is empowered by the
many features, robustness, efficiency and easy user inter-
face of DREAM.3D, which may be partially attributable to
its open-source core. Thus, DREAM.3D can be highly rec-
ommended for the workflows it implements. However, the
internal microstructure representation and the available pipe-
lines in DREAM.3D are mainly intended for certain material
systems and microstructure descriptors. The internal data
format as well as the provided characterization and recon-
struction algorithms are centered around classical descrip-
tors like grain size distribution functions and orientation
distribution functions. This makes DREAM.3D excellent at
reconstructing geometric inclusions like ellipses and tex-
ture as in metallic materials, but multi-phase materials with
complex morphology as shown in Fig. 8 cannot be realized.
Furthermore, DREAM.3D is written in C++, which is not
common among engineering researchers due to its complex-
ity. In recent research, new microstructure descriptors or
reconstruction algorithms are sometimes provided as Python
or Matlab code in a GitHub repository, but are hardly ever

implemented in C++ as a DREAM.3D pipeline2. Even if
that was the case, then these descriptors could not be readily
used for reconstruction since the DREAM.3D reconstruction
pipelines are tailored toward specific descriptors and would
need to be re-implemented. Thus, DREAM.3D is an excel-
lent and robust program, but it is mainly suited for specific
practical applications and for certain materials.

In contrast, the present work aims at creating a flexible
research platform for multiphase materials of high mor-
phological complexity. Thus, MCRpy clearly differs from
DREAM.3D regarding the targeted audience and the scope of
materials systems. As a Python package, it integrates natu-
rally with numerous tools for numerical simulation, machine
learning or materials science workflows. Especially pyMKS
can act as an overarching ICME framework, where the pre-
sent work provides an MCR solution. In summary, MCRpy
attempts to fill a striking gap in the ICME software land-
scape. A theoretical understanding of MCRpy is provided
in Sect. Overview of MCRpy, followed by an illustration
of typical workflows in Sect. Typical MCRpy Workflows.

Overview of MCRpy

Microstructure characterization and reconstruction in Python
(MCRpy) is an open-source software tool accessible under
https://​github.​com/​NEFM-​TUDre​sden/​MCRpy. It is released
under the Apache 2.0 license and can be used

(i) as a program with graphical user interface (GUI),
intended for non-programmers and as an easy introduc-
tion to MCR,

Fig. 1   Schematic overview of MCRpy: Microstructures can be characterized by descriptors and reconstructed by optimization. Herein, descrip-
tors, losses and optimizers can be provided as flexible plugin modules

2  Note, however, ongoing developments with the eventual goal of
allowing DREAM.3D pipelines to be coded purely in Python: https://​
github.​com/​BlueQ​uartz​Softw​are/​dream​3d-​conda-​feeds​tock.

https://github.com/NEFM-TUDresden/MCRpy
https://github.com/BlueQuartzSoftware/dream3d-conda-feedstock
https://github.com/BlueQuartzSoftware/dream3d-conda-feedstock

453Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

(ii) as a command line tool, intended for automated and
large-scale application on high-performance computers
without graphical interface, and
(iii) as a regular PIP-installable Python module, intended
for performing advanced and custom operations in the
descriptor space.

A schematic overview is given in Fig. 1: The main func-
tionalities of MCRpy, characterization and reconstruction,
are explained in Sect. Characterization and Reconstruction,
respectively. Furthermore, additional functions are provided
to manipulate the microstructures and descriptors and to
visualize data. A complete set of the available operations
is given in Table 1, and supported inputs and outputs for
selected functions are summarized in Table 2. The core idea
of MCRpy is its extensibility in that arbitrary descriptors
can be used for characterization and arbitrary loss functions
combining arbitrary descriptors can be minimized using
arbitrary optimizers for reconstructing random heterogene-
ous media. This is outlined in Sect. Extensibility.

Characterization

The characterization function

assigns a given pixel-based microstructure M to a set of nD
corresponding descriptors Di . These descriptors, sometimes
referred to as statistical descriptors, quantify the microstruc-
tural morphology in a statistical and translation-invariant
manner3. Hereby, a microstructure with np different phases
is represented as a set of n

p
 indicator functions

(1)fC ∶ M ↦ {Di}
nD
i=1

For example, the volume fraction vf of a microstructure is a
very simple descriptor. Of course, the volume fraction cap-
tures some but not all information needed to describe the
microstructure. Several other quantities matter, for example
the size and shape of inclusions and the degree to which
distinct phases, are spatially clustered. Besides these clas-
sical descriptors, in the light of increasing computational
resources, recent research has been focused on more uni-
versal high-dimensional descriptors that are less dense in
information, but have higher descriptive capabilities in
total. As an early example for high-dimensional descrip-
tors, spatial correlations [24] have proven to be a versatile
tool that is still used today [2]. A good introduction can be
found in [25]. A differentiable generalization of spatial cor-
relation is presented in [26] and used in this work. Spatial
correlations have inspired a range of conceptually similar
descriptors like the lineal path function [27], cluster corre-
lation function [28] and polytope function [29]. The reader
is referred to [2] for a comprehensive overview. Finally, the
Gram matrices of the feature maps of pre-trained convo-
lutional neural networks have been shown to contain rel-
evant microstructural information [30]. Remarkable results
in microstructure reconstruction have been achieved using

(2)Ip(x) =

{
1, if x in phase p

0, else.

Table 1   Functions Function Explanation

characterize characterize a microstructure, see Sect. Characterization
reconstruct reconstruct a microstructure given the descriptors, see Sect. Reconstruction
match characterize and reconstruct immediately, for validation and for 2D-to-3D workflows
view plot microstructures, descriptors and convergence data interactively or save to a file
smooth smooth a microstructure
merge merge different descriptors to prescribe them on orthogonal sections for reconstruct-

ing anisotropic structures
interpolate interpolate between given descriptors

Table 2   Possible inputs and outputs for selected MCRpy functions

Function Input Output

Characterize 2D M → {Di}

3D M → {Di}

3D M → {Dx
i
D

y

i
Dz

i
}

merge 2 or 3 orthogonal {Di} → {Dx
i
D

y

i
Dz

i
}

Reconstruct {Di} → 2D M
{Di} → 3D M
{Dx

i
D

y

i
Dz

i
} → 3D M

2D M → 2D M
Match 2D M → 3D M

3D M → 3D M

3  While some descriptors, such as the volume fractions, are also rota-
tion-invariant, this property does not apply in the general case. For
example, the spatial correlations in MCRpy are not rotation-invariant.

454	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

such Gram matrices alone [31, 32] and in combination with
other descriptors [4, 33].

Finding a microstructure description that is both dense
and contains all relevant information is an active field of
research [2]. Examples are the recently developed entropic
descriptors [34] or polytope functions [29]. Thus, besides
the currently available descriptors listed in Table 3, users can
add a descriptor plugin to MCRpy. If the descriptor plugin
is defined with an indicator function as input, it is applied to
the indicator function of each phase separately. Furthermore,
a 2D descriptor is automatically applied on and averaged
over 2D slices of a 3D structure. The only requirement posed
on new descriptors is that they must be computable on a
pixel or voxel geometry. More details on extensibility can be
found in Sect. Extensibility. All of the available and added
descriptors can be used for microstructure reconstruction,
which is discussed in the following section.

Reconstruction

In MCRpy, microstructure reconstruction is fundamentally
regarded as an optimization problem

where the reconstructed microstructure Mrec minimizes a
loss function L . The loss function depends on nD different
descriptors {Di}

nD
i=1

 and quantifies the distance between their
current and desired values. Herein, Di(M) denotes the value
of the i-th descriptor associated with the current microstruc-
ture and its desired value Ddes

i
 . Naturally, as in the charac-

terization step, arbitrary descriptors can be used, for exam-
ple the volume fractions vf , the spatial correlations S or the
Gram matrices G. For the loss function L , a simple choice
is a weighted sum over the mean squared error norm. Differ-
ent loss functions are available in MCRpy and the user can
implement additional ones. Finally, given a set of descriptors
and a loss function, an optimization problem emerges as a
special case of Equation 3. This optimization problem can
be solved using an optimizer, which is provided as a plugin
module. If all descriptors are differentiable, then a gradient-
based optimizer like L-BFGS-B [36] can be used, leading to
the very efficient differentiable MCR [4, 26]. Otherwise, the

(3)Mrec = argmin
M

L
(
{(Di(M), Ddes

i
)}

nD
i=1

)
,

choice is limited to gradient-free optimizers like simulated
annealing.

As a simple example, if only the spatial two-point cor-
relation S2 is used as a descriptor and the loss function is
formulated as a mean squared error norm of the descriptor
difference, the following optimization problem emerges:

If simulated annealing is chosen as an optimizer, MCRpy
effectively performs the well-known Yeong–Torquato algo-
rithm as used in [37].

As a more recent example, if the Gram matrices G of the
feature maps of the VGG-19 convolutional neural network
are chosen as a descriptor [30] for the same loss function,
the emerging optimization problem

allows for a gradient-based optimizer. If L-BFGS-B [36] is
chosen for this purpose, MCRpy effectively performs the
approach of Li et al. [31], which is a special case of differ-
entiable MCR [26].

As a final example, the differentiable three-point corre-
lations S3 , the above-mentioned Gram matrices G and the
normalized total variation V are combined. The loss func-
tion accumulates the weighted mean squared error norm,
where �Di

 denotes the weight of the i-th descriptor. If the
resulting optimization problem

is solved using the gradient-based L-BFGS-B optimizer,
MCRpy effectively performs the differentiable MCR algo-
rithm as used in [4].

As can be seen, different parameter settings allow to re-
create well-known reconstruction algorithms as well as to
try out new ones by simply changing the arguments. As an
overview, all descriptors, optimizers and loss functions are
listed in Table 4.

(4)Mrec = argmin
M

||S2(M) − Sdes
2
||MSE .

(5)Mrec = argmin
M

||G(M) − Gdes||MSE

(6)

Mrec = argmin
M

�S||S3(M) − Sdes
3
||MSE

+�G||G(M) − Gdes||MSE

+�V||V(M) − V
des||MSE

Table 3   Microstructure
descriptors that are
implemented in MCRpy 

Descriptor Differentiable Comment

v
f

VolumeFractions ✓ -
S̃ Correlations ✓ S̃

2
 and S̃

3
 ; see [26]

S FFTCorrelations ✗ only S
2
 ; FFT-based; from pyMKS [16]

G GramMatrices ✓ using VGG19 [35]; see [31]
V Variation ✓ normalized total variation; see [4]
L̃ LinealPath ✓ see Appendix A

455Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

Extensibility

The central advantage of MCRpy is its extensibility in
that descriptors, loss functions and optimizers can be eas-
ily provided by anyone. For example, new optimization-
based reconstruction algorithms like the work of Cecen
at al. [43] can be implemented as an optimizer plugin
to combine them with all the available microstructure
descriptors. This is achieved by a plugin architecture,
which is sketched in Fig. 2. In this section, we explain the
underlying software pattern, whereas exact instructions
and an example on how to write a plugin are given in
Sect. Defining a custom descriptor. In the following, the
plugin architecture is explained for the case of descrip-
tors. The same idea is employed for loss functions and
optimizers.

A descriptor plugin can be written by simply inherit-
ing from the abstract Descriptor class. Consequently,
the available descriptor plugins are not known at the time
of writing the MCRpy core code, so they must be loaded
dynamically as soon as the characterization or reconstruc-
tion module demands the plugin. This is done by means of
a loader module based on importlib. Upon import, a
descriptor plugin registers itself at a descriptor factory. After
that, the descriptor factory can be queried to create descrip-
tor instances from the plugin. The descriptor factory then
returns a callable which computes the descriptor value given

a microstructure. This callable can now be used to char-
acterize microstructures, compose loss functions, compute
gradients using automatic differentiation and to reconstruct
microstructures.

Thus, adding a descriptor plugin to MCRpy merely con-
sists of adding a file with the plugin definition to the right
directory, while the rest of the code does not need to be
changed. The descriptor immediately becomes available for
characterization and for reconstruction in combination with
arbitrary other descriptors, arbitrary loss functions and arbi-
trary optimizers.

Typical MCRpy Workflows

Typical use-cases and workflows of MCRpy are illustrated
in this section by means of three representative examples.
First, in Sect. Obtaining a 3D domain from a 2D microstruc-
ture slice, a plausible 3D volume element is reconstructed
from a 2D microstructure slice. This very relevant, since 3D
information can be very time- and cost-intensive to obtain
experimentally. Secondly, in Sect. Obtaining a set of similar
volume elements, a statistically similar set of small volume
elements is generated from a single example. This greatly
reduces the computational effort for numerical homogeni-
zation. Thirdly, in Sect. Manipulating the descriptor space,
descriptor values are directly manipulated and used for
reconstructing novel structures. Techniques like this may
be explored in the future to augment data sets and explore
PSP linkages. These three examples are demonstrated in
the three modes of operating MCRpy, namely via a GUI, as
a command line tool and as a Python library, respectively.
Note that this order is chosen for demonstration purposes
only and it is possible to execute all three workflows with all
three modes of operation. Finally, in Sect. Defining a custom
descriptor, it is demonstrated how to add a custom descriptor
to MCRpy and how to use it for characterization and recon-
struction. The original structures are taken from pyMKS [16]
for Sect. Obtaining a 3D domain from a 2D microstructure
slice to Manipulating the descriptor space and from [31] for
Sect. Defining a custom descriptor.

Table 4   Microstructure descriptors, optimizers and loss functions
that are implemented in MCRpy. Simulated annealing is the only
optimizer in the list that is not gradient-based. More details on the
descriptors are given in Table 3.

Descriptors Optimizers Loss functions

Volume fractions L-BFGS-B [36] 2D/3D weighted MSE
Correlations TNC [38] 2D/3D weighted RMS

error
Lineal path Adam [39], Adag-

rad [40], Adadelta [41]
2D/3D weighted L1

distance
Gram matrices RMSprop [42] 2D/3D weighted L2

distance
Variation SGD [42]

Simulated Anneal-
ing [24]

Fig. 2   Schematic overview
of the plugin architecture in
MCRpy 

456	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

Obtaining a 3D Domain from a 2D Microstructure
Slice

As a first example, MCRpy is used to reconstruct a plausi-
ble 3D volume element given a segmented 2D slice. This is
a common task since experimental observations are often
available only in 2D. The 3D volume element can be used
for example for numerical simulations. From an algorithmic

perspective, this goal is achieved by computing the descrip-
tor on the given slice and prescribing it on every slice of the
microstructure, details cf. [4].

This task is solved using the MCRpy GUI as shown in
Fig. 3. A simple approach would be characterization and
immediate reconstruction, but as mentioned in Table 1,
MCRpy provides a shortcut for this in the match function.
After selecting the match-action on the left, the relevant
options can be set in the center. The name of each option is
identical to the command line and the Python library, allow-
ing users to easily switch interfaces. By default, a 2D struc-
ture is reconstructed in 2D. However, by using the option
add_dimension, the extent of the reconstructed structure
in z-direction is set to the desired value. The differentiable
three-point correlations S̃3 as proposed in [26] are chosen as
descriptor. Furthermore, as discussed in [4], the variation V
is employed as a descriptor in order to suppress noise in the
3D reconstruction. The weights of S̃3 and V are empirically

Fig. 3   Screenshot of the MCRpy graphical user interface. After selection an action on the left, all options can be set in the center and performed
upon clicking start. The options are identical to the command line interface and the Python library

(a) (b)

Fig. 4   Results for the example in Section Obtaining a 3D domain
from a 2D microstructure slice

457Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

set to 1 and 100, respectively4. Finally, the role of the set-
ting limit_to needs to be discussed. The parameter is
introduced in [26] as P and Q and quantifies the length in
pixels up to which spatial correlations are computed with the
highest-possible precision. All longer-ranged correlations
are computed on a lower-resolution version of the structure
in order to save computational resources, cf. [26]. With a
default of 16, it allows a flexible trade-off between accuracy
and efficiency. A quantitative analysis of wallclock time and
memory requirements is given in Appendix D. In this exam-
ple, it is lowered to 8 in order to accelerate the computations.

After setting all options, the reconstruction can be started
and the results can be viewed from the GUI by selecting
the view-action on the left. 2D microstructures are plotted
directly, whereas 3D structures are exported to and opened
in ParaView [44]. The original 2D slice and the recon-
structed 3D volume are shown in Fig. 4. Note that for 2D-to-
3D reconstruction using multiple orthogonal 2D slices, an
additional descriptor merging step is required as discussed
in Sect. Manipulating the descriptor space and carried out
in Appendix C.

In addition to the final microstructure, a convergence
data file is written, which can be viewed interactively
with MCRpy as shown in Fig. 5. On the left, the loss is
plotted over iterations along with blue dots indicating inter-
mediate results. The user can click on these dots to have
the corresponding microstructure displayed on the right.

For 3D structures, only one slice is plotted and the user can
scroll through the microstructure using the mouse wheel. For
displaying the raw phase indicator functions of multiphase
structures and other functionalities, the user is referred to the
documentation. In summary, the MCRpy GUI constitutes an
easily accessible solution for microstructure reconstruction.

Obtaining a Set of Similar Volume Elements

As a second example, a statistically similar set of volume
elements is created from a single microstructure example.
In numerical homogenization, a volume element can only be
called representative if it is large enough for the stochastic-
ity of the microstructure to have no effect on the effective
properties. In practice, this requirement can imply unfeasible
computational effort. If smaller volume elements are used,
it is still possible to quantify the effective behavior by using
sufficiently many smaller volume elements and statistically
aggregating the results. An example for structure-property
linkages based on this idea can be found in [45]. From an
MCR perspective, this requires characterizing the given
structure and reconstructing different random realizations
from it5.

This task is solved using MCRpy as a command
line tool as shown in Listing 1. First, the original 2D

Fig. 5   Interactive window for
inspecting convergence data.
By selecting the highlighted
dot on the left at iteration 60, a
slice of the intermediate result
is displayed on the right. In this
example, the indicator function
of phase 1 is displayed for
slice 18 of 64

5  In [26], the reconstruction was shown to converge to the exact same
microstructure that was used for the characterization. The same can
be seen for some cases in Fig. 8. However, this only happens in 2D
reconstruction (not in 3D) and only for certain descriptors and micro-
structures. In these cases, the desired descriptor prescribed for recon-
struction needs to be varied statistically in order to create a diverse
set of microstructure realizations. This aspect is not considered in the
following because in application, it is most useful to reconstruct 3D
structures.

4  The role of the weights is discussed in [4]. If the weight of the vari-
ation is too small, the noise is not suppressed well enough. If it is too
large, the optimization problem becomes harder to solve and more
iterations are needed for convergence.

458	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

microstructure stored as ms_slice.npy is character-
ized using the same parameters as in Sect. Obtaining a 3D
domain from a 2D microstructure slice (line 1). Then, nine
different 3D structures are generated by a simple loop over
the reconstruction script (lines 2-7). Note that the extent
of the reconstructed structures in voxels is set indepen-
dently of the original slice (line 5). Furthermore, the loop
index is passed to the reconstruction script in order to have
it added to all result filenames and prevent to overwrite
previous results (line 5). Because the chosen descriptors
are differentiable, the standard optimizer L-BFGS-B [36]

(a) (b)

Fig. 6   Input and results generated from the code in Listing 1

can be used, allowing to harness the computational effi-
ciency of DMCR [4, 26]. On an Nvidia A100 GPU, the
reconstructions take around 25 minutes per structure for
500 iterations. The original structure and the results can be
seen in Fig. 6. In summary, the command line interface is
analogous to the GUI and allows for easy automation and
large-scale application.

459Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

Manipulating the Descriptor Space

As a third example, the explicit availability of the
descriptor is exploited by directly manipulating it. Spe-
cifically, MCRpy is used to interpolate between two
given microstructures in a morphologically meaningful
way. Consider two microstructures that could stem from
different sets of process parameters. It can be interest-
ing to create a morphology that is a mix between these
two structures. For example, if numerical simulations
and homogenization of the interpolated structure predict
favorable effective properties, it might be worth to fine-
tune the process parameters or try to establish a PSP
linkage to manufacture these structures. Direct inter-
polation of the microstructures in terms of pixel values
is meaningless. As a simple alternative, we interpolate
linearly in the descriptor space and reconstruct micro-
structures from the interpolated descriptors.

This task is solved using MCRpy as a Python library
as shown in Listing 2. After defining the settings (lines

4-10), the original 2D microstructure slices are
loaded (lines 13-14) and characterized (lines 17-18). For
reconstructing elongated 3D structures, the 2D descrip-
tors need to be combined such that different descriptors
are used in different directions. The order thereby mat-
ters and mistakes can lead to geometrically unrealizable
descriptors6. In order to avoid confusion and mistakes,
MCRpy provides the function merge for this task. The
merged descriptors (lines 21-22) are then interpolated
in 5 steps including start and end (line 25). Each descrip-
tor is used for a 3D reconstruction, which returns the
convergence data and the final microstructure (line 29).
The convergence data is viewed in an interactive window
as shown in Fig. 5 (line 31). Finally, the microstructures
are smoothed by a Gaussian filter (line 32) and saved to
a file (line 33). The results are shown in Fig. 7. It can be
confirmed that linear interpolation in the descriptor space
leads to a visually reasonable transition between the cor-
responding microstructures.

(a) (b) (c) (e)

(f) (g) (i) (j)(h)

(d)

Fig. 7   The original descriptors (a, e) are linearly interpolated (b-d) and used for reconstruction to create a smooth transition between an iso-
tropic and an elongated microstructure (f-j). For the descriptor S̃3(�a, �b) , only the case that �a = �b = � is plotted for clarity

6  For example, consider the three planes x − y , x − z and y − z . Struc-
tures that are elongated in x-direction can be created by prescribing
horizontally elongated descriptors in planes 1 and 2 and an isotropic
descriptor in plane 3. However, if the same horizontally elongated
descriptors are prescribed in planes 1 and 3, the structure cannot be
realized: Plane 1 requires elongations in the y-direction, whereas
plane 3 requires the elongations to be in the z-direction and not in y.

460	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

(a) (b) (c) (d)

(e)

(k) (l)(i) (j)

(h)(f) (g)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 8   Comparison between original microstructures and reconstruction results from different descriptors. For a clearer visualization, the recon-
structed microstructures are shifted periodically to match the original structure as closely as possible

461Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

7  By default, low-dimensional descriptors are visualized via bar plots
and high-dimensional descriptors are reshaped to an approximately
quadratic array and plotted as a heatmap. This behavior can be over-
written for each descriptor subclass separately.

Defining a Custom Descriptor

MCRpy can be easily extended by adding custom plugin
modules. In this section, the procedure is demonstrated
by means of a descriptor plugin. Similar concepts apply to
loss functions and optimizers. First, the implementation of
a descriptor plugin is discussed for the volume fraction vf .
Secondly, a differentiable approximation to the lineal path
function is developed and tested.

Listing 3 shows the plugin source code for the volume
fraction vf . Like all descriptors in MCRpy, the volume frac-
tion must inherit from the abstract Descriptor class (line
5). This base class provides

(i) a wrapper that applies descriptors defined for single
phases to the indicator function of each phase,
(ii) a wrapper to compute multigrid descriptors as dis-
cussed in [26] and
(iii) default functions for visualizing descriptors7.

In this case, it is reasonable to define the descriptor for a
single phase and let the superclass handle the generalization
to multiple phases. For this purpose, the subclass function
make_singlephase_descriptor is defined (line 9).
This function receives information about the microstructure,
like the resolution, which is not needed in this case and
therefore summarized via **kwargs. It returns a call-
able which computes the descriptor given the indicator
function of a phase (line 12). In order to allow for automatic
differentiation of the descriptor with respect to the micro-
structure, this callable needs to be implemented in Ten-
sorFlow. In contrast, a non-differentiable descriptor would
be implemented in Numpy and integrated into the com-
putation graph by MCRpy using the TensorFlow function

462	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

tf.py_function. Finally, the plugin is required to regis-
ter itself at the descriptor factory using its class name (lines
16-17).

In the following, the same procedure is applied to a differ-
entiable approximation L̃ to the lineal path function L, which
is developed in Appendix A. Naturally, the code for defin-
ing L̃ is much longer than Listing 3 and is not given in this
paper. Instead, the reader is referred to the GitHub repository

for viewing the code. After adding the descriptor definition
to the mcrpy/descriptors directory, it is accessible for
characterization and reconstruction via the MCRpy GUI, the
command line interface and the Python library.

In the Yeong–Torquato algorithm, the lineal path function
is often employed to compensate for the shortcomings of
the two-point correlation S2 alone [2, 24]. As an alternative
approach to enriching S2 , the differentiable three-point cor-
relations S̃3 are used in [26]. Furthermore, Gram matrices G
have become a common descriptor recently [4, 31–33]. In
order to determine a best-practice for gradient-based recon-
struction, S̃3 is compared to G and a combination of S̃2 and L̃
in Fig. 8. It can be seen that S̃3 yields perfect reconstructions
except for the copolymer, which can only be reconstructed
well from G. In contrast, G yields acceptable results for
all structures. The combination of S̃2 and L̃ performs very
poorly for the alloy and the copolymer and is relatively noisy
for the carbonate and ceramics. However, it outperforms G
for the polymer composite. In summary, the results in Fig. 8
indicate that including higher-order information to S̃2 via S̃3
is more promising for gradient-based reconstruction than
via the newly proposed differentiable approximation to the
lineal path function L̃.

The more relevant aspect, however, is how easily new
descriptors can be assessed using MCRpy. After defin-
ing a plugin as shown in Listing 3, it can be used for

characterization and reconstruction and evaluated seam-
lessly. This extensibility facilitates quick and easy experi-
mentation, allowing researchers to assess new MCR tech-
niques easily and provide them to their colleagues.

Conclusions and Outlook

MCRpy is a powerful and extensible open-source Python
library and toolkit for microstructure characterization and
reconstruction. Besides these core features, MCRpy pro-
vides a plethora of convenient tools for inspecting and com-
paring descriptors, analyzing reconstruction results and
controlling the descriptor space. It is easily applied via a
GUI and brought to automated large-scale application on
high-performance computers through a command line inter-
face. For advanced and custom operations in the descriptor
space, MCRpy can be imported and used as a Python module
with direct access to the structures and descriptors. Typical
workflows for these interfaces are presented in this work by
means of different MCR tasks.

A central design aspect in MCRpy is its extensibil-
ity in that descriptors, loss functions and optimizers can
be provided by the community as simple plugin modules.
An example for a simple plugin is given in this work. We
hope that the open source nature of the code and the plugin

463Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

architecture will make MCRpy an international collabora-
tive project with contributions from numerous researchers.
This growth can leverage the potential of the presented tool
to facilitate faster and easier MCR research and ultimately
help accelerating materials development.

Appendix 1: Differentiable Approximation
to Lineal Path Function

The lineal path function L is a well-established microstruc-
ture descriptor [27] that is often used in the Yeong–Torquato
algorithm to compensate for the shortcomings of the two-
point correlation S2 alone [2, 24]. Given a vector � = (rx, ry) ,
it yields the probability that � lies entirely within a single
phase if it is placed randomly in the structure. In contrast
to S2 , which considers only the start and end point of the
vector, L incorporates information about the connectedness
of the phases. In this section L̃ is presented as a differenti-
able approximation to L.

The lineal path function is approximated using a
convolve-threshold-reduce pipeline similarly to [26]. For
this purpose, the vector or line � is discretized to a pixel
grid as shown in Fig. 9 and divided by the length of the
line. In this work, the Bresenham line algorithm [46] is
used, but alternative approaches like the Xiaolin Wu line
algorithm [47] might be equally viable options that can be
investigated in future works. In the convolve step, the dis-
cretized line from Fig. 9 is used as a mask for a convolu-
tion with periodic boundary conditions. The output of the
convolution is an image where each pixel corresponds to
the discretized line being placed at the pixel’s location. The
pixel value is 0 if no part of the line lies in phase 1 and 1 if
the line lies completely in phase 1. If only parts of the line
are in phase 1, the value is between 0 and 1. These pixels
can be set to zero by thresholding the image with a value t,
where 1∕(1 − ||�||∞) < t < 1 . The threshold step thus yields
an image which can be interpreted as an ensemble of realiza-
tions, where each pixel takes the value 0 or 1. In the reduce
step, this ensemble is averaged to obtain the probability of a
randomly placed line being entirely in phase 1.

To make the convolve-threshold-reduce pipeline differen-
tiable, only the thresholding needs to be modified. The hard
thresholding is therefore approximated using a scaled and
shifted differentiable sigmoid function8 as shown in Fig. 10.
This introduces errors, because the ensemble to average does
not contain only ones and zeros but also intermediate values.
Unlike in [26], where a similar error for S̃ could be elimi-
nated by deriving a correction step, the difference between L
and L̃ cannot be quantified easily. Thus, it is clear that L̃ is
only an approximation to L, not a generalization. This is not
problematic if the same descriptor is used for characteriza-
tion and reconstruction.

To the authors' best knowledge, this concludes the first
differentiable approximation to the lineal path function.

Appendix 2: Underlying Technologies

MCRpy is programmed in Python and based on very com-
mon packages like Numpy, Scipy, Matplotlib and Tensor-
Flow. While simulated annealing is implemented from
scratch, the gradient-based optimizers are taken from Scipy
and TensorFlow. Furthermore, TensorFlow is used for auto-
matic differentiation of the loss function and the descrip-
tors as well as for just-in-time compilation via AutoGraph.
This allows MCRpy to run highly optimized code on GPUs
despite being written entirely in Python. As optional depend-
encies, Gooey is required to run the MCRpy GUI and pyMKS
is used in a descriptor plugin for FFT-based 2-point correla-
tions. A summary of required and optional dependencies and
their versions is given in Table 5.

Fig. 9   A discretization of the vector � to a discrete pixel grid using
Bresenham’s method [46]

Fig. 10   Approximation of a hard threshold by a scaled and shifted
differentiable sigmoid function

Table 5   Software dependencies for the current version of MCRpy 

Package Required Version

numpy yes ≥ 1.20.1

matplotlib yes ≥ 3.3.4

scipy yes ≥ 1.6.2

tensorflow yes ≥ 2.3.1

pymks for FFT-based correlations ≥ 0.4.1

gooey for GUI ≥ 1.0.8.1

8  We use the same function as in [26].

464	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

Appendix 3: 2D‑to‑3D Reconstruction
from Multiple Images

Reconstructing a 3D microstructure from multiple orthogo-
nal 2D slices requires one step more than direct isotropic
2D-to-3D reconstruction. As discussed in Sect. Manipulat-
ing the descriptor space, after characterization, the descrip-
tors need to be merged using the merge function before
reconstruction. Like any operation, this can be done in the
graphical interface, on the command line or via Python as
shown in Listing 2. An exemplary result is shown in Fig. 11.

Appendix 4: Computational Efficiency

The computational efficiency of MCRpy is measured in terms
of wallclock time and memory requirements on an Nvidia
A100 GPU. Note that both quantities depend on the chosen
descriptor and its accuracy controlled by the limit_to
parameter as well as the microstructure resolution.

The wallclock time and memory requirements are
reported in Table 6 for varying limit_to and in
Table 7 for varying microstructure resolution. While the
descriptor-based reconstruction in MCRpy is not as fast as
machine learning-based methods such as [48, 49] it lies
in a similar order of magnitude as a numerical simula-
tion of the generated structures. Regarding the memory
requirements, it should be mentioned that the just-in-time
compilation of TensorFlow trades off available memory
for improved wallclock time if possible. Furthermore, it
should be noted that the memory requirements depend on
the chosen optimizer. While L-BFGS-B [36] is chosen
here due to its fast convergence, the Adam optimizer [39]
can be used to save memory by increasing the number of
iterations.

Finally, the scalability for a number of indicator func-
tions p > 2 is discussed. The wallclock time per iteration
as well as the memory consumption both grow linearly
in p because the reconstruction cost is governed by the

computation of the descriptors and their gradients. The
requirement that the sum of all indicator functions should
be 1 at each position causes negligible computational over-
head per iteration. However, depending on how it is enforced
during optimization, it can influence the wallclock time by
an increased number of required iterations. While Simulated
Annealing fulfills this requirement by construction, all cur-
rently implemented gradient-based optimizers use a penalty
method. In practice, the authors have observed a slightly
increased number of iterations for p = 3 , but have no experi-
ence with p ≥ 4.

Acknowledgements  The group of M. Kästner thanks the German
Research Foundation DFG which supported this work under Grant
number KA 3309/18-1. Furthermore, this work is partially funded by
the European Regional Development Fund (ERDF) and co-financed by

(a) (b) (c) (d)

Fig. 11   Results for reconstructing a 3D microstructure from 3 orthogonal 2D slices

Table 6   Wallclock time and memory requirements for reconstructing
the structure from Sect. Obtaining a 3D domain from a 2D micro-
structure slice with different values of limit_to. Note that Tensor-
Flow trades off memory for speed and lower memory consumption is
possible.

Note that TensorFlow trades off memory for speed and lower memory
consumption is possible.

Limit_to in px Time in min RAM in GB

4 5 4.2
8 7 4.2
16 11 4.4
32 51 5.1

Table 7   Wallclock time and memory requirements for reconstructing
the structure from Sect. Obtaining a 3D domain from a 2D micro-
structure slice with different microstructure resolutions and limit_
to = 8. Note that TensorFlow trades off memory for speed and
lower memory consumption is possible.

Resolution in px Time in min RAM in GB

64 7 4.2
128 20 5.9
256 102 18.1

465Integrating Materials and Manufacturing Innovation (2022) 11:450–466	

1 3

tax funds based on the budget approved by the members of the Saxon
State Parliament under Grants 100373334. All presented computations
were performed on a HPC-Cluster at the Center for Information Ser-
vices and High Performance Computing (ZIH) at TU Dresden. The
authors thus thank the ZIH for generous allocations of computer time.

Author Contributions  P. S was involved in the conceptualization, for-
mal analysis, investigation, methodology, software, validation, visu-
alization, writing—original draft, writing—review and editing. A. R
contributed to the conceptualization, software, writing—review and
editing. K. K helped in the supervision, visualization, writing—review
and editing. M. A was involved in the supervision, writing—review
and editing. M. K contributed to the funding acquisition, resources,
supervision, writing—review and editing.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Code availability  MCRpy is available on the GitHub repository https://​
github.​com/​NEFM-​TUDre​sden/​MCRpy.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Chen W, Iyer A, Bostanabad R (2022) Data-centric design: a new
approach to design of microstructural materials systems. Engi-
neering. https://​doi.​org/​10.​1016/j.​eng.​2021.​05.​022

	 2.	 Bostanabad R, Zhang Y, Li X, Kearney T, Brinson LC, Apley DW,
Liu WK, Chen W (2018) Computational microstructure charac-
terization and reconstruction: review of the state-of-the-art tech-
niques. Prog Mater Sci 95:1–41. https://​doi.​org/​10.​1016/j.​pmats​
ci.​2018.​01.​005

	 3.	 Khatamsaz D, Molkeri A, Couperthwaite R, James J, Arróyave
R, Srivastava A, Allaire D (2021) Adaptive active subspace-based
efficient multifidelity materials design. Mater Des 209:110001.
https://​doi.​org/​10.​1016/j.​matdes.​2021.​110001

	 4.	 Seibert P, Raßloff A, Ambati M, Kästner M (2022) Descriptor-
based reconstruction of three-dimensional microstructures
through gradient-based optimization. Acta Mater 227:117667.
https://​doi.​org/​10.​1016/j.​actam​at.​2022.​117667

	 5.	 Liu H, Yucel B, Wheeler D, Ganapathysubramanian B, Kalidindi
SR, Wodo O (2022) How important is microstructural feature
selection for data-driven structure-property mapping? MRS Com-
mun. https://​doi.​org/​10.​1557/​s43579-​021-​00147-4

	 6.	 Sonnenburg S, Braun ML, Ong CS, Bengio S, Bottou L, Holmes
G, LeCun Y (2007) The need for open source software in machine
learning. J Mach Learn Res, p. 25. http://​jmlr.​org/​papers/​v8/​sonne​
nburg​07a.​html

	 7.	 de Pablo JJ, Jones B, Kovacs CL, Ozolins V, Ramirez AP (2014)
The materials genome initiative, the interplay of experiment, the-
ory and computation. Curr Opin Solid State Mater Sci 18(2):99–
117. https://​doi.​org/​10.​1016/j.​cossms.​2014.​02.​003

	 8.	 Nanomine: Ontology-enabled polymer nanocomposite open com-
munity data resource (2022). https://​tw.​rpi.​edu/​proje​ct/​nanom​ine/

	 9.	 European center of excellence for novel materials discovery
(NOMAD-CoE) (2021). https://​nomad-​lab.​eu/

	10.	 Ghiringhelli LM, Carbogno C, Levchenko S, Mohamed F, Lüders
M, Oliveira M, Scheer M (2016) Towards a common format for
computational materials science data. arXiv:​1607.​04738 pp. 1–16

	11.	 Computational design and discovery of novel materials (NCCR
MARVEL) (2021). https://​www.​nccr-​marvel.​ch/

	12.	 Automated interactive infrastructure and database for computa-
tional science (2021). https://​www.​aiida.​net/

	13.	 Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016)
AiiDA: automated interactive infrastructure and database for com-
putational science. Comput Mater Sci 111:218–230. https://​doi.​
org/​10.​1016/j.​comma​tsci.​2015.​09.​013

	14.	 Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S,
Gunter D, Chevrier VL, Persson KA, Ceder G (2013) Python
materials genomics (pymatgen): a robust, open-source python
library for materials analysis. Comput Mater Sci 68:314–319.
https://​doi.​org/​10.​1016/j.​comma​tsci.​2012.​10.​028

	15.	 Hayashi Y, Shiomi J, Morikawa J, Yoshida R (2022) RadonPy:
automated physical property calculation using all-atom classical
molecular dynamics simulations for polymer informatics. arXiv:​
2203.​14090 p. 42

	16.	 Brough DB, Wheeler D, Kalidindi SR (2017) Materials knowl-
edge systems in python–a data science framework for accelerated
development of hierarchical materials. Int Mater Manuf Innov
6(1):36–53. https://​doi.​org/​10.​1007/​s40192-​017-​0089-0

	17.	 Fast T, Kalidindi SR (2011) Formulation and calibration of higher-
order elastic localization relationships using the MKS approach.
Acta Mater 59(11):4595–4605. https://​doi.​org/​10.​1016/j.​actam​at.​
2011.​04.​005

	18.	 Cimrman R (2014) SfePy - write your own FE application. Proc.
of the 6th Eur. Conf. on Python in Science (Euroscipy 2013) pp.
69–69

	19.	 Cimrman R, Lukeš V, Rohan E (2019) Multiscale finite ele-
ment calculations in python using SfePy. Adv Comput Math
45(4):1897–1921. https://​doi.​org/​10.​1007/​s10444-​019-​09666-0

	20.	 Roters F, Diehl M, Shanthraj P, Eisenlohr P, Reuber C, Wong S,
Maiti T, Ebrahimi A, Hochrainer T, Fabritius HO, Nikolov S,
Friák M, Fujita N, Grilli N, Janssens K, Jia N, Kok P, Ma D, Meier
F, Werner E, Stricker M, Weygand D, Raabe D (2019) DAMASK
- the düsseldorf advanced material simulation kit for modeling
multi-physics crystal plasticity, thermal, and damage phenomena
from the single crystal up to the component scale. Comput Mater
Sci 158:420–478. https://​doi.​org/​10.​1016/j.​comma​tsci.​2018.​04.​
030

	21.	 Keshav S, Fritzen F, Kabel M (2022) FFT-based homogenization
at finite strains using composite boxels (ComBo). arXiv:​2204.​
13624 [cs, math]

	22.	 Groeber MA, Jackson MA (2014) DREAM.3D: A digital rep-
resentation environment for the analysis of microstructure in
3D. Int Mater Manuf Innov 3(1):56–72. https://​doi.​org/​10.​1186/​
2193-​9772-3-5

	23.	 Azhari F, Davids W, Chen H, Ringer SP, Wallbrink C, Sterjovski
Z, Crawford BR, Agius D, Wang CH, Schaffer G (2022) A com-
parison of statistically equivalent and realistic microstructural

https://github.com/NEFM-TUDresden/MCRpy
https://github.com/NEFM-TUDresden/MCRpy
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eng.2021.05.022
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1016/j.matdes.2021.110001
https://doi.org/10.1016/j.actamat.2022.117667
https://doi.org/10.1557/s43579-021-00147-4
http://jmlr.org/papers/v8/sonnenburg07a.html
http://jmlr.org/papers/v8/sonnenburg07a.html
https://doi.org/10.1016/j.cossms.2014.02.003
https://tw.rpi.edu/project/nanomine/
https://nomad-lab.eu/
http://arxiv.org/abs/1607.04738
https://www.nccr-marvel.ch/
https://www.aiida.net/
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.1016/j.commatsci.2012.10.028
http://arxiv.org/abs/2203.14090
http://arxiv.org/abs/2203.14090
https://doi.org/10.1007/s40192-017-0089-0
https://doi.org/10.1016/j.actamat.2011.04.005
https://doi.org/10.1016/j.actamat.2011.04.005
https://doi.org/10.1007/s10444-019-09666-0
https://doi.org/10.1016/j.commatsci.2018.04.030
https://doi.org/10.1016/j.commatsci.2018.04.030
http://arxiv.org/abs/2204.13624
http://arxiv.org/abs/2204.13624
https://doi.org/10.1186/2193-9772-3-5
https://doi.org/10.1186/2193-9772-3-5

466	 Integrating Materials and Manufacturing Innovation (2022) 11:450–466

1 3

representative volume elements for crystal plasticity models. Int
Mater Manuf Innov. https://​doi.​org/​10.​1007/​s40192-​022-​00257-4

	24.	 Yeong CLY, Torquato S (1998) Reconstructing random media.
Phys Rev E 57(1):495–506. https://​doi.​org/​10.​1103/​PhysR​evE.​57.​
495

	25.	 Jiao Y, Stillinger FH, Torquato S (2007) Modeling heterogeneous
materials via two-point correlation functions: basic principles.
Phys Rev E 76(3):031110. https://​doi.​org/​10.​1103/​PhysR​evE.​76.​
031110

	26.	 Seibert P, Ambati M, Raßloff A, Kästner M (2021) Reconstructing
random heterogeneous media through differentiable optimization.
Comput Mater Sci. https://​doi.​org/​10.​1016/j.​comma​tsci.​2021.​
110455

	27.	 Lu B, Torquato S (1992) Lineal-path function for random hetero-
geneous materials. Phys Rev A 45(2):922–929. https://​doi.​org/​10.​
1103/​PhysR​evA.​45.​922

	28.	 Jiao Y, Stillinger FH, Torquato S (2009) A superior descriptor of
random textures and its predictive capacity. Proceed Natl Acad Sci
106(42):17634–17639. https://​doi.​org/​10.​1073/​pnas.​09059​19106

	29.	 Chen PE, Xu W, Chawla N, Ren Y, Jiao Y (2019) Novel hier-
archical correlation functions for quantitative representation of
complex heterogeneous materials and microstructural evolution.
SSRN Electron J. https://​doi.​org/​10.​2139/​ssrn.​33972​69

	30.	 Lubbers N, Lookman T, Barros K (2017) Inferring low-dimen-
sional microstructure representations using convolutional neural
networks. Phys Rev E 96:052111. https://​doi.​org/​10.​1103/​PhysR​
evE.​96.​052111

	31.	 Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018)
A transfer learning approach for microstructure reconstruction
and structure-property predictions. Sci Rep 8(1):13461. https://​
doi.​org/​10.​1038/​s41598-​018-​31571-7

	32.	 Bostanabad R (2020) Reconstruction of 3D microstructures
from 2D images via transfer learning. Computer-Aided Des
128:102906. https://​doi.​org/​10.​1016/j.​cad.​2020.​102906

	33.	 Bhaduri A, Gupta A, Olivier A, Graham-Brady L (2021) An effi-
cient optimization based microstructure reconstruction approach
with multiple loss functions. arXiv:​2102.​02407 [cond-mat]

	34.	 Piasecki R, Plastino A (2010) Entropic descriptor of a complex
behaviour. Phys A: Stat Mech Appl 389(3):397–407. https://​doi.​
org/​10.​1016/j.​physa.​2009.​10.​013

	35.	 Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. CoRR abs/1409.1556

	36.	 Byrd RH, Hansen SL, Nocedal J, Singer Y (2015) A stochastic
quasi-newton method for large-scale optimization. arXiv:​1401.​
7020 [cs, math, stat]

	37.	 Cule D, Torquato S (1999) Generating random media from limited
microstructural information via stochastic optimization. J Appl
Phys 86(6):3428–3437. https://​doi.​org/​10.​1063/1.​371225

	38.	 Nash SG (1984) Newton-type minimization via the lanczos
method. SIAM J Numer Anal 21(4):770–788. https://​doi.​org/​10.​
1137/​07210​52

	39.	 Kingma DP, Ba J (2017) Adam: A method for stochastic optimiza-
tion. arXiv:​1412.​6980 [cs] pp. 1–15

	40.	 Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods
for online learning and stochastic optimization. J Mach Learn Res
12(7):39

	41.	 Zeiler MD (2012) ADADELTA: An adaptive learning rate
method. arXiv:​1212.​5701 [cs]

	42.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga
R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, War-
den P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: A system for
large-scale machine learning. In: Proceedings of the 12th USE-
NIX conference on operating systems design and implementation,
OSDI’16, p. 265-283. USENIX Association, USA

	43.	 Cecen A, Yucel B, Kalidindi SR (2021) A generalized and modu-
lar framework for digital generation of composite microstructures.
J Compos Sci 5(8):211. https://​doi.​org/​10.​3390/​jcs50​80211

	44.	 Ahrens J, Geveci B, Law C (2005) Paraview: An end-user tool for
large data visualization. The visualization handbook. Elsevier, p
717(8)

	45.	 Raßloff A, Schulz P, Kühne R, Ambati M, Koch I, Zeuner AT, Gude
M, Zimmermann M, Kästner M (2021) Accessing pore microstruc-
ture-property relationships for additively manufactured materials.
GAMM-Mitt. https://​doi.​org/​10.​1002/​gamm.​20210​0012

	46.	 Bresenham JE (1965) Algorithm for computer control of a digital
plotter. IBM Syst J 4(1):25

	47.	 Wu X (1991) An efficient antialiasing technique. Comput Gr
25(4):143–152

	48.	 Bostanabad R, Chen W, Apley D (2016) Characterization and
reconstruction of 3D stochastic microstructures via supervised
learning. J Microsc 264(3):282–297. https://​doi.​org/​10.​1111/​jmi.​
12441

	49.	 Kench S, Cooper SJ (2021) Generating 3D structures from a 2D
slice with GAN-based dimensionality expansion. Nat Mach Intell
3:299–305. https://​doi.​org/​10.​1038/​s42256-​021-​00322-1

https://doi.org/10.1007/s40192-022-00257-4
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1103/PhysRevE.76.031110
https://doi.org/10.1103/PhysRevE.76.031110
https://doi.org/10.1016/j.commatsci.2021.110455
https://doi.org/10.1016/j.commatsci.2021.110455
https://doi.org/10.1103/PhysRevA.45.922
https://doi.org/10.1103/PhysRevA.45.922
https://doi.org/10.1073/pnas.0905919106
https://doi.org/10.2139/ssrn.3397269
https://doi.org/10.1103/PhysRevE.96.052111
https://doi.org/10.1103/PhysRevE.96.052111
https://doi.org/10.1038/s41598-018-31571-7
https://doi.org/10.1038/s41598-018-31571-7
https://doi.org/10.1016/j.cad.2020.102906
http://arxiv.org/abs/2102.02407
https://doi.org/10.1016/j.physa.2009.10.013
https://doi.org/10.1016/j.physa.2009.10.013
http://arxiv.org/abs/1401.7020
http://arxiv.org/abs/1401.7020
https://doi.org/10.1063/1.371225
https://doi.org/10.1137/0721052
https://doi.org/10.1137/0721052
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1212.5701
https://doi.org/10.3390/jcs5080211
https://doi.org/10.1002/gamm.202100012
https://doi.org/10.1111/jmi.12441
https://doi.org/10.1111/jmi.12441
https://doi.org/10.1038/s42256-021-00322-1

	Microstructure Characterization and Reconstruction in Python: MCRpy
	Abstract
	Introduction
	Current Digital Infrastructure
	Overview of MCRpy
	Characterization
	Reconstruction
	Extensibility

	Typical MCRpy Workflows
	Obtaining a 3D Domain from a 2D Microstructure Slice
	Obtaining a Set of Similar Volume Elements
	Manipulating the Descriptor Space
	Defining a Custom Descriptor

	Conclusions and Outlook
	Acknowledgements
	References

