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Microstructure Modelling for Metallic Additive Manufacturing: A 

Review 

The microstructure of metal built using AM is highly dependent on the process 

parameters. However, experimentation on different process parameters for 

different materials is costly and time consuming. To overcome these challenges, 

numerical simulations provide insights that allow prediction of microstructure 

formed under different process parameters. Microstructure modelling requires 

coupling of macro-scale thermal model or experimentally measured temperature 

profiles with either a meso-scale or micro-scale microstructure model. In this 

review, the commonly used AM techniques for metals are introduced, followed by 

discussion on the microstructure of parts fabricated using these processes. This 

review then presents the latest models used in simulating different microstructural 

aspects of metal AM parts. In addition, the models were compared and the potential 

and challenges in microstructure modelling were discussed. 

Keywords: additive manufacturing; simulation; microstructure; numerical model; 

3d printing 

1 Introduction 

Additive manufacturing (AM) is a group of manufacturing methods to produce highly 

customized parts catering to the low volume markets (Chua and Leong 2017). According 

to ISO/ASTM 52900:2017, AM is the general term for those technologies that based on 

a geometrical representation creates physical objects by successive addition of material. 

AM involves process of joining materials to make parts from 3D model data, usually layer 

upon layer, as opposed to subtractive manufacturing and formative manufacturing 

methodologies. AM is able to build complex geometries without the need for moulds 

potentially reducing part count (Gibson, Rosen et al. 2010, Atzeni and Salmi 2012). The 

aerospace and healthcare industries can use AM to their advantage with metals like 

stainless steel, titanium, cobalt chrome and nickel alloys (Vandenbroucke and Kruth 

2007, Brunette, Tengvall et al. 2012, Cantor, Assender et al. 2015). While AM can 

achieve complex geometry, the manufacturing process is highly complex with numerous 



factors affecting the properties of the part. An important feature of metal is its 

microstructure. For a given metal there can be a variety of microstructural features that 

affects its mechanical properties. The size of grains, microsegregation of alloying 

elements, phases within the metal and size of dendrites relates to the tensile strength and 

ductility (Warren and Boettinger 1995, Lu, Luo et al. 2010). During the AM process, the 

microstructure is formed in-situ and would therefore depend largely on the process 

parameters and material used. The process parameters are dependent on the metal AM 

method used.  

1.1 Additive Manufacturing Methods 

There are two broad techniques in additive manufacturing of metals, powder bed fusion 

(PBF) and directed energy deposition (DED). PBF process includes selective laser 

sintering (SLS), selective laser melting (SLM) and electron beam melting (EBM). SLM 

and EBM are used for fabrication of metals.  

Both processes start from digital files. 3D computer-aided design (CAD) files are sliced 

into layers and the data is sent to the machine for printing. The next step is a set of cycles 

that melts the powders layer by layer till the final product is completed. In each cycle, a 

fixed thickness of powder is deposited onto a substrate and a heat source is applied to the 

powder in a raster scanning pattern. This melts the layer of powder, bonding it to the 

substrate or to the previously melted layer. Lastly, the platform is lowered and the cycle 

repeats. The heat source could either be laser or electron beam.  

DED processes on the other hand can use wire or powder as the feedstock, and energy 

sources could use laser, electron beam and electricity for wire feedstock. As DED 

machines can have 5 axis of movement, the layer addition to the CAD file may need to 

be sliced in a computer aided manufacturing (CAM) software. Energy source could be 

applied to the feedstock coaxially or off axis. The feedstock is melted close to the 



substrate or on the substrate forming a layer. Examples of SLM and coaxial laser direct 

energy powder deposition setups are shown in Figure 1. 

 

Figure 1. Schematic of selective laser melting and coaxial laser directed energy powder 

deposition.  

 

While both PBF and DED processes build the part layer by layer, there can be distinct 

differences between the two. PBF machines are currently limited to 3 axis systems forcing 

layers to build up in a single direction. DED machines can have 5+ axis systems allowing 

layers to be built in any direction provided there is no clashing of the part and tool head. 

This allows DED to be a better process for repairing parts using AM. Parts produced by 

PBF can have better resolution due to the smaller powder size and smaller energy spot 

size as compared to DED machines. Parts made by PBF may not require as much post 

processing than parts made from DED. The larger powder size or using wires lead to more 

material deposited in the DED process leading faster build speeds but lower tolerance and 

resolution. This may lead to parts made using DED requiring to be cut to size, increasing 

cost and time in the post processing.   



1.2 Microstructure of Additive Manufactured Metals 

AM processes have been used to print certain alloys like 316L stainless steel, Ti-6Al-4V 

and Inconel 625/718 which are common alloys used in marine and aerospace applications. 

The microstructure of metals determines the mechanical properties of the part such as 

yield strength, ductility and hardness (Peel, Steuwer et al. 2003, Ziętala, Durejko et al. 

2016, Guo, Zou et al. 2017, Shuai, Xue et al. 2018). AM process predominantly produces 

columnar grains with a mix of equiaxed grains that consist of cellular dendrites (Figure 

2) (Murr, Gaytan et al. 2012, Frazier 2014, Roehling, Wu et al. 2017). The columnar 

grains typically grow along the build direction causing anisotropy and difference in 

performance in varying build orientations (Lewandowski and Seifi 2016). By varying the 

process parameters like the energy sources and feed types can lead to differences in grain 

structure (Frazier 2014). Ti-6Al-4V had columnar grains when printed with multiple 

tracks using electron beam-wire-DED and laser-powder-DED, however, when printed 

using laser-powder-DED for a single track the grains do not grow in a columnar fashion. 

The Ti-6Al-4V microstructure was finer in the electron beam-wire-DED as compared to 

the laser-powder-DED (Murr, Gaytan et al. 2012, Dehoff, Kirka et al. 2015).  Ti-6Al-4V 

was shown to exhibit near equiaxed prior-beta grains that quickly grow to large columnar 

grains after the initial layers, indicating that varying cooling rates and temperature 

gradient can induce changes in microstructure (Tan, Kok et al. 2015). The cooling rate 

and temperature gradient also affects dendritic formation. Cellular dendrites are formed 

when the cooling is fast, while slower cooling rates allow formation of secondary dendrite 

arm (Kou 2003). High cooling rate and low temperature gradient can cause an increase 

in mechanical properties, like in the case of Inconel 718 where the finer distributed laves 

phases are formed, leading to lesser chance of hot cracking (Nie, Ojo et al. 2014). As the 

grain structure and dendrites affects the overall mechanical properties, it is important to 



know how different printing techniques and process parameters affects the grain structure 

(Gifkins 1976, Baufeld, Van der Biest et al. 2010).  

 

Figure 2. Columnar grains observed in various additive manufactured metal alloys; a) 

316L stainless steel, b) Ti6Al4V and c) Inconel 625, "Comparison of microstructures and 

properties for a Ni-base superalloy (Alloy 625) fabricated by electron and laser beam 

melting" by K. Amato et al. is licensed under CC BY 4.0  (Amato, Hernandez et al. 2012).  

The microstructure of metals depends largely on the thermal gradient and cooling rate 

during solidification. By varying the process parameters, it is possible to alter the grain 

structure. Raghavan et al. used two different scanning strategies, one with line scans and 

another spot scanning. Line scans tend to cause columnar grains while spot scanning 

together with controlling of the current, duration and distance between each spot lead to 

more equiaxed grains being formed (Raghavan, Dehoff et al. 2016). Dehoff et al. 

additionally alternate line and spot scanning within the same part to achieve different 

areas with columnar and equiaxed grains. The sequence in which the boundary area, 

equiaxed area and columnar area is printed first also matters as it affects the temperature 

gradient (Dehoff, Kirka et al. 2015). In both cases, EBM is used and had the powder bed 

pre-heated to near melting temperature of the material, this helps lower the overall 

temperature gradient allowing equiaxed grains to form. 

It is shown that changing the parameters and scanning strategy can result in tailored 

microstructure (Körner, Helmer et al. 2014, Parimi, Ravi et al. 2014, Dehoff, Kirka et al. 

2015, Wei, Mazumder et al. 2015, Raghavan, Dehoff et al. 2016). Tailored microstructure 



can help in applications that require texture or the lack of it like in single crystal turbine 

blades and provide possibilities in grain boundary engineering.  

Transition of columnar to equiaxed grains depends largely on the temperature gradient as 

well as the cooling rate. These values can be found experimentally or computer 

simulations.  Experimental methods can only investigate microstructure after the entire 

part is printed. In-situ monitoring of the AM process have limited capabilities and are 

restrained to monitor surface effects, and provide no information beyond the surface 

(Clijsters, Craeghs et al. 2014, Huang, Leu et al. 2015, Everton, Hirsch et al. 2016, Lu 

and Wong 2018).  

Computer simulation of the AM process helps in understanding the evolution of 

temperature beyond the top surface. Simulations uses the temperature results from 

thermal models to predict microstructure on varying length scales. As AM process 

involves building layer upon layer, the melt tracks experience multiple remelting. 

Experimental data can only give the grain structure after the entire build, while simulation 

provides access to the evolution of the grain structure throughout the process. The aim of 

the paper is to review the different methods of microstructure modelling used specifically 

for AM metals. The different microstructure models are compared, and their strengths 

and limitations are explored. 

2 Modelling for Metal Additive Manufacturing  

Modelling of microstructure requires coupling models at different length scales. First, a 

macro-scale thermal model is required to get the thermal history of the part during the 

AM process. Simulation of the thermal model can range from a single melt track to 

multiple melt tracks and across multiple layers. Second, data from the thermal model is 

used as input to the microstructure model. Microstructure models can be further 

categorised based on another length scale, meso-scale and micro-scale. Meso-scale 



simulation refers to models that simulate for multiple grains, while micro-scale 

simulation refers to models that simulate the dendritic formation.  

2.1 Thermal Modelling in Additive Manufacturing 

Thermal numerical models can investigate the temperature the material would experience 

during the AM process. Thermal models can predict the temperature profile, fluid flow, 

porosity and be coupled to microstructure models or thermo-mechanical models to get 

the microstructure or residual stress and deformation (Vastola, Pei et al. , Denlinger, 

Heigel et al. 2015, Yang, Jamshidinia et al. 2018). The temperature profile could also be 

used to get predict the amount of precipitate formed, columnar grain growth orientation 

and CET (Liu, Zhu et al. 2018, Yin, Peng et al. 2018, Kumara, Segerstark et al. 2019). 

Microstructure modelling uses thermal models to find the temperature history and shape 

of the scanned tracks as input. This section reviews the thermal models used in 

conjunction with microstructure models.  

2.1.1 Finite Difference Method and Finite Element Method 

Finite difference method (FDM) and finite element method (FEM) have been coupled 

with various microstructure models, typically simulating for large volumes of multiple 

tracks and layers (Mercelis and Kruth 2006, Zeng, Pal et al. 2015, Chen, Guillemot et al. 

2016, Zinovieva, Zinoviev et al. 2018). FEM/FDM solves for the heat equation partial 

differential equation (PDE): 

𝜌𝑐𝑝 𝜕𝑇𝜕𝑡 − ∇ ∙ (𝑘∇𝑇) = 𝑄𝑠 . (1) 

In Equation 1, 𝜌 is the density, 𝑐𝑝 is the specific heat capacity, 𝑇 is the temperature, 𝑡 is 

the time, 𝑘 is the thermal conductivity and  𝑄𝑠 is the heat source added to the model. Heat 

loss by radiation and convection is sometimes added to the top surface as boundary 

conditions (Loh, Chua et al. 2015). 



Simulating for PBF, FEM models often uses elements of different materials. The top 

elements are assigned as the powder material and the remaining elements are the substrate 

material (Figure 3a). The powder element often has the density based on the porosity of 

the powder bed multiplied by the substrate density. The thermal conductivity is similarly 

dependent on the porosity of the powder bed (Chen, Guillemot et al. 2016, Foroozmehr, 

Badrossamay et al. 2016, Chiumenti, Neiva et al. 2017). Elements that are assigned as 

powder material would change to substrate material once the temperature of the element 

goes above the liquidus temperature. Simulating for DED differs slightly from PBF 

models. Material has to be added while the heat source moves. FEM models do this by 

first placing dead/inactive elements above the substrate, as the heat source moves, the 

dead/inactive elements are set to be alive/active (Figure 3b) (Fallah, Alimardani et al. 

2011). This simulates the material being fed and added to the melt pool. Dead/inactive 

elements work by having its thermal conductivity set to near zero such that the 

temperature of the element would not change.  



 

Figure 3. Representation of FEM for a) Powder bed fusion showing the top element is set 

to powder material while the rest is set to fully dense material and b) laser direct energy 

deposition with powder material set to dead/inactive that change to alive/active elements 

when the heat source reaches it. 

Meshing for FEM plays an important role in getting accurate temperature profiles and 

melt depths. Hexahedral element is commonly used as it provides better accuracy and 

works well with simple geometry used in simulations (Lindgren, Häggblad et al. 1997, 

Yin, Peng et al. 2018). AM processes have localised areas of large temperature changes 

at the area of the heat source. Chiumenti et al. suggested that in order to have better 

estimation of the temperature, the elements size have to be smaller than the energy source 

spot size, Foroozmehr et al. used eight by eight elements within the laser spot 

(Foroozmehr, Badrossamay et al. 2016, Chiumenti, Neiva et al. 2017). Having high 

resolution throughout the entire mesh can lead to long computational time. As such, most 

models simulate for a single melt track. In order to simulate for a larger volume, Patil et 

al. used adaptive mesh refinement (AMR) to have higher resolution in and around the 

melt pool and progressively coarser mesh beyond the melt pool leading to an decrease in 

computing time by a hundred times (Patil, Pal et al. 2015). This allows solving for a larger 



area allowing investigations on scanning strategies involving simulating for multiple 

tracks. Denlinger used a similar method and found it to be 432 times faster than using 

static mesh (Denlinger 2018).  

2.1.2 Computational Fluid Dynamics 

Computational fluid dynamics (CFD) methods like the finite volume method (FVM) have 

been used to get the shape of the track, melt pool and the temperature history. FVM 

methods are used to solve the Navier-Stokes equation which can simulate effects like 

vaporization and Marangoni effect seen in AM (Khairallah, Anderson et al. 2016, Andani, 

Dehghani et al. 2017). This would lead to higher accuracies in the temperature 

distribution in the melt pool and also higher accuracies in geometry (Khairallah, 

Anderson et al. 2016). In order to simulate the fluid flow within the melt, the mass and 

momentum equation have to be included alongside the energy equation (Gürtler, Karg et 

al. 2013, Yuan and Gu 2015): 𝛿𝛿𝑡 (𝜌𝐻) + ∇ ∙ (𝜌�⃗�𝐻) − ∇ ∙ (𝑘∇𝑇) = 𝑄𝑆,  
 

(2) 

𝛿𝜌𝛿𝑡 + ∇ ∙ (𝜌�⃗�) = 𝑀𝑠, 
 

(3) 

𝜌 𝛿�⃗�𝛿𝑡 + 𝜌�⃗� ∙ ∇�⃗� = −∇𝑝 + 𝜇∆�⃗� + 𝑀𝑠�⃗� + 𝐹. 
 

(4) 

Equation 2 is the energy equation for heat conduction where 𝐻 is the enthalpies and  �⃗� is 

the velocity of fluid. Equation 3 is the mass conservation equation where 𝑀𝑠 is the mass 

source. In PBF where powders are already laid before simulating, the mass source can be 

considered as zero while in DED where powders are added while running would require 



the mass source term. Equation 4 is the momentum equation where  𝜇 is the dynamic 

viscosity and 𝐹 is a force term like gravitational force that may be included. The increase 

in the number of PDEs needed to solve leads to increase of computing power required. 

Most FVM models only simulate a single melt track in 3D (Fallah, Amoorezaei et al. 

2012, Lee and Zhang 2015, Khairallah, Anderson et al. 2016, Panwisawas, Qiu et al. 

2017). CFD of PBF can use varying type of powder distribution, either by powder packing 

density or using numerical models like discrete element method (DEM) (Lee and Zhang 

2015, Zielinski, Vervoort et al. 2017). Numerical methods of packing powder led to 

irregular powder distribution that is closer resembling to actual powder deposition in PBF 

processes. CFD-DEM method has been used for DED processes as well, taking into 

account of gas flow, powder flight and heating as well as interactions with the melt pool 

(Pinkerton 2015). The amount of details required of the simulation causes it to be even 

more computationally expensive as DEM is simulated together with CFD and gas flow 

has to be taken into account as well. While CFD can lead to more realistic tracks, literature 

of using CFD for DED processes is few. 

The lattice Boltzmann method (LBM) is another CFD method that is used to couple with 

microstructure models. LBM does not solve the Navier-Stokes equation, instead, it solves 

discrete Boltzmann equations to model the fluid flow (Rausch, Küng et al. 2017). LBM 

can simulate the powder distribution as well as the fluid flow and evaporation while FVM 

would require coupling with discrete element method to simulate the powder distribution 

(Khairallah, Anderson et al. 2016, Liu and Wang 2017). LBM becomes comparatively 

more expensive when changing from 2D to 3D, with most 2D models being able to 

simulate for multiple layers for a single track, a 3D model however, can simulate for 

multiple tracks in a single layer (Körner, Bauereiß et al. 2013, Rai, Markl et al. 2016, 



Degenhardt 2017). LBM have been used to model PBF processes however no literature 

was found to have used LBM for DED processes at the time of writing. 

CFD models have an average cell size of 5 µm and average domain of 150x1000x150 µm 

(Körner, Bauereiß et al. 2013, Lee and Zhang 2015, Zielinski, Vervoort et al. 2017). In 

comparison, FEM models have element size ranging from 25 µm to 5 mm and domain 

size ranging from 0.4x1x0.4 mm to 250x250x325mm (Loh, Chua et al. 2015, 

Foroozmehr, Badrossamay et al. 2016, Chiumenti, Neiva et al. 2017). The model and 

element size can differ by three orders of magnitude. The number of cells for CFD also 

range in the millions while FEM elements tend to be less than a million. While CFD 

models can simulate multiple physical phenomena, the complexity and small cell size 

limits the total domain to be less than a millimetre in length, limiting the simulation to 

few short tracks. FEM models have many assumptions, reducing accuracy but increasing 

the size of the domain to accommodate multiple longer tracks and multiple layers. 

2.2 Microstructure Modelling in Additive Manufacturing 

There are similarities between melting of a single track in AM and welding. Welding 

typically adds material between two metal parts thereby joining them while AM adds 

material to a substrate or previously printed layer. The solidification of both welding and 

AM are very similar since both uses a moving heat source to melt the added material 

leading to a moving melt pool. Since welding research is more developed, microstructure 

modelling techniques in welding can be applied and translated to AM (Seufzer 2014, 

Rolchigo, Mendoza et al. 2017). 

There are three microstructure models that are reviewed, phase field modelling (PFM), 

kinetic Monte Carlo (MC) and cellular automata (CA). CA and MC are considered meso-

scale models as they simulate multiple grains mainly looking at the overall size and aspect 

ratio of the grains. PFM is considered a micro-scale model as it can simulate on the sub-



grain level, getting the solute concentration, precipitates and dendrites shape. It is also 

able to simulate for multiple grains using multi-phase field models (Miyoshi, Takaki et 

al. 2019).  

The coupling between macro thermal model and the microstructure model can be done in 

two ways. The models can be weakly coupled, where the thermal model is simulated first 

and the thermal history is used as input to the microstructure model. Another way is to 

strongly couple them and simulate both at the same time, where information is shared and 

interacts between both models. Although strongly coupled simulations would be able to 

yield more accurate results, it requires longer computational time (Gandin, Desbiolles et 

al. 1999). A schematic of the different microstructure models is shown in Figure 4 

showing the boundary conditions and assumptions of the model. 

 

Figure 4 Schematic of thermal and microstructure models with their boundary conditions and assumptions. 
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2.2.1 Phase Field Modelling 

Phase field modelling (PFM) has been shown to be able to model solid, liquid and 

material phases within the same model. Microstructure evolution like grain coarsening 

and dendrite growth in forced convection could be simulated as well (Gránásy, Pusztai et 

al. 2004, Singer-Loginova and Singer 2008, Sahoo and Chou 2014). PFM is 

thermodynamically consistent, however, the interface width has to be thin in PFM 

increasing difficulty in modelling thereby limiting the size of the model (Elder, Grant et 

al. 2001). A large model with several interfaces will be too computationally expensive to 

run, especially if it is in 3D. While PFM provides the ability to simulate multiple 

phenomena with high accuracy, computational resources will be limiting factors 

(Francois, Sun et al. 2017). 

2.2.1.1 Phase Field Modelling Theory 

PFM simulates microstructures by having all variables to be continuous across the 

interface. The interface can be a fraction of both solid and liquid. Mathematically, the 

description of the interface or otherwise called the phase field variable, 𝜙, can be 

represented as 𝜙 ∈  [−1,1]. During the solidification process, the system of a fixed 

volume would tend towards a lower free energy in order to achieve stability (Boettinger, 

Warren et al. 2002, Kim and Kim 2005, Steinbach 2009): 

where 𝐹 is the total free energy of the system, 𝑓 is the thermodynamic potential, 𝑐 is the 

concentration, 𝜔𝑔(𝜙) is the double well potential, 𝜖2|∇𝜙2| is the phase field gradient 

energy and 𝑉 is the volume. The phase field gradient energy is dependent on the gradient 

of the interface and therefore would be zero in fully solid and liquid regions. The 

thermodynamic potential is the sum of the free energies of the liquid and solid states. 

𝐹 = ∫[𝑓(𝜙, 𝑐, 𝑇) + 𝜔𝑔(𝜙) + 𝜖2|𝛻𝜙2|]𝑑𝑉 , (5) 



Over time, the system would decrease the total free energy of system. In order to solve 

the transient problem, the Allen-Cahn and Cahn-Hilliard equations can be used 

(Boettinger, Warren et al. 2002, Chen 2002, Kim and Kim 2005):  

 

where 𝑀𝜙 and 𝑀𝑐 are the motilities of the phase field and concentration field at the 

interface respectively. In a multiphase problem like in solidification of certain steels, there 

can be liquid, ferrite and austenite, each of these phases have its own variable, 𝜙𝑖(�⃗�, 𝑡) 
where 𝑖 denotes the state that the field is. The sum of the phases in a multiphase system 

has to reach unity, ∑ 𝜙𝑖𝑁𝑖=1 = 1 (Boettinger, Warren et al. 2002).  

2.2.1.2 Application of Phase Field Modelling  

Farzadi et al. used CFD and PFM to simulate the growth of columnar dendrites in the Al-

Cu weld to investigate the solute concentration, dendrite arm spacing and undercooling 

at varying welding speed (Farzadi, Do-Quang et al. 2008). The method used can be 

applied to the scanning of a single track in AM for binary alloys. Montiel et al. used 2D 

PFM to investigate the CET of magnesium alloy during welding (Montiel, Liu et al. 

2012).  

FEM and PFM have been coupled to simulate for AM processes. The temperature 

gradient and cooling rates were found using FEM and used as boundary condition in 

PFM. Gong and Chou simulated in 2D for EBM of Ti6Al4V using FEM and PFM (Gong 

and Chou 2015). The thermal model show that faster scanning speeds led to higher cooler, 

𝜕𝜙𝜕𝑡 = −𝑀𝜙 [𝜕𝑓𝜕𝜙 + 𝜔𝑔′(𝜙) − 𝜖2∇2𝜙] , (6) 

  𝜕𝑐𝜕𝑡 = ∇ ∙ 𝑀𝑐∇ 𝜕𝑓𝜕𝑐 , (7) 



the cooling rate is used to find the distance between seeds for the PFM models too. The 

PFM model showed columnar prior beta grains which grew faster with higher cooling 

rates and experimental results showed similar prior beta grain sizes. However, the grain 

size was partially affected by the predetermined distance between seeds. Sahoo and Chou 

found the grain size differently, simulating from a single dendrite and using the primary 

dendrite arms spacing as the grain size (Sahoo and Chou 2016). Sahoo and Chou 

simulated the EBM process using a thermal model in 3D and a PFM model in 2D. A 

single dendrite was simulated and its primary dendrite arms grew in the columnar fashion 

and was compared to the experimental results showing columnar grains. The primary 

dendrite spacing and arm width was found to get smaller as scanning speed increases. 

The simulated dendrite arm spacing was larger than experimental results by 

approximately 0.5 µm. Within a melt pool, the solid-liquid interface can have different 

temperature gradient and solidification velocity at the bottom and trailing edge of the melt 

pool. Fallah et al. simulated for laser powder DED of Ti-Nb using 3D FEM to find the 

localised temperature gradient and solidification velocity which is input to 2D PFM 

models (Fallah, Amoorezaei et al. 2012). The thermal model found that the temperature 

gradient is smaller and the solidification velocity faster near the surface as compared to 

the bottom. PFM models for different temperature gradient and solidification velocity 

was simulated and the dendrite spacing was compared to experimental results. The PFM 

model was accurate except at the extreme ends where temperature gradient or 

solidification velocity is highest. Different PFM model or boundary conditions may need 

to be applied to get more accurate results. CFD can simulate the Marangoni flow which 

enhances cooling and thus can get more accurate melt pool shape and temperature profile, 

Acharya et al. simulated with SLM process for Inconel 718 using 2D PFM with the 

domain shaped like the melted track found using 3D CFD (Acharya, Sharon et al. 2017). 



Although CFD was used, the PFM model had some differences with experimental results. 

The primary dendrite spacing and segregation of solutes tally with experimental results, 

however, the simulated results show secondary dendrites growing while experimental 

results show little to no secondary dendrites. All the PFM models reviewed reduced the 

complexity by simplifying the alloys to binary alloys. 

2.2.2 Kinetic Monte Carlo 

Kinetic Monte Carlo (MC) modelling is a completely probabilistic simulation of the grain 

structure. MC is able to simulate grain structures over large volumes due to the low 

computational resource required. MC models differ from PFM models which simulate 

the solute concentration and dendrite shape, MC only models the grains therefore 

simulating on a different length scale. MC models provide the shape and size of grains. 

2.2.2.1 Kinetic Monte Carlo Theory 

The MC method is based on an atomistic simulation and the minimization of the overall 

system energy. Each site on the lattice is given a number or orientation and if the 

neighbour of a site has a different orientation, it would add to the overall system energy. 

If the neighbour has the same orientation, there is no change in the system energy. Each 

site has a probability of changing orientation, if the orientation contributes to a decrease 

in the overall energy system, then it is accepted. If the change in orientation causes an 

increase, a random number would generate for that site and compare to an acceptance 

probability and if the random number is smaller than the acceptance probability, it is 

accepted. These are shown in the following (Yang, Sista et al. 2000, Rodgers, Madison 

et al. 2017):  

∆𝐸 = 𝐽∑[1 − 𝛿(𝐼𝑗,𝐼𝑘)]] , (8) 



where ∆𝐸 is the overall system energy, 𝐽 is a scaling factor of the energy system, 𝛿 is the 

Kronecker delta function, lattice assigned number or spin,𝐼𝑗,𝐼𝑘 are the number/spin of the 

site and neighbour,  𝑘𝐵 is the Boltzmann’s constant and 𝑇0 is the ambient temperature of 

the process. This happens within a MC time step, every time step the lattice is taken as-

is and every site is recalculated and compared with the previous time step. In general, if 

the current step has an increase in overall energy, it is rejected and the previous time step 

configuration is kept. In order to simulate solidification, some modifications to the MC 

method have to be made. The grain boundary mobility is dependent on the temperature 

at the site and follows the Arrhenius equation (Yang, Sista et al. 2000, Rodgers, Madison 

et al. 2017). Equation 9 is then modified to: 

 

where 𝑀0 is the Arrhenius pre-exponential factor, 𝑄𝑎𝑐𝑡 is the activation energy, 𝑅𝑔𝑎𝑠 is 

the gas constant and 𝑇 is the site temperature. MC method requires relatively lower 

computational resources and is able to simulate both 2D and 3D (Stefanescu 2015). It is 

able to simulate multiple laser passes and layers due to the low computation cost 

(Rodgers, Madison et al. 2017). MC models are able to capture the overall grain structure 

shapes and sizes but it does not take into account the preferential crystallographic growth 

direction, which would affect final grain shapes and angles. 

  

𝑃 = {𝑒𝑥𝑝 (−∆𝐸𝑘𝐵𝑇0), ∆𝐸 > 01, ∆𝐸 ≤ 0 , (9) 

𝑃 = {  
  [𝑀0𝑒𝑥𝑝 (−𝑄𝑎𝑐𝑡𝑅𝑔𝑎𝑠𝑇)]𝑒𝑥𝑝 (−∆𝐸𝑘𝐵𝑇0), ∆𝐸 > 0𝑀0𝑒𝑥𝑝 (−𝑄𝑎𝑐𝑡𝑅𝑔𝑎𝑠𝑇), ∆𝐸 ≤ 0 , (10) 



2.2.2.2 Application of Kinetic Monte Carlo 

MC methods have been used to simulate microstructure for casting, sintering and 

welding. It is also able to model the change of microstructure during recrystallization and 

grain growth (Zhong 2011, Liu, Cheng et al. 2014).  Mishra and DebRoy used MC to 

predict grain sizes in the heat affected zone (HAZ) due to solidification and grain growth 

in Ti6Al4V during welding (Mishra and DebRoy 2004, Mishra and DebRoy 2004). The 

models showed potential to be used for simulating repairs using AM, especially to treated 

metal, that leads to HAZ. Thermal models are also coupled with MC to predict grain 

structures in welding (Yang, Sista et al. 2000, Wei, Elmer et al. 2017). Wei et al. capture 

the aspect ratio and grain sizes at varying welding speeds of aluminium alloys using CFD 

and MC. However, the model was not validated against experimental data (Wei, Elmer 

et al. 2017).   

Rodgers et al. predicted the 3D microstructure in a single pass electron beam welding 

using MC and later increasing the number of scans extending it to EBM and electron 

beam powder DED (Rodgers, Madison et al. 2016, Rodgers, Madison et al. 2017). The 

model was able to simulate a large volume capturing the crystal growth bias towards the 

scanning direction. While the model was able to capture the patterns the experimental 

EBSD data, the aspect ratio and sizes are not fully captured. Sun et al. used different melt 

pool geometry in MC for the solidification of 316L and found equiaxed grains growing 

in the middle of the track for fast scanning speed (Sun, Tan et al. 2018). The results 

support experimental data that columnar grains being broken off each layer at faster 

scanning speed. However, the grain size and aspect ratio also differ from experimental 

data. While the MC method has been used extensively for welding, the use of it for AM 

is few. MC method, however, has the least computational cost and has the potential to 

model over large volumes.  



2.2.3 Cellular Automata 

Cellular automata (CA) simulation is a probabilistic model with deterministic elements 

in it. The nucleation rate and dendrite direction are probabilistic while the growth of 

dendrites and preferential crystallographic direction is taken from theory. Similar to MC, 

CA simulates the grain structure rather than the dendrites. Having more equations to 

solve, CA uses more computational resources than MC but is able to capture grain angles 

and grow accordingly. This can lead to more accurate results. 

2.2.3.1 Cellular Automata Theory 

CA uses certain rules to change the state of a cell and in the case of solidification, the 

states are solid, liquid and mushy. CA requires a mesh of equally divided cells, usually 

square (2D) or cube shape (3D), with each cell interactive with its neighbouring cells by 

the rules. The CA model would require rules that govern the transition from solid to 

liquid, liquid to solid, setting of crystallographic orientation, speed and orientation of 

capturing neighbouring cells for crystal growth. CA follows rules of solidification theory 

as well as some probability elements for nucleation. CA models are often coupled with 

macro thermal models to help in the rules of solid-liquid transition. CA models are like 

MC models in that both do not calculate the dendritic structures like secondary arm 

growth but instead simulate the grain structure allowing it to capture a larger scale. The 

changing of cell state from liquid to solid depends not only on temperature but the 

probability of nucleation as well. CA models use a probabilistic approach to determine 

nucleation, as undercooling, ∆𝑇, drives the solidification, the continuous grain density, 𝑛, 

is given by (Gandin and Rappaz 1994): 

A Gaussian distribution can be used to determine if a cell forms a nucleus: 

𝑛(∆T) =  ∫ 𝑑𝑛𝑑(∆𝑇)𝑑(∆𝑇)∆𝑇
0  . (11) 



where 𝑛𝑚𝑎𝑥 is the maximum nucleation density, ∆𝑇 is the undercooling of the liquid,  ∆𝑇𝑚𝑒𝑎𝑛 is the mean undercooling when nucleation occurs and ∆𝑇𝜎 is the standard 

deviation of the undercooling. Capturing of neighbouring cells by crystal growth is 

determined by solidification theory. One of the growth kinetics models is the KGT model. 

The KGT model assumes that the solid-liquid interface would grow at near absolute 

stability limit and the velocity can be found as a function of the undercooling (Kurz, 

Giovanola et al. 1986): 

  

where Ω is the solute supersaturation, 𝐶∗ is the liquid solute concentration at the tip of the 

dendrite, 𝐶0 is the initial solute concentration, 𝐷 is the solute diffusion coefficient,  𝐾 is 

the partition coefficient, 𝑅 is the radius of the tip of the dendrite, 𝑚 is the slope of the 

liquidus,  Γ is the Gibbs-Thomson coefficient, 𝐺𝑐 is the solute gradient, 𝐺 is the thermal 

gradient and ∆𝑇 is the undercooling temperature. Solving equations 13-16 together would 

give a correlation between the undercooling temperature and the velocity of the dendrite 

growth. 

𝑑𝑛𝑑(∆𝑇) = 𝑛𝑚𝑎𝑥√2𝜋 exp [− (∆𝑇 − ∆𝑇𝑚𝑒𝑎𝑛)22∆𝑇𝜎 ] , (12) 

Ω = 𝐶∗ − 𝐶0𝐶∗(1 − 𝐾) = 𝐼𝑣(𝑉𝑅2𝐷 ) , (13) 

𝑅 = 2𝜋√ Γ𝑚𝐺𝑐𝜉𝑐 − 𝐺 , (14) 

𝜉𝑐 ≈ 𝜋2𝐾𝑉𝑅2𝐷 2 , (15) 

∆𝑇 = 𝑚𝐶0(1 − 1Ω(1 − K)) , (16) 



2.2.3.2 Application of Cellular Automata 

CA was developed for casting and has been adapted for welding and laser cladding 

(Rappaz and Gandin 1993, Zhan, Dong et al. 2008, Yin and Felicelli 2010, Wang, Luo et 

al. 2014). Wang et al. coupled FEM and CA models to predict the grain growth during a 

single pulse of the laser on Ti6Al4V for laser cladding (Wang, Luo et al. 2014). The 

model captured the melt pool depth and grain structures for varying laser pulse duration. 

Dezfoli et al. used FEM and CA models to predict the effect of a secondary laser heat 

source on the microstructure (Dezfoli, Hwang et al. 2017). The model was able to capture 

the difference in microstructure due to the varying melt pool dimension in 3D. The effects 

of secondary laser caused the thermal gradient and cooling rate which can cause grains to 

transit from columnar to equiaxed. Both models did not have the addition of materials 

that is required in AM but have shown the similarities and can be translated from welding 

to AM.  

CA has been used to simulate the SLM process which was coupled with varying thermal 

macro models. Zinoviev et al. coupled FDM and CA to simulate SLM of 316L, getting 

the 2D grain structure at the traverse cross section of a melt track for multiple layers 

(Zinoviev, Zinovieva et al. 2016). Although the model was able to capture the columnar 

growth, the experiment data displayed small amounts of equiaxed grains and some 

columnar grains being cut off by another columnar grain. This could be due to the model 

being only 2D and lack of nucleation that could happen in experiment. Zinoviev et al. 

similarly coupled FDM and CA for 3D grains, however, the grains grew purely columnar 

which can be different from experimental data which had equiaxed grains (Zinovieva, 

Zinoviev et al. 2018).  This leads to inaccurate grain structure as only columnar grains 

will grow from bottom to top since no nucleation occurs which differs from experimental 

data found. Koepf et al. simulated in 3D for multiple layers with multiple tracks per layer 



for EBM of IN 718 (Koepf, Gotterbarm et al. 2018). The thermal solution was found 

analytically and CA was used to simulate the grain structure and the simulated grain size 

and aspect ratio matched the experimental results well through the multiple layers. 

Similar to the models mentioned above, there are equiaxed grains mixed within the 

columnar grains which affects the overall grain structure to a certain extent. However, the 

cause for these equiaxed grains may not be fully understood and can be difficult to capture 

in the CA models. One issue that multiple tracks and layer CA models must deal with is 

the large memory required deal to the small cell sizes. Both CA and thermal models would 

require parallelization and the thermal solution may need to be simplified. Koepf et al. 

used an analytical solution instead of a purely numerical simulation to reduce the 

computational resource. Koepf et al. used numerical simulation for the thermal model and 

reused the temperature profile at varying regions in the entire model, rotating by 90 

degrees at certain regions (Koepf, Soldner et al. 2019). This reduced the computational 

memory and storage required for the entire thermal profile.  Lopez-Botello et al. 

simulated the microstructure along the longitudinal cross section using 2D FEM and CA 

models for SLM of AA-2024  (Lopez-Botello, Martinez-Hernandez et al. 2017). The 

model predicted columnar growth with grain sizes close to experiment data. Nucleation 

is captured based on experimental data with the probability of nucleation depending on 

the grain size. Although this method managed to capture the scattered grains, it requires 

experiments first for tuning of parameters. Rai et al. coupled CA with Lattice-Boltzmann 

to find the microstructure of different laser scanning pattern (Rai, Markl et al. 2016). 

Although Lattice-Boltzmann method is more accurate than FEM, it is computational 

resource heavy and difficult to translate to 3D. The grain sizes matched the experimental 

data that’s compared to other literature, however, the grain orientation could not be 

captured fully as its simulated in 2D and cannot be compared to the EBSD results. 



Panwisawas et al. coupled CFD and CA models to predict the microstructure of Ti-6Al-

4V using SLM (Panwisawas, Qiu et al. 2017). While CFD provides greater detail in terms 

of melt pool shape and the flow in the melt is accounted for, the volume simulated is 

limited to a single scan track. This limits the study and single scan tracks may not be able 

to represent the overall grain structure.  

CA has been modified to consider the momentum and species transport equations called 

modified cellular automata (MCA) (Zhu, Lee et al. 2004). MCA solves the additional 

equations by finite difference, which is an additional step CA does not have (Wang, Lee 

et al. 2003). Unlike CA, MCA simulates on the micro-scale also getting the dendrite shape 

and solute concentration in a given melt pool that is solidifying. MCA have been shown 

to be able to model for multiple solute elements, CET and also include effects like 

convection in the melt pool (Zhu, Lee et al. 2004, Michelic, Thuswaldner et al. 2012, 

Chen, Xu et al. 2014). While having different equations and methods as PFM the results 

found were similar (Zaeem, Yin et al. 2013). However, MCA have not been applied to 

AM as of the time of writing. 

2.3 Comparison of Microstructure Modelling Methods 

A comparison of the length scale and accuracy of the different models is show in Figure 

5. The smaller the length scale, the smaller the simulation time step needed, this to large 

amount of data created. Higher accuracy models tend to have more equations and 

variables to solve which requires more computational resources. In general, accurate 

models have small length scales, short time step thus limiting in the volume the model 

can simulate. CFD models tend to only simulate a single melt track while FEM models 

simulate for multiple melt tracks. PFM models simulate for a few dendrites while CA and 

MC models simulate the grain structure. 



 

Figure 5. Schematic diagram comparing different models in terms of length scale and 

accuracy; Representation of each models a)Phase field Modelling, b)Cellular automata,  

c) kinetic Monte Carlo, "Simulation of metal additive manufacturing microstructures 

using kinetic Monte Carlo" by T. M. Rodgers et al. is licensed under CC BY 4.0 (Rodgers, 

Madison et al. 2017),  d) Computational fluid dynamics, Solid Freeform Fabrication 

Symposium Proceedings (2015). Copyright 2015 The University of Texas at Austin.(Lee 

and Zhang 2015) and e) Finite element method. 

Comparing the models, PFM not only give realistic dendrite shapes, but it also accounts 

for the solute distribution between the dendrite arms. When combined with 

thermodynamic databases, TTT and CTT curves, PFM can have not only very accurate 

details of solute distribution and dendrite shapes and sizes but also predict the 

composition of the various metals and intermetallic and transformation and growth of 

precipitates (Ferreira, Paradela et al. 2017, Mullis, Bollada et al. 2018, Böttger, Apel et 

al. 2019). All the PFM models for AM were in 2D and only simulated for a few dendrites. 



This is most likely being due to the computational resources required thus making 3D 

models time-consuming and expensive to run. MCA have been modelled in 3D and  have 

been shown to be more efficient and faster than PFM while having the similar results, 

however, simulations are also done on small number of dendrites (Wang, Lee et al. 2003, 

Zaeem, Yin et al. 2013). 

MC and CA models forgo details like solute concentration and dendrite shape and instead 

simulate grain structures. Both models provide information like the grain width and 

aspect ratio. One difference is CA models accounts for the preferred crystallographic 

growth direction of metals. As the direction and speed the crystal grows is dependent on 

the preferred direction and direction of the thermal gradient, MC may not get accurate 

grain size and aspect ratio. CA uses solidification theory to calculate the solidification 

speed of the preferential dendrite crystallographic direction. This leads to CA models 

being more accurate than MC models. CA has been modelled in both 2D and 3D. A 

comparison of all the models is shown in Table 1. 

Table 1. Comparison of microstructure models 

Simulation 

method 

Phase Field 

Method 

Modified Cellular 

Automata 

Kinetic Monte 

Carlo 

Cellular 

Automata 

Computation

al resource 
High High Low Moderate 

     

Length scale 

0.025-0.2 µm 

<100x100 µm2 

~200k to 1M 

cells 

0.3-0.4 µm 

<100x100 µm2 

~1M cells  

1-10 µm 

<2x2x2 mm3 

~1-50M sites 

1-10 µm 

<2x2x2 mm3 

~1-50M cells 

     

Mesh shape Square Square/hexagon Points Square/hexagon 

     

Experiments 

required 

Few, for 

validation 

Few, for 

validation 

Several, for 

tuning & 

validation 

Few, for tuning 

& validation 

     

Level of 

details 
Dendrite shape Dendrite shape Grain size Grain size 

 Dendrite angle Dendrite angle Grain shape Grain shape 



 
Solute 

concentration 

& precipitates 

Solute 

concentration 
 Dendrite angle 

 Grain size    

 Grain shape    

     

Probabilistic/ 

Deterministic 

 Deterministic Deterministic
 Probabilistic

 Deterministic

 Probabilistic Probabilistic  Probabilistic

     

Commercial 

software 
Yes No No No 

     

Open source 

software 
Yes No Yes Limited 

     

References 

(Cao and Choi 

2006, Farzadi, 

Do-Quang et al. 

2008, Fallah, 

Amoorezaei et 

al. 2012, 

Montiel, Liu et 

al. 2012, Sahoo 

and Chou 2014, 

Gong and Chou 

2015, Sahoo 

and Chou 2016, 

Acharya, 

Sharon et al. 

2017, Keller, 

Lindwall et al. 

2017, Kumara, 

Deng et al. 

2019, Kumara, 

Segerstark et al. 

2019) 

(Wang, Lee et al. 

2003, Zhu, Lee et 

al. 2004, 

Michelic, 

Thuswaldner et 

al. 2012, Zaeem, 

Yin et al. 2013, 

Chen, Xu et al. 

2014) 

(Yang, Sista et 

al. 2000, 

Mishra and 

DebRoy 2004, 

Mishra and 

DebRoy 2004, 

Zhong 2011, 

Liu, Cheng et 

al. 2014, 

Wang, Liu et 

al. 2014, 

Rodgers, 

Madison et al. 

2016, Rodgers, 

Madison et al. 

2017, Wei, 

Elmer et al. 

2017) 

(Yin and 

Felicelli 2010, 

Zaeem, Yin et al. 

2013, Wang, 

Luo et al. 2014, 

Rai, Markl et al. 

2016, Zhou, 

Zhang et al. 

2016, Zinoviev, 

Zinovieva et al. 

2016, Dezfoli, 

Hwang et al. 

2017, Lopez-

Botello, 

Martinez-

Hernandez et al. 

2017, 

Panwisawas, 

Qiu et al. 2017) 

3 Potential and Challenges of Microstructure Modelling in AM 

Modelling for microstructure require thermal models as they provide the temperature, 

cooling rate and temperature gradient for inputs to the microstructure model. Having 

more accurate cooling rates and temperature gradients can lead to better predictability of 

microstructure. However, the length scale of the models is either for a single track scan 

or for multiple tracks and multiple layers, with CFD being used most often to simulate 



for a single line and FEM for multiple tracks and layers. This most likely happen due to 

the computational resource limitation. FEM models have to use bulk material properties 

and for the powder bed, the porosity of the powder bed is used to estimate the bulk 

properties. However, finding the porosity of the powder bed is difficult, the density of a 

powder bed can be estimated to the apparent density. The apparent density can be found 

using a Scott volumeter, but during the recoating of the powder during a PBF process the 

underlying surface is uneven and actual distribution of powder is unknown, this will cause 

the density of the powder bed to vary. FEM models have codes developed to allow mesh 

refining and coarsening or having lumped heat per layer to reduce computational time 

and increase the volume simulated (Papadakis, Loizou et al. 2014, Patil, Pal et al. 2015). 

However, the FEM codes were written to help improve simulation time for AM processes 

and commercial FEM software are currently unable to reproduce it at the time of writing. 

CFD models on the other hand are not replicating the volume FEM models are making 

but instead focus on the different phenomena in the melt pool. This tends to have more 

accurate melt pool geometries, cooling rate and temperature gradient. The shape of the 

tracks is closer to experimental results. However, all these are done for a single or few 

tracks that is usually much smaller than actual print size. The more accurate the details 

are, the better it is for the microstructure model as better growth kinetics can be predicted. 

A challenge thermal model face in getting accurate temperature is an accurate input of 

the heat source. FEM models tend to take a heat distribution either as a 2D input on the 

top surface or as a 3D volumetric heat (Loh, Chua et al. 2015, Yin, Peng et al. 2018). This 

heat input often uses estimated power and absorptivity. CFD models can use ray tracing 

to model for laser PBF which leads to higher accuracy (King, Anderson et al. 2015). 

However, in all models, the emissivity and absorptivity can change with temperature and 

this is difficult to capture in experiments.   



Thermal models are considered macro scale in comparison with microstructure models 

which are micro or meso scale. MC and CA both are better suited to simulate for large 

volumes as they require lesser calculations while PFM and MCA require more 

calculations and simulates for a smaller volume. The choice of models to use comes down 

to the length scale required. Apart from the length scale, each microstructure models also 

face challenges.  

The dendrite shape and solute concentration that micro-scale models predict can be used 

to investigate new materials to be used in AM. Having an estimate on element phases and 

solute concentration can help in knowing if defects like hot cracking are likely to form or 

segregation of alloying elements (Keller, Lindwall et al. 2017, Gao, Agarwal et al. 2018). 

However, PFM and MCA also face certain challenges. Both models currently only model 

the solidification portion without the melting portion. Instead, seeds are placed in 

predefined positions. While this may provide an estimate of the PDAS, the actual size of 

the dendrite is dependent on the given spacing from each seed. This leads to bias based 

on the seed position placed and changing of material or process parameters may require 

changes in seeds positioning or experiments to provide better positioning. Another 

challenge is the computational resources required in micro-scale modelling (Glicksman 

2010). This limits the volume of the simulation to within a single grain or a few grains. 

PFM models reviewed in this paper reduced the alloy to a binary alloy thus only finding 

the solute concentration or precipitate of a single solute. Microsegregation occurs in as-

built AM parts and causes non-homogenous microstructure (Ghosh 2018). Simulating for 

multicomponent alloy could help in studying how segregation occurs and possible work 

arounds, however, it would increase computational time as the equations would have to 

solve the summations of each components (Nestler, Garcke et al. 2005). MC models do 

not face this issue as it does not account for solutes. CA models uses solidification theory 



which can account for multiple elements, however, most model also reduces it to binary 

or tertiary alloys (Zineviva, Columnar to equiaxed transition during alloy solidification).  

Due to the nature of AM, depending on the scanning strategy, tracks can be re-melted 

several times. For PBF processes, tracks are often overlapping causing a single track to 

be melted at the sides and the next layer would also cause the top portion of previous 

layer to melt. The grain structure of the metal would then depend on the melting and 

growing of grains from previously printed tracks. In order to track the grain structure, 

microstructure models would have to be able to simulate a large enough volume to 

investigate different scanning strategies. In this aspect meso-scale MC and CA models 

would work well as it has been shown to be able to model in 3D as well as for multiple 

tracks and layers. A challenge for MC models is to get results closer to experimental data, 

although the trends of the grain structure is captured, the aspect ratio differs (Rodgers, 

Madison et al. 2017, Sun, Tan et al. 2018). CA models faces challenges in getting the 

scattered mix of equiaxed grains found in experimental data (Rai, Markl et al. 2016, 

Zinoviev, Zinovieva et al. 2016, Zinovieva, Zinoviev et al. 2018). Most CA models 

depend on nucleation models used in casting or do not implement nucleation, similar to 

welding CA models. This leads to grains that grow indefinitely in the build direction 

which differs from experimental data. Botello et al. CA model managed to capture similar 

grain aspect ratio but relies on experimental data to enable nucleation. This requires 

experiments on new material and process parameters to accurately model it. New 

nucleation methods may have to be used to capture nucleation in CA models. 

Meshing plays an important role in numerical models and inappropriate meshing can lead 

to inaccurate results or alter results causing mesh anisotropy. PFM models have very thin 

interface which requires very small cell sizes at the interface, however, the small cell size 

also reduces the time step of the model creating large amounts of data and requires more 



computational time for the same amount of time length (Zhang, Li et al. 2019). Some 

models use adaptive meshing to reduce the number of total cells (Francois, Sun et al. 

2017). Kinetic MC and CA also face the similar problem of having smaller cell sizes 

requiring small time steps leading to large amounts of data and computational resource. 

CA also can face mesh anisotropy and to counter this some models use hexagonal cells, 

however, majority of the models use the decentred square method developed by Gandin 

and Rappaz which allows square cells while eliminating mesh anisotropy (Gandin and 

Rappaz 1997, Dezfoli, Hwang et al. 2017, Panwisawas, Qiu et al. 2017). 

4 Conclusion 

Numerical modelling can help in predicting microstructure without the need of 

experiments. The grain structure, microsegregation, precipitate and dendrite size can be 

predicted using varying microstructure models. In order to get it two models are usually 

coupled together, thermal model and microstructure model. Two types of thermal models 

and three types of microstructure modelling for AM are reviewed. The macro thermal 

models predict the temperature, cooling rate and temperature gradient which is used as 

input for microstructure models.  

Of the two types of thermal models, FEM is most often used to model for multiple tracks 

and layers, while CFD is used for simulating for limited number of tracks. FEM models 

ignore the flow of the fluid reducing the amount of computation required and thus are 

able to simulate a larger volume. CFD models often focus on the physics of the melt pool, 

requiring more computation resources. FEM models being able to simulate larger 

volumes can be used in microstructure modelling to simulate the grain structure where 

grains often grow over multiple layers. CFD models has more accurate cooling rate and 

temperature gradient can be used to get more accurate microstructure. 



There are two different scales that microstructure modelling can take place: micro-scale 

and meso-scale. Micro-scale models simulate the dendrites and the solute composition 

while meso-scale simulates the grain structures. PFM and MCA are able to simulate on 

the micro-scale getting the segregation of alloying elements and finding the PDAS which 

relates to the local strength and hardness. It however requires large computational 

resource limiting its volume to simulate for a few dendrites. MC and CA are able to 

simulate a larger volume getting the grain structure. The grain size and aspect ratio which 

relates to the strength and ductility of the part is found in both models. MC models, 

however, have poorer prediction in grain size as compared to CA models. PFM and MCA 

can be useful in finding how new materials would form in the AM process and can 

facilitate the addition of new materials for AM. The overall mechanical properties would 

also depend on the size and aspect ratio of grain structure which would require MC or 

CA to model. Depending on the type of mechanical properties to be predicted, simulation 

has to be done in different length scales.  
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