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Abstract: We establish that Microstructured Optical Fibers (MOFs) have a
fundamental mode cutoff, marking the transition between modal
confinement and non-confinement, and give insight into the nature of this
transition through two asymptotic models that provide a mapping to
conventional fibers. A small parameter space region where neither of these
asymptotic models holds exists for the fundamental mode but not for the
second mode; we show that designs exploiting unique MOF characteristics
tend to concentrate in this preferred region.
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Microstructured Optical Fibers (MOFs) have received considerable attention since pioneering
work demonstrated some of their remarkable properties, such as guidance in hollow cores [1],
unprecedented dispersion characteristics [2-7], "endlessly" single-modedness [8], and the
support of modes with extremely low or high effective area [2,9]. These unique properties
have far-reaching consequences in fundamental and applied areas as diverse as frequency
comb generation [10], supercontinuum generation [3,11,12] and dispersion management [5].

One of the most important MOF configurations consists of a silica fiber with a solid core
surrounded by a silica cladding pierced by rings of air holes, that are typically hexagonally
packed (Fig. 1, lower right inset). These holes can be thought of as acting to depress the
average cladding refractive index, so that light escaping the core has to tunnel through an
equivalent low-index layer. An intriguing difference between such MOFs and conventional
fibers is associated with the distinction between guided and non-guided modes. In
conventional fibers the distinction is clear-cut: guided modes are lossless and thus have real
propagation constants β, related to a real effective index neff by neff= β/k0 =2πβ/λ, where
λ and k0 are the light's wavelength and vacuum wavenumber, respectively. For non-guided
modes β and neff are complex, where the imaginary part of neff is linearly related to the loss
coefficient at fixed wavelength. In MOFs with a finite number Nr of rings of confining holes,
all modes can tunnel through the confinement region to some extent and are consequently
lossy; thus all modes have complex values of β and neff [13-15].

In two recent papers [16,17] criteria were established for recognizing the transition of the
second mode1 from being unconfined to confined, which we identify with cutoff. Mortensen
[16] used the rapid decrease in the mode's effective area at the transition, whereas Kuhlmey et
al. [17] used effective area and four other criteria to pinpoint the transition. Curve 3 in Fig. 1
shows the locus of the transition of the second mode as a function of wavelength normalized
to hole spacing Λ, for MOFs of various hole diameters d in silica. Note that this curve crosses
the horizontal axis at d/Λ=0.406. Though the transition is gradual for MOFs with only a few
rings of air holes, it becomes sharper when the number of air holes increases [17].

1 The second mode is defined as the mode having, for a given fiber geometry, the second largest real part of neff. It
usually has the second lowest loss, and its field distribution is similar to the TE1 mode of conventional fibers.

(C) 2002 OSA 4 November 2002 / Vol. 10,  No. 22 / OPTICS EXPRESS  1286
#1676 - $15.00 US Received September 28, 2002; Revised October 25, 2002

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341


Using the same criteria as in [17], it appears that the fundamental mode2 also undergoes a
cutoff transition between confined and non-confined states. For long wavelengths, the
fundamental mode fills the entire fiber cross-section, whereas for small wavelength it
becomes confined in the core. However, instead of having the sharp transition between those
states exhibited by the second mode, the transition is characterized by two loci, with a
transition region of finite width in between. This was established for structures of up to Nr=10
rings of holes, with conclusions for larger structures following by extrapolation . Above the
highest of these loci [curve (1)], in the region denoted by CF1, the fundamental mode fills the
entire fiber cross section, and its properties can be accurately predicted on the basis of a
conventional fiber model (CF1, using the same symbol for the model and the region of
parameter space in which it is valid) that we describe below. Below the second locus [curve
(2)], in the region denoted by CF2, the fundamental mode is tightly confined in the core, with
its properties given by a second conventional fiber model (CF2). In the transition region
between CF1 and CF2, the fundamental mode changes its character and its behavior is thus
not only sensitive to the MOF design (i.e., to d/Λ and Nr), but is also unlike that of the modes
of conventional fibers. We stress that, as we decrease the wavelength from large values, the
fiber at first shows no localized modes (region CF1), but that one of its extended modes
undergoes a smooth transition to emerge as a localized mode in region CF2.

We established the mode boundaries of Fig. 1 using a multipole method [13,14], which
can calculate MOF modes and their losses accurately over a wide parameter range. We
studied the comportment of MOFs at the telecommunications wavelength of λ=1.55 µm, and
varied the hole spacing Λ, while keeping the hole diameter to spacing ratio d/Λ constant. The

2 The fundamental mode is defined as the mode having, for a given fiber geometry, the largest real part of neff. It is the
mode with the lowest losses and for the fibers studied here is doubly degenerate. It is most similar in terms of field
distribution to the HE1,1 mode of conventional fibers.

Fig. 1. Operation regimes of MOFs. Lower right inset: cross section of a MOF with 3 rings of holes.
Other insets: asymptotic models for large (CF1) and small (CF2) wavelengths. The shaded transition
region represents the parameter subspace where MOFs cannot be described by either asymptotic model
and therefore behave most unlike conventional optical fibers. Data sets are described in the text.
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MOFs were taken to consist of air holes (refractive index unity) in a matrix with refractive
index nm=1.44402362. For given d/Λ, we studied the variation of the loss [Im(neff)] as a
function of normalized wavelength λ/Λ. At small λ/Λ, the loss increases gently, before rising
very steeply in the transition region, and then increasing slowly once again in the second
conventional fiber region (see Fig. 2.A). To locate the boundaries of regions accurately, we
used the second derivative of the log-log plot of the losses, a function which peaks at the
boundaries between regions [17]. Carrying out this procedure for various hole diameters, we
established the two boundary curves for the fundamental mode, shown for the first time in
Fig. 1. These curves tend to approach one another for decreasing hole size, and reach λ=0 for
hole sizes d/Λ somewhere between 0 and 0.06 inclusive. Counting only modes confined to the
core, MOFs in silica can be said to be "endlessly" single-moded in the region below the CF1
area of Fig. 1, and to the left of d/Λ = 0.406, where the second mode boundary drops to zero
[17]. This observation corroborates and somewhat sharpens the prediction of endless single
mode behavior made by Birks et al. [8].

In the CF1 region of Fig.1, the fundamental mode fills the entire confining region. Its
behavior is modeled accurately by using homogenization arguments [18] to establish effective
dielectric constants and thereby refractive indices for the cladding region. Homogenization
theory predicts an effective dielectric constant given by the mean of the dielectric constants of
air and silica for the electric field parallel to the fiber axis. In contrast, for small d/Λ the
Maxwell-Garnett formula can be used to derive effective constants for the transverse electric
field component [18]. With f being the air filling fraction of the fiber we have:

n z = [f nair
2 +(1-f) nm

2]1/2
, (Extraordinary index) (1)

≅⊥n nm [( T - f )/(T+f)]1/2
, (Ordinary index)

where T =(nm
2 + nair

2)/(nm
2 - nair

2).

(2)

The effective modal index is then calculated using the theory [19] of propagation in an
optical fiber with core of radius NrΛ constituting a uniaxial material, and a silica jacket.
Fig. 2.B shows the real and imaginary parts of the effective index of a MOF for different
numbers of rings as a function of the fiber size NrΛ and the results given by the homogenized
model outlined above. The agreement is excellent for λ/Λ ≥ 0.5. Thus in this regime the mode
properties remarkably only depend on the total fiber size NrΛ, regardless of Nr. MOF modes

Fig. 2. A: Imaginary part of neff as a function of wavelength on pitch, rescaled by (λ/Λ)2, for a silica
structure with 3 layers of holes, with d/Λ taking the values 0.075 (top curve), 0.15, 0.3, 0.45, 0.6, 0.75, 0.8
and 0.85. B: Imaginary (thin curves) and real (thick curves) part of neff as a function of fiber radius NrΛ
divided by λ for MOFs with d/Λ=0.3, for 4 (red), 6 (blue) and 8 (green) rings of holes, and for the
corresponding homogenized fiber (black). All calculations in this report were done for varying pitch at
fixed λ=1.55µm, where the losses in dB/m are given by 3.52x107Im(neff).
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tend to be quite lossy here, since the effective indices in the core region are smaller than nm.
Note that the losses do decrease as the number Nr of layers of confining air holes increases,
but do so following a power law. Consequently, Nr generally has to be impractically large to
generate MOFs with sufficiently low loss for technological applications, and key quantities
like the modal dispersion depend sensitively on Nr, even when this number is large. Therefore,
practical applications of MOFs are unlikely for designs in the CF1 region of Fig. 1.

For short wavelengths, MOFs have already been successfully modeled by several authors
as step index fibers with varying cladding index [5,8,11,12,20,21]. In the model CF2 shown in
Fig. 1 the refractive index of the cladding is given by the effective index of the fundamental
space-filling mode (FSM) [8]. Best agreement was found for a core radius of approximately
a=0.64Λ [21]. Based on an asymptotic analysis of this model, it appears that at short
wavelengths nFSM can be approximated by

nFSM= nm – n2(λ/Λ) 2 (3)

where n2 can be obtained from a transcendental equation derived from the framework
established by Birks et al. [8]. It is then readily shown that the imaginary part of the effective
index varies as (λ/Λ) 2 for a fixed number Nr of rings of air holes, and decays exponentially
with Nr at fixed k0Λ, as expected for tunneling losses. Fig. 2.A shows the imaginary part of neff

divided by (λ/Λ)2 as a function of λ/Λ, for several d/Λ ratios. The curves tend to a constant
for approximately λ/Λ ≤0.3, indicating clearly that the asymptotic dependence becomes valid
for reasonable wavelength to pitch ratios. In this regime, and contrary to the behavior in the
CF1 regime, the real part of neff, and derived characteristics such as modal dispersion
converge with increasing Nr.

3

It is thus clear that the region CF2 of Fig. 1 is appropriate for practical MOF designs:
Confinement of the fundamental mode improves exponentially as more rings are added, and
characteristics such as modal dispersion converge with an increasing number of rings.
However, the further the CF2 region is penetrated, the closer the analogy becomes between
the MOF and conventional fibers. Thus, the new design possibilities offered by MOFs are
essentially available only in the transition region and its border with the region CF2.

3 Note that nFSM also has importance in relation to the boundary of CF1, which appears to occur when neff = nFSM .

Figure 3: Width of the transition between the large wavelength asymptotic
regime (CF1) and the intermediate regime as a function of Nr

-b, for the
fundamental mode (A, bf≈ 2.97) and the second mode (B, b2≈ 1.55). For
the second mode the width of the intermediate regime tends to zero with
increasing number of rings, whereas a finite transition region remains for
the fundamental mode, even for Nr→∞.

0
0.2
0.4
0.6
0.8

1

0 0.005 0.01 0.015

1/N bf

d/Λ
0.15

0.3
0.45

0

0.1

0.2

0 0.025 0.05 0.075 0.1 0.125

1/N b2

d/Λ
0.45
0.55
0.65

W
id

th
 (

in
 λ

/Λ
)

B

A

(C) 2002 OSA 4 November 2002 / Vol. 10,  No. 22 / OPTICS EXPRESS  1289
#1676 - $15.00 US Received September 28, 2002; Revised October 25, 2002



As mentioned earlier, the sharpness of the transition region with increasing Nr evolves
differently for the fundamental and the second mode. This is illustrated in Fig. 3, where we
plot the width of the transition region (more precisely the width of the peak of the second
derivatives of the curves in Fig. 1.A) versus 1/Nr

b, where b is adjusted to give the best straight-
line behavior of all datasets in each frame. As the number of confining rings Nr increases, the
width of the transition region tends to zero for the second mode (Fig. 3.B), whereas for the
fundamental mode this width remains finite (Fig. 3.A). Thus, in an infinite system, the
transition region for the second mode disappears, whereas for the fundamental mode there is
always a parameter region in which this mode behaves fundamentally differently than the
modes of a conventional fiber. Note the linearity of the data for different hole diameters in
Fig. 3, showing that the power law exponents for both modes are independent of d/Λ.

The points in Fig. 1 indicate experimental and theoretical data from recent publications of
MOF designs with unconventional properties. The first data set concerns MOFs used
experimentally for supercontinuum generation, taken from Refs. [3,11-12]. They all lie in the
CF2 regime, and indeed the key property for supercontinuum generation – highly shifted zero
dispersion wavelength and small core size – can be delivered by the CF2 model, already
known to be successful for such MOFs [11,12]. Data set 2 shows the location of experimental
zero-dispersion wavelength measures, which were compared to theoretical values from a CF2
model in the original publication [5]. For the two lower points (b and d) which lie in the CF2
region, comparison with the CF2 model gave good agreement, for point c agreement was
approximate and for point a, lying in the transition region, the agreement was unsatisfactory.

The third data set consists of regions of observed or predicted flat or oscillating
dispersion, taken from Refs. [2,4,6,7,21]. All data points herein are located exactly in the
transition region, using the increased and highly configurable wavelength dependence of
structural dispersion to compensate material dispersion. The consequences of being in the
transition region, and therefore close to cutoff, are that confinement losses are highly
wavelength dependent, and that the waveguide dispersion is sensitive to the actual fiber
geometry. Such high sensitivity to structural imperfections was observed by Monro et al. [22],
and indeed the fiber parameters used by these authors are in the transition region (data line 4).

In studying the influence of the number of rings on dispersion [7], we observed that the
dispersion does not necessarily converge with the ring number. Data set 5 shows the location
of an example where the dispersion converges with Nr in a limited wavelength range before
diverging with Nr. The divergent wavelength range crosses the transition line from the
intermediate to the homogenized regime CF1, where we have seen Nr dictates mode
properties.

Although we tried to map as many published MOF designs as possible onto Fig. 1, a few
were omitted: some were overlapping the transition region and the CF2 region and had more
conventional dispersion properties, while others were beyond the scope of this study (e.g.
grossly non-circular holes). One theoretical study by Monro et al. [2] had two examples of
MOFs lying in the CF1 region, with both displaying conventional dispersion. It should be
emphasized that no experimental MOF has been published with parameters in the CF1 region.

In conclusion, we find that the fundamental MOF mode exhibits a transition between
being confined around the core region, and filling the entire (finite) fiber cross-section.
Thereby, we have shown that MOFs have an edge in the sense of offering modal
characteristics unlike those achievable with conventional fibers when operated in the
transition region, shown in Fig. 1. They may deliver useful (albeit conventional) design
characteristics in the region CF2, but are unlikely to deliver low-loss and stable secondary
characteristics such as dispersion in the region CF1. We have shown that these theoretical
insights are in keeping with successful MOF designs from the literature, and we are confident
they will prove useful in guiding further innovative applications of this exciting new class of
optical fiber.
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