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Figure 1: Given a virtual object with specified elasticity material parameters (blue=soft, red=stiff), our method computes an assemblage of
small-scale structures that approximates the desired elastic behavior and requires only a single material for fabrication.

Abstract

We propose a method for fabricating deformable objects with spa-
tially varying elasticity using 3D printing. Using a single, relatively
stiff printer material, our method designs an assembly of small-
scale microstructures that have the effect of a softer material at the
object scale, with properties depending on the microstructure used
in each part of the object. We build on work in the area of meta-
materials, using numerical optimization to design tiled microstruc-
tures with desired properties, but with the key difference that our
method designs families of related structures that can be interpo-
lated to smoothly vary the material properties over a wide range.
To create an object with spatially varying elastic properties, we tile
the object’s interior with microstructures drawn from these families,
generating a different microstructure for each cell using an efficient
algorithm to select compatible structures for neighboring cells. We
show results computed for both 2D and 3D objects, validating sev-
eral 2D and 3D printed structures using standard material tests as
well as demonstrating various example applications.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling
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1 Introduction

With the emergence of affordable 3D printing hardware and on-
line 3D printing services, additive manufacturing technology comes
with the promise to make the creation of complex functional phys-
ical artifacts as easy as providing a virtual description. Many func-
tional objects in our everyday life consist of elastic, deformable

material, and the material properties are often inextricably linked to
function. Unfortunately, elastic properties are not as easy to control
as geometry, since additive manufacturing technologies can usually
use only a single material, or a very small set of materials, which
often do not match the desired elastic deformation behavior. How-
ever, 3D printing easily creates complex, high-resolution 3D struc-
tures, enabling the creation of metamaterials with properties that
are otherwise unachievable with available printer materials.

Metamaterials are assemblies of small-scale structures that obtain
their bulk properties from the shape and arrangement of the struc-
tures rather than from the composition of the material itself. For
example, based on this principle, Lakes [1987] presented the first
engineered materials that exhibit a negative Poisson’s ratio. Since
then, numerous designs have been proposed, usually consisting of
a periodic tiling of a basic pattern, and engineering their structures
is an active area of research [Lee et al. 2012].

While designing a tiled microstructure to match given homoge-
neous material properties can be achieved with modest extensions
to the state of the art, designing a complex microstructural assem-
bly to achieve heterogeneous, spatially varying properties is much
more challenging. We face a complex inverse problem: to deter-
mine a discrete small-scale material distribution at the resolution
of the 3D printer that yields the desired macroscopic elastic behav-
ior. Inverse problems of this type have been explored for designing
periodic structures that can be tiled to synthesize homogeneous vol-
umes, but the methods are computation-intensive and do not scale
to designing non-periodic structures for objects with spatially vary-
ing material properties.

Our goal is to enable users to employ metamaterials in their 3D
printing workflow, generating appropriate structures specifically for
their available 3D printer model and base material within seconds.
Clearly, designing entire models on the fly by directly optimiz-
ing over the whole structure is impractical. Instead, we propose a
data-driven approach that efficiently assembles models out of pre-
computed small-scale structures so that the result both resembles
the desired local elasticity and also is within the capabilities of the
available output device.

First, we precompute a database of tiled structures indexed by their
elastic properties. We want these structures to cover a large and
ideally continuous region in the space of possible elastic behaviors.
To achieve this goal, we introduce an optimization method for sam-
pling structures that exhibit a range of desired behaviors, but are



also sufficiently similar to allow interpolation. We initialize this
optimization method either with a known structure or desired elas-
tic property values, and then compute a family of similar structures
that covers a subspace of possible elastic behaviors. We repeat this
process, each time adding a new family of structures, to increase
the coverage of the material space.

Second, to synthesize the metamaterials for a specific object, we tile
the object’s interior with microstructures drawn from these families.
Note that the same elastic behavior can be reproduced by structures
that differ significantly in shape, and therefore the families might
overlap in material space. This is an important feature of our sys-
tem for reproducing spatially varying material behavior. Spatially
neighboring structures must connect properly at their interface, and
overlapping families provide us with a set of candidates for each
tile, significantly increasing the chance of finding structures com-
patible with neighboring tiles. We propose an efficient global opti-
mization algorithm that selects an optimized tiling, taking into ac-
count the need for neighboring structures to connect properly. Our
final result is functional and 3D printable.

We evaluate our algorithm by fabricating several examples of both
flat sheets and 3D objects with heterogeneous material behavior.
For several isotropic and anisotropic 2D examples and isotropic 3D
examples, we measure the resulting elastic properties, comparing
the actual material parameters to the values predicted by our simu-
lation.

2 Related Work

Simulation and Homogenization Simulation of deformable ob-
jects has a long history in computer graphics [Nealen et al. 2006].
For accurate simulation of material behavior, the finite element
method is a popular choice, with a wide range of available constitu-
tive models of materials. An excellent introduction can be found in
Sifakis and Barbič [2012]. Inspired by the seminal work of Hashin
and Shtrikman [1963], homogenization theory was developed to ef-
ficiently simulate inhomogeneous materials with fine structures, al-
lowing microscopic behavior to be averaged into a coarser macro-
scopic representation with equivalent behavior at the macroscopic
scale [Michel et al. 1999; Cioranescu and Donato 2000]. Nesme
et al. [2009] encode the material stiffness within coarse elements
using shape functions after a fine-level static analysis. We build
on the numerical coarsening approach by Kharevych et al. [2009]
which turns the heterogeneous elastic properties represented by a
fine mesh into possibly anisotropic elastic properties of a coarse
mesh that effectively captures the same physical behavior. After
computing harmonic displacements to capture how the fine mesh
behaves, their approach presents an analytic relationship between
the elasticity tensors of a coarse element and the elasticity tensors
of the fine elements contained within. We extend this formulation
for inverse homogenization.

Mechanical Metamaterials and Inverse Homogenization

Metamaterials are usually defined as macroscopic composites
having a manmade, periodic cellular architecture designed to
produce a behavior not available in nature. In this paper, we draw
inspiration from mechanical metamaterials, and relax the term in
the context of 3D printing to material properties not available on
3D printers. Lakes [1987] presented the first engineered materials
that exhibit a negative Poisson’s ratio. Due to their structure, these
materials expand laterally when stretched, therefore increasing
their volume. Since then, numerous designs for soft metamaterials
have been proposed, either found by intuition, or numerical
optimization processes [Lee et al. 2012].

In classical inverse homogenization approaches the goal is to find

a repetitive small-scale structure with desired macroscopic prop-
erties. This is obtained by optimizing the material distribution
in the base cell. Researchers have proposed various parametriza-
tions of the material distribution, such as networks of bending
beams [Hughes et al. 2010], spherical shells patterned with an ar-
ray of circular voids [Babaee et al. 2013], or rigid units [Attard
and Grima 2012]. Alternatively, the domain of a base cell can be
discretized into small material voxels, and a discrete value prob-
lem has to be solved. Due to the combinatorial complexity, di-
rect search methods are prohibitively expensive, and the problem
is usually solved using a relaxed formulation with continuous ma-
terial density variables [Sigmund 2009] or advanced search heuris-
tics [Huang et al. 2011]. These approaches generally search for
structures with extreme properties, often maximum stiffness, for a
given amount of material, and only consider a single structure. In
contrast, we present an optimization method that computes a struc-
ture to achieve a specific material behavior. Based on this method,
we span an entire space of elastic material structures, and construct
a mapping from elasticity parameters to microstructures that can be
efficiently evaluated during runtime.

Rodrigues et al. [2002] and Coelho et al. [2008] suggest methods
for hierarchical topology optimization, computing a continuous ma-
terial distribution on a coarse level and matching microstructures
for each coarse cell. While in their approach each microstructure
cell can be optimized independently, each of them still needs to be
computed based on a costly optimization scheme, and there is no
guarantee on the connectivity of neighboring structures. In con-
trast, we use a data-driven approach which allows us to synthe-
size structures extremely efficiently, and also take the quality of
the connectivity into account. For functionally graded materials
with microstructures, Zhou et al. [2008] guarantee the matching of
boundaries either by prescribing connectors or by incorporating a
complete row of cells that form a gradient during a single optimiza-
tion. We follow a different strategy. Instead of restricting types of
connections or increasing the size of structures, we efficiently com-
pute multiple candidates from families of microstructures and then
select structures with interfaces that match best.

Fabrication-Oriented Material Design In computer graphics,
we are currently witnessing an increasing interest in fabrication-
oriented material design for reproducing 3D physical artifacts from
virtual representations. Recently, Chen et al. [2013] presented an
abstraction mechanism for translating functional specifications to
fabricable 3D prints, and Vidimče et al. [2013] introduced a pro-
grammable pipeline for procedural evaluation of geometric detail
and material composition, allowing models to be specified easily
and efficiently. For static objects, Zhou et al. [2013] present an al-
gorithm for efficiently analyzing the structural strength, and Stava
et al. [Stava et al. 2012] improve the structural strength by auto-
matic hollowing, thickening, and strut insertion. Wang et al. [Wang
et al. 2013] propose a method for computing skin-frame structures
for the purpose of reducing the material cost of the printed object.

Recent work also investigated the reproduction of appearance, for
example by modulating the surface structure to achieve desired re-
flection properties [Weyrich et al. 2009; Lan et al. 2013; Rouiller
et al. 2013], by interleaving different colored materials on the sur-
face [Reiner et al. 2014], or by volumetric combination of multiple
materials [Hašan et al. 2010; Dong et al. 2010] to control subsurface
scattering behavior. Conceptually similar to our approach, these
methods are based on the principle that the large-scale appearance
is governed by small-scale details, and can reproduce appearance
properties which are significantly different from the 3D printer’s
base material.

Bickel et al. [2010] presented a data-driven process for designing
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Figure 2: An overview of our system. In a pre-processing step, we compute metamaterial families. Each family consists of multiple related
microstructures that can be interpolated to smoothly vary the material properties. We store all families in a database, representing our
metamaterial space. Given as input an object with specified material parameters, we synthesize locally microstructures that resemble the
desired deformation behavior. As multiple, topologically different structures can have the same bulk behavior, we potentially have multiple
candidates of microstructures for a single location. Using these candidates, we compute an optimized tiling, ensuring that neighboring
structures are properly connected. Finally, the physical prototype is 3D printed.

and fabricating objects with desired deformation behavior. Whereas
Bickel et al. start from specified example deformations, the input
to our system is a model with specified elastic parameters. Their
approach assumes that a small set of microstructures is already
given, and finds a discrete combination of stacked layers from these
structures that meets the criteria specified by the example deforma-
tions. In contrast, our work computes the small-scale structures
themselves. This is essential for more precise local control of the
deformation. Furthermore, Bickel et al. select a material for each
layer using a branch-and-bound discrete optimization operating on
the exponential space of designs, requiring running times on the
order of an hour for examples with five layers and nine base materi-
als. By contrast, our method synthesizes the desired structures from
pre-computed continuous material subspaces, and is able to handle
objects with thousands of layers or cells within seconds.

Several previous methods investigate fitting spatially varying ma-
terial parameters either from measurements of real-world ob-
jects [Becker and Teschner 2007], infer them from user-specified
input such as example deformation [Skouras et al. 2013], or op-
timize material distributions to achieve higher-level functionality
such as locomotion of soft robots [Hiller and Lipson 2012]. Re-
cently, Xu et al. [2015] presented an interactive material design
tool, which computes a spatial distribution of material properties
given user-provided displacements and forces at a set of mesh ver-
tices. Our method complements these approaches, working towards
the goal of automatically converting the virtual representation ob-
tained by those methods into 3D printable objects.

3 Overview

The goal of our system is to automatically convert an object with
given spatially varying elastic properties into a 3D printable rep-
resentation that requires only a single base material for fabrica-
tion, and mimics the desired elastic behavior. In this work, we
limit ourselves to small strains and demonstrate our approach for
both isotropic and anisotropic elastic materials. As outlined in
Figure 2, our system consists of two main stages: a preprocess-
ing step that constructs metamaterial structures covering the space
of reproducible material properties, and a synthesis stage that uses
those structures to generate microstructures for a given object. We
start the description by defining the most important terms we use
throughout the paper.

Metamaterial Space A metamaterial space is a specific organi-
zation of metamaterials. We target reproducing elastic behavior us-
ing 3D printers and represent their behavior using the n parameters
of the underlying constitutive model. For example, linear isotropic
materials are represented by n = 2 parameters, the Young’s mod-

ulus and Poisson’s ratio. In addition, every metamaterial space has
a mapping function, mapping the n parameters to one or several
microstructures. This mapping is one-to-many because different
microstructures might reproduce the same elastic behavior.

Metamaterial Space Construction Our first stage aims to de-
fine a function that efficiently maps a given elastic material to a
small, tileable structure with the same bulk behavior. Our process
starts by systematically sampling the material parameter space. Our
strategy is to compute a sparse set of representative structures that
(i) cover a wide range in the space of elastic material parameters
and that (ii) allow the interpolation of neighboring structures in pa-
rameter space. Via a weighted combination of these samples, we
then reconstruct a continuous mapping from elasticity parameters
to microstructures. We call such a set of interpolatable structures
a metamaterial family. A metamaterial family defines a one-to-one
mapping from material properties to structure. In practice, a family
usually only covers a partial gamut of the material space. Therefore,
we pre-compute several families until we sufficiently cover a de-
sired range of elastic behavior. All metamaterial families together
constitute our metamaterial space. Note that, as shown in Figure 10,
the gamut of these metamaterial families might be partially over-
lapping, yielding a one-to-many mapping from parameters to mi-
crostructures.

Synthesis To synthesize the microstructure for a given object,
we tile its interior. For each tile, we interpolate a microstructure
from each pre-computed family of structures. This provides us with
a small set of candidate structures for each cell, out of which we
have to select exactly one. These choices are not independent; they
must be made consistently so that the structures connect well with
their neighboring tiles. We suggest a carefully designed metric that
quantifies the compatibility of structures and phrase this selection
as a combinatorial problem, which we solve efficiently using an
optimization method based on message passing. Finally, we use the
selected structures to fabricate the object using rapid prototyping.

4 Background

In order to determine and optimize for the behavior of a microstruc-
ture, a physical model is introduced. This model combines standard
linear elasticity with extensions specific to microstructure simula-
tion and topology optimization.

4.1 Linear Elasticity

Continuum mechanics in combination with a finite elements dis-
cretization is a popular way to model elastic structures. For stan-



dard linear elasticity, the energy density can be defined as

W = ε : C : ε = ε : σ. (1)

Here, ε is the linear Cauchy strain, C is the material stiffness ten-
sor, and σ = C : ε is the Cauchy stress tensor. The material
stiffness tensor is defined by a small set of parameters that depend
on the material model. For example, for an isotropic material, it
is a function of 2 parameters, the Young’s modulus and the Pois-
son’s ratio. For more complex materials, additional parameters such
as the shear modulus and direction-dependent Young’s moduli and
Poisson’s ratios are used. Given parameters p, we denote the cor-
responding material stiffness tensor as C(p).

A linear finite element method is used to discretize (1) with basis
functions defined on triangular and tetrahedral elements in 2D and
3D, respectively. In this case, the strain εi and material stiffness
tensor Ci are constant within an element i. The elastic energy,
given as the volume integral of the energy density, is then

Uel =
k

∑

i=1

(εi : Ci : εi)Vi (2)

for a model with k elements and element areas/volumes Vi. The to-
tal energy of the system also considers external forces and tractions.
Summarizing surface traction and forces using a general force field
f acting on vertices, this energy can be expressed as

Utot(x) = Uel(x)−

n
∑

i=1

x
T
i fi, (3)

where n is the number of vertices, and vector x =
[

xT
1 · · ·xT

n

]T

is the concatenation of all vertex position vectors. The deformed
configuration x corresponding to the static equilibrium can be com-
puted by minimizing this energy, or equivalently, solving

∇xUel(x) = f . (4)

Since the elastic energy Uel(x) is invariant to translation and rota-
tion, the solution to this problem is not unique. A common work-
around to this is to constrain enough degrees of freedom to get rid
of this nullspace. However, the choice of degrees of freedom might
influence the solution in the presence of forces. Instead, we opt to
resolve the ambiguities by introducing constraints on the moments
of the object, similar to Zhou et al. [2013]. These constraints take
the form

c1(x) =
n
∑

i=1

(xi −Xi) = 0

c2(x) =
n
∑

i=1

((xi −Xi)× (xi −X)) = 0,

(5)

where Xi is the rest state position of vertex i, and X is the mean
rest state position. For simplicity, we combine these constraints
into a single vector c(x) = [c1(x)

T c2(x)
T ]T . Intuitively, these

constraints fix the mean translation and rotation. To compute c2 in
the 2D case, we treat positions as points on the z = 0 plane and use
the z-component of the cross product.

Combining Equation (4) and Equation (5), the problem of comput-
ing the equilibrium configuration then becomes

∇xUel(x) = f s.t. c(x) = 0. (6)

This problem can be expressed as a system of linear equations and
solved efficiently.

4.2 Microstructure Simulation

The simulation of a microstructure can be simplified by consider-
ing a tiling of a representative base cell. Instead of simulating the
complete tiling to determine the behavior of the structure, periodic
boundary conditions can be added to a simulation of a single cell.
These boundary conditions simulate the tiling and essentially re-
quire that opposite boundaries of the cell have the same shape.

x1

base

x0

base

xi

xj

free vertex

constrained vertex

Specifically, we assume that any vertex
on a boundary has a matching vertex on
the opposite boundary such that its rela-
tive position on the boundary is identical.
Choosing an arbitrary pair of boundary
vertices xbase

0 and xbase
1 as base vertices

then defines the distance between two op-
posite boundaries, and any other vertex
xj on one boundary can be expressed as
a combination of the base vertices and the
corresponding vertex xi on the opposite
boundary [Smit et al. 1998]

xj = x
base
1 + xi − x

base
0 . (7)

These boundary conditions can be efficiently integrated into a sim-
ulation by removing the corresponding vertices from the degrees of
freedom.

4.3 Numerical Coarsening

Optimizing a microstructure is an inverse problem, corresponding
to the forward problem of determining the coarse-scale behavior
from the microstructure. This forward problem can be defined us-
ing the idea of homogenization: compute a material stiffness tensor
for a homogeneous material whose elastic behavior matches that
of the tiled microstructure. We use the Numerical Coarsening ap-
proach [Kharevych et al. 2009], which uses a set of load cases to
approximate the coarse elastic behavior of a given structure. Essen-
tially, given the deformations h that these load cases induce, which
are called harmonic displacements, the method computes a single
material stiffness tensor C(h) that describes the homogenized ma-
terial behavior of a microstructure, which we will use to solve the
inverse problem. We refer to the supplemental material for a de-
tailed introduction to the Numerical Coarsening approach.

5 Microstructure Optimization

Our microstructure optimization method solves the inverse problem
to the Numerical Coarsening method mentioned in the previous sec-
tion, solving for a microstructure that coarsens to a given stiffness
tensor.

Optimizing a microstructure requires a way to define and alter the
material distribution within a cell. A common approach in topology
optimization is to discretize the material distribution by subdivid-
ing the cell into a grid of material voxels [Sigmund 2009], where
each voxel is associated with a binary activation that describes



whether the voxel is full (1) or void (0). However, optimizing the
microstructure using these binary variables directly would be in-
feasible for moderately large grids. Instead, the problem is usually
relaxed by allowing the activations to vary smoothly between 0 and
1 during the optimization, and only requiring them to converge to
a binary solution at the end of the optimization. For the continuous
activations, a meaningful interpolation between void and full voxels
has to be defined such that the activation corresponds to a physical
quantity in the simulation. A simple way to define this is by inter-
polating between stiffness tensors. For any voxel i (1 ≤ i ≤ m,
with m being the number of voxels), an individual material stiffness
tensor Ci is defined as an interpolation between the base material
stiffness tensor Cbase and air, which is assumed to have a zero ma-
terial stiffness tensor:

Ci = αiCbase. (8)

To ensure numerical stability, the minimum of αi is set to αmin =
10−5. This interpolation scheme follows the established SIMP
(solid isotropic material with penalization) approach for an expo-
nent of 1 [Sigmund 2009]. Choosing a different exponent would
help to converge to a binary solution in topology optimization prob-
lems with extremal objectives, where adding more material im-
proves the objective and the maximum amount of material is fixed
by a constraint. However, we do not have such an objective, and
have to resort to other means to reach a binary solution. As a con-
sequence, the exponent we choose does not influence the conver-
gence.

The number of activations can be reduced by exploiting symmetries
of the goal material. For example, for a cubic material, the response
along each axis has to be identical. Mirroring the activations along
all axes and all diagonal planes will therefore not constrain the so-
lution.

5.1 Problem Formulation

We pose the problem of finding a microstructure that exhibits a
large-scale behavior identical to a homogeneous material with de-
sired material parameters pgoal (see Section 4.1) as a least squares

problem. From the parameters pgoal, a stiffness tensor Cgoal =
C(pgoal) can be computed. The optimization then modifies the ac-
tivations α such that the homogenized stiffness tensor C(h(α)),
which is indirectly dependent on the activations through the har-
monic displacements h(α), matches the goal stiffness tensor as
closely as possible:

min
α

‖Cgoal − C(h(α))‖2F +R

s.t. αmin ≤ αi ≤ 1 1 ≤ i ≤ m.
(9)

Here, R is a combined regularization term that penalizes less desir-
able results. This formulation differs from most other microstruc-
ture optimization approaches that typically try to find extremal
properties for a specific amount of material. It is related to the
formulation in [Zhou and Li 2008], though it does not use a volume
fraction constraint.

5.2 Regularization

While the optimization problem (9) could be solved without any
regularization, there is no guarantee that the result can be fabri-
cated. In order to enforce manufacturability, we add three different
regularization terms Rint, Rs and Rcb with corresponding weights

wint, ws and wcb to the objective. The combined regularization term
R is defined as

R = wintRint + wsRs + wcbRcb. (10)

Figure 3 and 4 show the influence of the individual regularization
terms. In the following, we will elaborate on each term.

Enforcing Integer Values While the simulation allows the acti-
vations α to vary freely between αmin and 1, these configurations do
not correspond to valid physical objects. For fabrication, the activa-
tions have to be integral (excluding the small offset αmin to ensure
stability). In order to reach such a solution, the regularization term
Rint acts as a penalty for activations that are not equal to either αmin

or 1:

Rint =

m
∑

i=1

(αi − αmin) (1−αi) . (11)

We gradually increase the weight wint during the optimization, tran-
sitioning from a continuous to a discrete solution. For each value of
the weight, a full optimization is run until convergence is reached.
If the solution is not binary, the weight is increased and the op-
timization resumed. Figure 3 and the accompanying video show
different stages of the optimization, with various weights wint.

wint = 7.49 wint = 11.33 wint = 87.38 wint = 3.2 · 1012

Figure 3: Optimization at different stages (with different penalty
weights to force the activations towards αmin or 1).

Smoothness The size of a single microstructure cell in a fab-
ricated object is largely defined by two factors: the resolution of
the 3D printer, and the size of the smallest detail in the structure.
Smaller cells provide a better approximation of a continuous mate-
rial, and since the printer resolution is assumed to be fixed, struc-
tures without small details are generally preferred.

The regularization Rs views the activations as an approximation
of a material distribution field, and uses a second-order finite dif-
ference approach to penalize deviations from smoothness. For this
purpose, any component of α is assumed to have two indices in
2D, such that αi,j corresponds to the voxel (i, j). The regulariza-
tion then has the form

Rs =
∑

i,j

(αi−1,j +αi+1,j +αi,j−1

+αi,j+1 − 4αi,j)
2

(12)

in 2D; the formula for the 3D case is similar and can be found in
the supplemental document.



Rint Rint +Rcb Rint +Rcb +Rs

Figure 4: Influence of different regularizations: Optimization re-
sults where only integer values are enforced (left), with addi-
tional anti-checkerboard regularization (middle) and with smooth-
ness regularization (right). The objective value for the last two re-
sults is similar, while the first result has a worse objective value.

Checkerboard Patterns An artifact that frequently appears in
topology optimization is elements that are connected by a sin-
gle vertex, called checkerboard patterns [Sigmund and Petersson
1998]. To avoid such structures, the regularization Rcb penalizes
configurations that contain checkerboard patterns, as illustrated in
Figure 4. In 2D, this regularization is based on 2 × 2 patches of
voxels and has the form

Rcb =
∑

i,j

(1−αi,j)(αi+1,j −αmin)

(αi,j+1 −αmin)(1−αi+1,j+1)

+(αi,j −αmin)(1−αi+1,j)

(1−αi,j+1)(αi+1,j+1 −αmin).

(13)

In the case of binary activations, Rcb is only non-zero if the struc-
ture contains a checkerboard pattern. In the continuous case, the
regularization also acts as an additional regularizer that pushes the
activations towards αmin or 1.

In 3D, the number of different local checkerboard patterns in-
creases. The corresponding formula can be found in the supple-
mental document.

Regularization Weights The performance of our microstructure
optimization depends on the choice of weights, and how they are
updated during the optimization. For the optimization in 2D, we
start with w0

int = 0, w0
s = 2 and w0

cb = 0. Once the optimization
converged for the current weights, we update them according to
wt+1

int = 1.3wt
int + 0.1, wt+1

s = 1.1wt
s + 0.2 and wt+1

cb = 5wt+1
int ,

until a final solution has been found. In 3D, we initialize the weights
with w0

int = 0, w0
s = 5 and w0

cb = 0, and update them using
wt+1

int = 1.3wt
int + 0.5, wt+1

s = 1.1wt
s + 1 and wt+1

cb = 5wt+1
int .

Connectivity An additional fabrication requirement is connectiv-
ity. The optimization will generally not favor binary solutions in
the absence of regularization term Rint. As the influence of this
term grows with increasing wint, the previously intermediate activa-
tions will be pushed to αmin or 1, and the structure might become
disconnected (see Figure 5). To prevent the optimization from con-
verging to such a solution, disconnected components are detected
after every iteration. To account for the continuous nature of the
activations, every activation below a threshold of 0.1 is considered
inactive during the detection. If a disconnected component has been
found, we compute the cost of connecting the component as the
smallest change in activations that builds a connection, assuming
that we set the activations to a value of 0.6. If this cost is smaller
than the change in activations necessary to remove the disconnected

(a) (b) (c) (d)

Figure 5: Influence of the connectivity enforcement: Without using
any connectivity enforcment during the optimization (a), the final
structure might consist of several disconnected components (b). En-
forcing connectivity with our scheme locally adjusts the activations
(c) such that the final result is guaranteed to be fully connected (d).

component, we create the connection, and remove the disconnected
component otherwise. The final result is then guaranteed to be con-
nected.

In 3D, an additional fabrication constraint is necessary. While 3D
printing can handle complex structures, most approaches rely on
support material to create overhanging structures. This support ma-
terial has to be removed after printing. This means that every void
voxel in the structure has to be connected to the boundary of the
cell. To this end, we use the same approach we used to connect
components, but switch the role of void and full voxels. In prac-
tice, we did not observe any convergence problems due to these
constraints.

5.3 Numerical Methods

The optimization problem (9) is solved with L-BFGS-B [Byrd
et al. 1995], which enforces the boundary constraints. Addition-
ally, the indirect relationship between the coarsened stiffness tensor
C(h(α)) and the activations α through Numerical Coarsening has
to be taken into account when computing the gradient of the ob-
jective. We refer to the supplemental document for details on this
computation.

6 Metamaterial Spaces

The optimization method from the previous section is able to pro-
duce microstructures for a variety of material parameters, but may
take a long time to generate a desired structure. Moreover, if the de-
sired object contains spatially varying parameters, several optimiza-
tions need to be performed to generate the required microstructures,
making this approach infeasible in practice. To avoid this problem,
we use a data-driven approach to assemble a structure with a de-
sired behavior by interpolation from a pre-computed metamaterial
family.

A metamaterial family is a collection of microstructures, each
labeled with its corresponding coarse-scale material parameters,
which are a point in the space of possible material properties (pa-
rameter space); we think of the microstructure as being “located at”
that point. In this section, we first describe how the structures are
represented and how their locations in parameter space are deter-
mined. We then propose a technique to interpolate between these
structures, providing a way to efficiently compute a corresponding
microstructure for any point in the parameter space. Finally, we
discuss how to use the microstructure optimization approach de-
scribed in the previous section to create metamaterial families by
computing sets of related microstructures that cover a wide range
in parameter space.

In Section 7 we explain how several such continuous families (col-



lectively, a metamaterial space) are used together to assemble mod-
els spanning the entire range of achievable material properties.

6.1 Microstructure Representation

Geometry While the voxel-based discretization we used during
the microstructure optimization is useful in that context, it poses
two problems for the construction of a metamaterial space: (i) The
changes to the structure are all discrete in nature, so the resulting
interpolation cannot be continuous, and (ii) the resulting geometry
can contain stair structures. These sharp corners can lead to lo-
calized stresses under deformation and the structure would fracture
more easily.

Instead of using voxels, we use signed L2-distance fields in [0, 1]d

to represent structures in a metamaterial space, which allows for a
smooth interpolation. Additionally, we perform a Gaussian smooth-
ing step every time we sample a microstructure from the metama-
terial space, which removes unwanted discretization artifacts (Fig-
ure 6). To increase resolution, we scale the grid resolution by a
factor of 2 and 3 compared to the original voxelization, in 2D and
3D, respectively.

Material Parameters Numerical Coarsening is used to compute
a stiffness tensor that describes the behavior of a particular mi-
crostructure. However, for sampling and interpolation we would
like to use a parameter space with fewer degrees of freedom than
this tensor has (6 in two dimensions, 21 in three dimensions). By
considering only isotropic, cubic or orthotropic materials, the pa-
rameter space can be reduced to a subset of material tensors, while
still offering enough freedom to show a large variety of deformation
behaviors.

To approximate the parameters from a material stiffness tensor
computed by Numerical Coarsening, a simple constrained least-

squares approach is used. Assuming a material stiffness tensor Ĉ
is given, the corresponding parameters are computed by solving

min
p

‖C(p)− Ĉ‖2F

s.t. pmin
i ≤ pi ≤ pmax

i .
(14)

The function C(p) is defined by the choice of the material model,

and pmin
i and pmax

i are the physics-based bounds on the parameters,
such as the lower limit of 0 for the Young’s modulus. We addi-
tionally apply a normalization to the parameters that transforms all
parameters with dimensions, such as the Young’s modulus or the
shear modulus, into dimensionless parameters by dividing them by
the corresponding parameter of the base material. Since we use a
linear material model, the resulting parameters describe the ratio
of the structure’s parameter to the base material’s parameter, which
also allows us to scale our results to materials with an arbitrary

σ = 0 σ = 0.005 σ = 0.02 σ = 0.05

Figure 6: Results of the smoothing pass for different Gaussian
spread values σ.

w = 0.25 w = 0.50 w = 0.75

Figure 7: Top row: Results of the interpolation between the struc-
tures on the left and right for different weights w. Bottom row: Cor-
responding signed distance fields, illustrated as color plots (blue
positive, red negative).

Young’s modulus or shear modulus, assuming that the Poisson’s ra-
tio stays the same. Additionally, since we use this relative Young’s
modulus and relative shear modulus to store entries in parameter
space, the distance between the parameters of two microstructures
is independent of the base material’s stiffness.

6.2 Interpolation

The microstructures in our database describe metamaterials with
certain properties; each gives a point sample of the mapping from
material parameters to microstructures. Figure 13, 10, and 12 il-
lustrate data points for various metamaterial families. To generate
a structure for an arbitrary given set of parameters, we interpolate
between points of a family, forming a weighted average over a set
of microstructures with similar elastic properties. We first com-
pute weights based on the inverse distance between the input pa-
rameters and the parameters of the metamaterial space samples, us-
ing the Wendland function with compact support [Nealen 2004].
We chose the parameter of the Wendland function such that the
weights vanish beyond a given interpolation radius, which is set
to 0.1 in normalized coordinates, or the distance to the (M + 1)-
nearest neighbor (M being the number of material parameters),
whichever is larger. Before we interpolate, we apply the transfor-
mation f(x) = sgn(x) log(|x|+ δ) to transform the distance fields
to log space, and add a small constant δ = 10−3 to keep values near
the surface. In practice, we found that interpolation in log space re-
duces artifacts due to topology changes, e.g., holes appearing or
disappearing. Given the weights and transformed distance fields,
we then compute the interpolated structure by linearly interpolating
the transformed distance fields. Figure 7 illustrates the interpolation
process.

6.3 Generating Metamaterial Families

Our metamaterial space consists of several, potentially overlapping,
independent metamaterial families. We start the construction of a
metamaterial family from a single microstructure, which we either
model by hand based on existing examples from the literature, or
obtain from our microstructure optimization (Sec. 5). We then add
dilated and eroded versions of this initial microstructure to achieve
a large initial sampling of the metamaterial space with good inter-
polation properties. The dilation and erosion is performed directly
on the distance field of the structure.

The metamaterial family construction then continues to do two
things: (i) Generate new candidates by evolving existing structures,
which allows us to refine regions that are already covered by sam-
ples, but with insufficient sampling density, and (ii) generate new
candidates by optimizing for new microstructures outside of this
space. We proceed by alternating between these two stages until



both stages do not generate new microstructures.

Evolving Existing Microstructures The first stage is a heuris-
tic search based on the existing samples in the metamaterial family.
For the refinement, we create the Delaunay triangulation of all pa-
rameter points, and collect all the simplex centers. For every cen-
ter, we check how well the parameters of the interpolated structure
match the desired parameters, and add the interpolated structure to
the metamaterial space if the deviation from the desired parameters
is too large. For our experiments, we used a threshold of 0.1. In
3D, we additionally try to expand the metamaterial family in this
stage. For this, we first compute the convex hull of all parameter
samples. For every vertex on the convex hull, we then compute an
offset point along the normal, which we use as the goal parame-
ters for a microstructure optimization. However, instead of running
the optimization, we only compute the gradient of the objective and
use it to change 2% of the activations in a discretized version of the
current sample, which we then add to the metamaterial family.

Optimizing for New Microstructures The second stage is based
on the microstructure optimization introduced in Sec. 5. For the re-
finement, we again compute the Delaunay triangulation and check
how well the interpolation works at the simplex centers. If it is
insufficient, we run a microstructure optimization for the parame-
ters at the simplex center with an initial guess computed from the
weighted combination of all samples in the neighborhood of the
simplex center. Additionally, we introduce a similarity regulariza-
tion, explained in more detail in the next paragraph. For the ex-
pansion, we again use the convex hull of all parameter samples and
generate new parameters points by sampling the convex hull and
offsetting the points along the normal. For each of these points, a
microstructure optimization is run, constructing the initial guess in
the same way as for the refinement and using the same additional
regularization.

For any new microstructure optimization that is run for a given set
of parameters, the result should be similar to the existing struc-
ture to improve the interpolation. To lead the optimization into
the desired direction, an additional regularization is added to the
optimization. This regularization penalizes the amount of change
between a new structure and the structure of the N neighbors in
parameter space closest to the goal parameters. To allow for small
changes, this penalty uses an exponential function:

Rsim =

N
∑

i=1

wi
sime

(

1
m

∑m
j=1|αj−α

i
j
|

∆αi

)2

, (15)

where wi
sim = (N(1 + di))

−1 is the weight for neighbor i with

distance di to the desired parameters, αi
j is its j-th activation and

∆αi = 0.1 + 2di is a threshold for the maximal desirable differ-
ence to this neighbor. Additionally, the initial activations for the
optimization are set to a weighted average of the neighbors, after a
smoothness step is applied. This reduces the risk of ending up in a
local minimum.

7 Structure Synthesis

Using the microstructure optimization and parameter space sam-
pling methods, we can define several families of related structures
that together span the feasible range of bulk material parameters
(Figure 10). Synthesizing a homogeneous material volume at this
stage becomes trivial: We select a family that covers the desired
material behavior, compute the corresponding microstructure of
the cell by interpolation as described in Sec. 6.2, and then fill the

Figure 8: The first 5 microstructures generated for a parameter
space without similarity regularization (top) and with similarity
regularization (bottom), starting from an initial structure (left).

volume by repeating this cell. Note that by construction this cell
is tileable. However, approximating spatially varying materials is
more challenging.

Simply synthesizing microstructures for cells independently at each
point in the model could lead to a mismatching boundary when
multiple different cells are tiled, as illustrated in Figure 9. Such
boundary mismatches will change the behavior of the cell, which
was assumed to be in an infinite tiling of identical structures when
its coarsened material parameters were computed. Therefore, both
the geometry as well as the force profiles occurring at the bound-
aries under deformation need to be taken into account. We propose
a strategy that takes advantage of the multiple candidate structures
for each cell provided by the overlapping families in our metamate-
rial space. To compute an optimal selection from these candidates,
we propose to minimize boundary dissimilarity between each pair
of neighboring structures.

For a set of cells with desired parameters p1, . . . ,pk and informa-
tion about the connectivity between cells, we interpolate one struc-
ture for each cell from each of the l families, resulting in structures
Si,1, . . . , Si,l for every parameter sample pi. Finding the optimal
choice of structures can then be formulated as a labeling problem:
assign a structure to each cell to minimize a given cost function.

We propose a cost function that combines two types of costs. The
labeling cost TL

i,j = edi,j describes how well a given structure Si,j

matches the desired parameters, and is based on the distance di,j
between pi and the material parameters of the structure as com-
puted by Numerical Coarsening.

The second cost TD
(i,j),(r,s) = eg(i,j),(r,s) is based on the dissimilar-

ity g(i,j),(r,s) of the boundaries of two neighboring structures Si,j

and Sr,s. In most cases, it is sufficient to use the percentage of the
boundary on which the two structures agree about the presence or
absence of material. But since the problem of matching boundaries
is linked to force discrepancies along the boundary during defor-
mation, this dissimilarity can be improved by also considering the
forces acting across the boundary. For this, we impose a unit strain

Figure 9: Three potential configurations of two neighboring cells.
Left: The individual structures closely match the desired parame-
ters, but the boundaries are incompatible. Middle: Opposite case.
Right: Our optimization computes a trade-off between the two ex-
tremes.
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Figure 10: Data points for five different metamaterial families for a
cubic material in 2D. The values for the shear modulus are omitted.

on the boundary of each cell, such that they are stretched perpen-
dicular to the boundary between the two cells. We then integrate the
force magnitude as well as the force difference magnitude over the
boundary, and set the dissimilarity g(i,j),(r,s) to the ratio of force
difference magnitude to mean force magnitude. We compare the
two approaches to compute the boundary dissimilarity in Sec. 8.2.

Finding the globally optimal solution to this optimization problem
is NP-hard. However, efficient algorithms exist that can find an
approximate solution. We employ an iterative method using mes-
sage passing based on the alternating direction method of multipli-
ers (ADMM) as described in Derbinsky et al. [2013].

For the resulting structures, the distance fields can then be com-
bined. To improve connectivity between cells, the smoothing pass
is performed on the combined distance field instead of each cell in-
dividually. The final structure is reconstructed from the combined
distance field using marching cubes.

Connectivity Our synthesis method does not guarantee connec-
tivity. While we did not encounter cases of disconnected cells in our
result, they can be detected easily and fixed by introducing addi-
tional connections between disconnected structures, at the expense
of the accuracy of the approximated elastic properties.

8 Results

8.1 Metamaterial Space Construction

We tested our method on three different material classes. In 2D, we
generated metamaterial spaces for cubic materials (3 parameters)
and orthotropic materials (4 parameters), using a resolution of 402

voxels for the microstructure optimization. Due to the inherently
anisotropic nature of square and cubic microstructures, we found
that a cubic material space is better suited even for cases where
one is only interested in the Young’s modulus and Poisson’s ratio
defining an isotropic material.

Figure 10 shows the Young’s modulus and Poisson’s ratio of multi-
ple metamaterial families for a cubic material, and Figure 11 shows
the individual families as well as a subset of their structures. While
a single family may span a wide range of parameters, this example
shows that combining multiple families can significantly expand
this range. Figure 12 shows the orthotropic metamaterial families,
projected into four different combinations of the parameter axes.

We also used our method to compute a metamaterial space for cubic

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Young’s modulus [−]

P
o

is
so

n
’s

 r
a

ti
o

 [
−

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Young’s modulus [−]

P
o

is
so

n
’s

 r
a

ti
o

 [
−

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Young’s modulus [−]

P
o

is
so

n
’s

 r
a

ti
o

 [
−

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Young’s modulus [−]

P
o

is
so

n
’s

 r
a

ti
o

 [
−

]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Young’s modulus [−]

P
o

is
so

n
’s

 r
a

ti
o

 [
−

]

Figure 11: The individual spaces from Figure 10, including a visu-
alization of some of the structures.

materials in 3D (Figure 13), using a 163 voxels for the microstruc-
ture optimization.

Timings For the microstructure optimization in 2D with a resolu-
tion of 402, a single optimization step takes around 200 to 800 ms
to compute. The optimization usually converges in less than 500
iterations, resulting in a total computation time of several minutes
per optimization. An optimization in 3D with a resolution of 163

runs with 8 to 30 seconds per iteration, and usually also converges
in less than 500 iterations, for a total computation time of around 2
hours per structure. Note that the metamaterial space construction
is a pre-process that is only run once to build the database, and it
can be easily parallelized.

For the structure synthesis, we tested the runtime of the optimiza-
tion by combining three metamaterial spaces for different numbers
of cells. For 400 cells, the optimization takes about 0.5 seconds, for
2500 cells about 2 seconds and for 10000 cells on the order of 40
seconds. Synthesizing the distance fields and running the optimiza-
tion took less than 10 seconds in all of our examples.

8.2 Validation

Our method relies on the ability to compute the material behavior
of a microstructure from its design. To validate the results obtained
by Numerical Coarsening, we tested several of our structures in a
tensile test, and compared the results to our prediction. Since we
are dealing with linear elasticity, the Numerical Coarsening and the
optimization itself are independent of the Young’s modulus of the
base material. The result can be adapted to any material with the
same Poisson’s ratio by a simple scaling, meaning that the ratio
of the computed Young’s modulus of the microstructure and the
Young’s modulus of the base material is constant.

Our samples were fabricated by selective laser sintering of an elas-
tic thermoplastic polyurethane (TPU 92A-1).
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Figure 13: Data points for three different metamaterial families for a cubic material in 3D. The values for the shear modulus are omitted. A
set of six structures for every family is visualized. The position of the structure is marked by the corresponding number.
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Figure 12: Data points for four different metamaterial families for
an orthotropic material in 2D. We show the relative Young’s moduli
Ex and Ey the x-direction and y-direction, the relative shear mod-
ulus and the Poisson’s ratio νyx that describes the contraction in
x-direction for an extension applied to the y-direction.

Figure 14: The
test setup.

Test Setup and Method We used an Instron
E3000 frame with a 5 kN load cell for the ma-
terial test. For the 2D structures, we performed
tensile tests using a 10 cm pneumatic grip (Fig-
ure 14). We fist characterized the base mate-
rial using dog-bone shaped structures. To mea-
sure the tensile strength of the microstructures,
we created samples consisting of a grid of 7 ×
15 unit cells (56 mm × 120 mm), to reduce
boundary effects. After clamping, the samples
were slightly prestreched (< 1 MPa) and tested
with a constant displacement rate of 50 mm/min.
The three-dimensional structures were tested in
a compression test, using a displacement rate of
5 mm/min. The compressive properties of the base
material were measured on a cylindrical sam-
ple, and the microstructure samples used a grid
of 7× 7× 6 cells (56 mm × 56 mm × 48 mm,
images in Table 1).

Tensile Test Results In Figure 15 we compare the measured tan-
gent modulus vs. strain for each generated structure with a measure-
ment of the base material scaled by the relative Young’s modulus
predicted by simulation. The results indicate a good fit for small
strains, and for most structures even for larger strains up to 0.1.
The softest structure (9.9% of the base material’s Young’s modu-
lus) deviates slightly from the scaled base material for larger strains,
showing a nearly linear behavior as compared to the nonlinear be-
havior of the base material. This difference is likely due to the more
pronounced rotations in sparse structures.

Compression Test Results We determined the Young’s modu-
lus of the base material and three generated structures by fitting a
line to the linear region of the stress–strain measurement during a
loading phase. Table 1 shows that the predicted and measured rel-
ative Young’s modulus match reasonably well. The stress–strain
plots as well as the linear fits can be found in the supplemental doc-
ument.
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Figure 15: Tensile test results for a number of microstructures.
Top: Test results for synthesized microstructures with a Young’s
modulus of 9.9%, 24.6% and 50.1% of the base material. The
scaled curve of the base material is shown for reference. Bottom:
Test results for interpolated microstructures with orthotropic ma-
terial behavior. The computed Young’s moduli were 20.5% and
50.6% of the base material’s Young’s modulus.

Material Gradient We tested our structure synthesis on a sim-
ple material gradient example (Figure 16) to study how well the
coarsened properties match the goal for inhomogeneous cases. We
specified the relative Young’s modulus E and Poisson’s ratio ν for
a 5× 15 grid with a linear transition from E = 0.1 and ν = 0.6 to
E = 0.9 and ν = 0.4, and ran our algorithm with different settings
and input. Using only structures from a single family resulted in
good matching of interfaces between cells, with an average bound-
ary dissimilarity below 5%. However, the average normalized dis-



Structure A Structure B Structure C

Simulation 19.0% 8.6% 12.8%

Measurement 21.5% 6.8% 12.2%

Table 1: The predicted and measured Young’s moduli for each of
the three structures measured in a compression test.

Figure 16: A material gradient with a greedy tiling (top left), show-
ing several suboptimal tile boundaries, and our optimized tiling
(bottom left). Using only one of five metamaterial spaces would
result in a better tiling, but worse approximation of the desired ma-
terial parameters (right).

tances between the simulated parameters of the generated structures
and the desired parameters were large, with values of 0.203, 0.075,
0.177, 0.228, and 0.104 for the five metamaterial families we used
for this test. By using these metamaterial families to get a set of can-
didate structures, we can greedily choose the best structure for each
cell to achieve an average normalized distance of 0.051. However,
there is no guarantee that these structures fit together, and Figure 16
(orange) shows that the greedy synthesis generates poorly fitting
transitions, with an average boundary dissimilarity of 15.3%. Us-
ing the method described in Sec. 7, we can optimize for parameter
approximation and boundary similarity at the same time. While the
approximation of the desired parameters for the individual cells is
slightly worse than for the greedy solution, with an average normal-
ized distance of 0.065, the boundary dissimilarity in the resulting
structure (Figure 16 (green)) was significantly better (4.2%).

Boundary Forces We presented two different approaches to rep-
resent the boundary dissimilarity during the synthesis stage. Fig-
ure 17 shows a situation in which simply comparing the geome-
try of the boundary performs worse than comparing the boundary
forces under unit strain. We used numerical coarsening to deter-
mine the material parameters of these structures, as well as the pa-
rameters of a uniform mesh where each region is assigned the coars-
ened material parameters of the corresponding cells in the structure.
If only the geometries of the boundaries are compared, the distance
between the actual parameters of the structure and the predicted pa-
rameters is 0.0266, while the error is only 0.0137 if the boundary
forces are used to predict the dissimilarity of the cell boundaries.

Figure 17: Two gradients computed for the same goal parame-
ters, using geometry (left) and boundary forces (right) to estimate
the boundary dissimilarity during synthesis. The actual material
parameters for the right structure deviate less from the predicted
parameters (error of 0.0266, left, and 0.0137, right).

Effects of Heterogeneity We explored our method’s perfor-
mance for strongly heterogeneous goal parameters with two dif-
ferent tests, looking at the influence of the spatial frequency and
amplitude of parameter changes on the prediction error. On a grid
of 12 × 12 cells, we synthesized structure patterns using sinusoids
to define the goal Young’s moduli. We tested frequencies from a
single period across the grid to 6 periods (i.e. a checkerboard), and
amplitudes of parameter change ranging up to 45%, with a mean
of 50% of the base material (so stiffnesses range from 5% to 95%
at the highest amplitude). We computed the difference between the
homogenized material parameters of the synthesized structure and
the homogenized material parameters of a uniform mesh with local
material parameters set to the goals for the individual cells. Even
though the assumption of infinite homogenous tilings is violated,
Figure 18 shows that for such heterogeneous tilings, the prediction
error is below 0.05 even for very drastic parameter changes, and
only above that in extreme cases where the change from maximal
to minimal parameters happens in a span of less than two cells, or
the amplitude is larger than 0.35.
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Figure 18: The influence of a heterogeneous tiling on the approx-
imation error, based on a 12 × 12 grid with a sinusoidal distri-
bution of Young’s moduli. The colors of the plot match the meta-
material families shown in Figure 10. We also show the spatial
distribution of the Young’s moduli at the top of the plots (blue=soft,
orange=stiff). Top: The error plotted for varying numbers of peri-
ods for the parameter distribution, with an amplitude of 45% (solid
line) and 20% (dashed line). A frequency multiplier of 6 corre-
sponds to a checkerboard distribution. Bottom: The error plotted
for different amplitudes, with a frequency multiplier of 3 (solid line)
and 2 (dashed line).



Figure 19: The optimized structure for the gripper (left), the gen-
erated model (middle). The fabricated result (right) can be used to
grab and lift small objects.

8.3 Application Examples

Gripper Inspired by the field of soft robotics, we designed a sim-
ple gripper that can be actuated by air pressure (Figure 19). The
gripper consists of two hollow tubes 16cm in length, printed with
a soft material. The tubes are designed as a 2D structure with a
stiff material on one half and an anisotropic material on the other
half that is soft along the tube and stiff along the circumferential
direction. A balloon is inserted into each tube, and increasing the
pressure inside the balloons causes the tubes to bend due to the dif-
ference in stiffness. At the same time, the anisotropy of the struc-
ture prevents large changes in diameter. While this is only a very
simple actuator, we believe that our method will be an important
step towards a design tool for printable soft robots.

Bunny, Teddy, and Armadillo For the three-dimensional case,
we tested our pipeline on two models (Bunny, 13 cm high; Teddy,
15 cm) with spatially varying Young’s moduli, created with an in-
teractive material design tool [Xu et al. 2015]. The models were
subdivided into cells with 8 mm side length, and the Young’s mod-
uli averaged for each cell. The metamaterial space used to populate
these cells contained a single family of 21 microstructures. For
synthesis, we chose the nearest neighbor in the database for each
Young’s modulus. To keep the shape of the models, the individual
voxels of each structure were set to void if they lay outside of the
model. While this might lead to disconnected components in the re-
construction, these can easily be removed. We created a third model
(Armadillo, 32 cm high) by manually painting the desired Young’s
modulus into a volumetric mesh, which was then used as an input
to our method, using cells with 8 mm side length. We chose the
parameter distribution such that the joints and the belly of the Ar-
madillo are soft, while all other parts of the model are stiff. The
structure of the cells were computed and tiled using our synthesis
algorithm with the metamaterial space shown in Figure 13. The fab-
ricated model can be easily actuated, as shown in the accompanying
video, even though the base material is quite stiff.

9 Conclusion

We have presented a complete framework for automatically con-
verting a given object with specified elastic material parameters
into a fabricable representation that resembles the desired elastic
deformation behavior. Our approach efficiently generates small-
scale structures that obtain their elastic bulk properties from the
shape and arrangement of the structures, significantly expanding the
gamut of materials reproducible by 3D printers. Although our ap-
proach relies on an extensive pre-computation phase for generating
families of related structures that can be interpolated to smoothly
vary the material properties, this only needs to be done once. We
plan to publicly release our database of structures. To create an ob-
ject with spatially varying elastic properties, our approach tiles the
object’s interior with microstructures drawn from the database, us-

ing an efficient algorithm to select compatible structures for neigh-
boring cells.

Limitations and Future Work Our method targets output devices
that can 3D print at high resolution, and that allow easy removal
of support material. In practice, we found selective laser sintering
the most convenient process because the part is surrounded by un-
sintered powder and therefore does not require support structures.
Removal of the unsintered powder from the structures can be easily
achieved with compressed air. Other technologies, such as poly-
jet or fused deposition modeling, allow printing overhangs without
support structures only up to a certain angle. For future work, an
interesting avenue could be incorporating these constraints into the
optimization of material structures, spanning a space of metamate-
rials that are printable without support on these machines.

In our current work we focused on linear elasticity and small strain
deformations. In the future, we plan to extend our approach to non-
linear material behavior, also incorporating interesting structures
with buckling behavior. Another highly interesting avenue would
be the detection of localized stresses and considering points of fail-
ure in the material structure during the optimization, improving the
robustness of the material.

Finally, in our current implementation we do not explicitly treat
the boundaries of the object, and obtain the boundary by simply
intersecting the geometry of the structures with the shape of the
object. An interesting next step would be wrapping the object with
a surface for aesthetic reasons, but also taking the surface’s effect
on the deformation into account.
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HAŠAN, M., FUCHS, M., MATUSIK, W., PFISTER, H., AND

RUSINKIEWICZ, S. 2010. Physical reproduction of materials
with specified subsurface scattering. ACM Trans. Graph. (Proc.
SIGGRAPH) 29, 4.

HASHIN, Z., AND SHTRIKMAN, S. 1963. A variational approach
to the theory of the elastic behaviour of multiphase materials.
Journal of the Mechanics and Physics of Solids 11, 2, 127–140.

HILLER, J., AND LIPSON, H. 2012. Automatic design and man-
ufacture of soft robots. Robotics, IEEE Transactions on 28, 2,
457–466.

HUANG, X., RADMAN, A., AND XIE, Y. 2011. Topological
design of microstructures of cellular materials for maximum
bulk or shear modulus. Computational Materials Science 50,
6, 1861–1870.

HUGHES, T., MARMIER, A., AND EVANS, K. 2010. Auxetic
frameworks inspired by cubic crystals. International Journal of
Solids and Structures 47, 11.

KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN,
M. 2009. Numerical coarsening of inhomogeneous elastic ma-
terials. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 51.

LAKES, R. 1987. Foam structures with a negative poisson’s ratio.
Science 235, 4792, 1038–1040.

LAN, Y., DONG, Y., PELLACINI, F., AND TONG, X. 2013. Bi-
scale appearance fabrication. ACM Trans. Graph. (Proc. SIG-
GRAPH) 32, 4.

LEE, J.-H., SINGER, J. P., AND THOMAS, E. L. 2012. Micro-
/nanostructured mechanical metamaterials. Advanced Materials
24, 36, 4782–4810.

MICHEL, J., MOULINEC, H., AND SUQUET, P. 1999. Effective
properties of composite materials with periodic microstructure:
a computational approach. Computer methods in applied me-
chanics and engineering 172, 1, 109–143.
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1 Numerical Coarsening

We use a homogenization method to describe the coarse-scale be-
havior of a microstructure, and as the basis of our microstruc-
ture optimization. Such a method computes material parame-
ters for a homogenous material that approximates a structure.
In the following, we summarize the Numerical Coarsening ap-
proach [Kharevych et al. 2009] and highlight differences due to its
application to microstructures.

Harmonic Displacements To describe the deformation behavior
of the microstructure, a set of representative displacements have to
be computed for different load cases. These harmonic displace-
ments hab (see Figure 1 for an illustration) are defined as the solu-
tion to the following boundary value problem:

∇ · σ(hab) = 0 inside Ω

σ(hab) · n = 1

2
(eae

T
b + ebe

T
a ) · n on ∂Ω.

(1)

Here, ea is the unit vector along the a-th coordinate direction,
1

2
(eae

T
b + ebe

T
a ) describes the tractions on the surface ∂Ω of the

object domain Ω, and n is the surface normal. For tiled structures,
this surface is the boundary of the cell.

Considering symmetries, there are 3 and 6 distinct harmonic dis-
placements in 2D and 3D, respectively. From these displacements,
a 4-th order deformation tensor G can be defined per element:

Gklab = (ε (hab))kl . (2)

This tensor contains the Cauchy strain for every displacement, and
by considering the elasticity equation W = ε : C : ε as a bilinear
equation, the term G

T : C : G describes the energy density for
any pair of harmonic displacements.

Coarsening The homogenized material stiffness tensor can then
be computed from the deformation behavior of the microstructure.
The deformation is first transferred from the harmonic displace-
ments of the microstructure to a coarse mesh consisting of only a
single voxel of the size of the cell. For the case where the corners of
the cell correspond to vertices of the fine mesh, this simply means
transferring the displacements at the corner. For the general case,
the displacement is transferred by computing a distance-weighted
interpolation of a set of nearest neighbors in the fine mesh, while

hxx hyy hxy

Figure 1: Harmonic displacements of a microstructure cell in 2D.

adhering to the periodic boundary conditions. After the deforma-
tion has been transferred to the coarse mesh, a single coarse-scale
deformation tensor G can be defined in a manner similar to Equa-
tion (2). The coarsened material stiffness tensor for the coarse mesh
is then obtained analytically as

C = G
−T :

(

k
∑

i=1

Vi

V
G

T
i : Ci : Gi

)

: G−1, (3)

where in the 2D (3D) case Vi is the area (volume) of element i in
the fine mesh, and V is the area (volume) of the entire cell. This ap-
proach differs slightly from Kharevych et al. [2009], where a coars-
ened material stiffness tensor is computed for every element in a
coarse tetrahedral mesh. Due to the periodic boundary condition
for microstructures, the strain in the coarse mesh is uniform, and
a single material stiffness tensor can be computed for the whole
cell. Note that we use the Voigt compressed matrix representation
to express all tensors. This is especially important when computing
G

−1, which can be computed as a simple matrix inverse instead of
a more complex symmetric tensor inverse.

2 Microstructure Optimization in 3D

This section describes the changes necessary to transform the mi-
crostructure optimization described in Section 5 of the paper from
2D to 3D.

2.1 Regularization

Two of the regularization terms, the smoothness term and the
checkerboard term, rely on neighborhood information and have to
be adapted accordingly in a 3D environment.

Smoothness The approach for the smoothness term in 3D is
identical to the 2D case, except that we now use six neighbors in-
stead of four to compute the second-order finite difference approx-
imation. Assuming each component of α is associated with three
indices in 3D, such that αi,j,k corresponds to the voxel (i, j, k), the
regularization has the form

Rs =
∑

i,j,k

(αi−1,j,k +αi+1,j,k +αi,j−1,k

+αi,j+1,k +αi,j,k−1 +αi,j,k+1

−6αi,j,k)
2

(4)

Checkerboard patterns In 3D, checkerboard patterns include
structures that are connected by a single vertex or a single edge.
To cover these two cases, we will split the regularization term in
two components, Rcb,v and Rcb,e, respectively.

To check for structures connected by a single vertex, Rcb,v has to
cover patches of 2 × 2 × 2 voxels. For these patches, there are
four configurations that are undesirable and will not be covered by
Rcb,e. These are the only configurations for which a binary solution



should lead to a regularization value larger than 0. This condition
can be formulated as

Rcb,e =
∑

i,j,k

(αi,j,k −αmin)(1−αi+1,j,k)

(1−αi,j+1,k)(1−αi,j,k+1)

(1−αi+1,j+1,k)(1−αi+1,j,k+1)

(1−αi,j+1,k+1)(αi+1,j+1,k+1 −αmin)

+(1−αi,j,k)(αi+1,j,k −αmin)

(1−αi,j+1,k)(1−αi,j,k+1)

(1−αi+1,j+1,k)(1−αi+1,j,k+1)

(αi,j+1,k+1 −αmin)(1−αi+1,j+1,k+1)

+(1−αi,j,k)(1−αi+1,j,k)

(αi,j+1,k −αmin)(1−αi,j,k+1)

(1−αi+1,j+1,k)(αi+1,j,k+1 −αmin)

(1−αi,j+1,k+1)(1−αi+1,j+1,k+1)

+(1−αi,j,k)(1−αi+1,j,k)

(1−αi,j+1,k)(αi,j,k+1 −αmin)

(αi+1,j+1,k −αmin)(1−αi+1,j,k+1)

(1−αi,j+1,k+1)(1−αi+1,j+1,k+1)

(5)

Structures that are connected by a single edge can be detected by
looking at patches of 2× 2× 1 voxels, similar to the regularization
in 2D. The only

Rcb,v =
∑

i,j,k

(1−αi,j,k)(αi+1,j,k −αmin)

(αi,j+1,k −αmin)(1−αi+1,j+1,k)

+(αi,j,k −αmin)(1−αi+1,j,k)

(1−αi,j+1,k)(αi+1,j+1,k −αmin)

+(1−αi,j,k)(αi+1,j,k −αmin)

(αi,j,k+1 −αmin)(1−αi+1,j,k+1)

+(αi,j,k −αmin)(1−αi+1,j,k)

(1−αi,j,k+1)(αi+1,j,k+1 −αmin)

+(1−αi,j,k)(αi,j+1,k −αmin)

(αi,j,k+1 −αmin)(1−αi,j+1,k+1)

+(αi,j,k −αmin)(1−αi,j+1,k)

(1−αi,j,k+1)(αi,j+1,k+1 −αmin)

(6)

3 Numerical Methods

The indirect relationship between the coarsened stiffness tensor
C(h(α)) and the activations α through the harmonic displacements
h(α) defined in Equation (1) has to be taken into account when
computing the derivatives of the microstructure optimization prob-
lem introduced in the paper. When the chain rule is applied to this
problem, the Jacobian of the harmonic displacements with respect
to the activations emerges. Since these quantities are effectively
linked by the solution of an elasticity problem, given the boundary
tractions defined in (1), we use the adjoint method to compute the
Jacobian. For this, we take the derivatives of both the minimization

condition ∇xUel = 0 and the constraints c = 0 with respect to α:

∂2Uel

∂hab ∂α
+

∂2Uel

∂hab
2

dhab

dα
= 0

∂c

∂hab

dhab

dα
= 0.

(7)

Solving this system of equations for the desired Jacobian dhab/dα
requires only a single sparse matrix decomposition.

4 Compression Test Data
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Figure 2: The stress–strain measurements for the base material
and the three structures tested in the compression test. The tangents
of the linear part of the curve describes the Young’s modulus of the
structure.

Figure 2 shows the data from the compression tests of the base ma-
terial and three synthesized structure. We determined the Young’s
modulus of the structures by fitting a linear polynomial to the linear
part of the stress–strain curve.
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