

Microtask Programming: Building Software with a Crowd

Thomas D. LaToza
1
, W. Ben Towne

2
, Christian M. Adriano

1
, André van der Hoek

1

1University of California, Irvine
Irvine, CA

{tlatoza, adrianoc, andre}@ics.uci.edu

2Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA

wbt@cs.cmu.edu

ABSTRACT

Microtask crowdsourcing organizes complex work into

workflows, decomposing large tasks into small, relatively

independent microtasks. Applied to software development,
this model might increase participation in open source

software development by lowering the barriers to contribu-

tion and dramatically decrease time to market by increasing

the parallelism in development work. To explore this idea,

we have developed an approach to decomposing program-

ming work into microtasks. Work is coordinated through

tracking changes to a graph of artifacts, generating appro-

priate microtasks and propagating change notifications to

artifacts with dependencies. We have implemented our ap-

proach in CrowdCode, a cloud IDE for crowd development.

To evaluate the feasibility of microtask programming, we

performed a small study and found that a small crowd of 12
workers was able to successfully write 480 lines of code

and 61 unit tests in 14.25 person-hours of time.

Author Keywords

crowdsourcing; development environment; programming

tools

ACM Classification Keywords

D.2.6 Programming environments: Interactive environ-

ments

INTRODUCTION

Microtask crowdsourcing systems enable crowds of work-

ers of varying skill to complete large tasks quickly by de-

composing work into short, self-contained microtasks, ena-

bling mass contribution through low barriers to contribution

and work to be completed quickly through extreme parallel-

ism. This paradigm has a great potential appeal for software

work: while open source development has brought open

contribution to software work, joining an open source pro-

ject is often a long and tedious process, discouraging con-
tribution and reducing the pool of participants. Even in

commercial development organizations, there is often a

need to build software quickly, as time to market is often

valuable. While microtasking may introduce overhead and

thereby reduce the efficiency of the development process,

there may be situations in which greatly broadening the
pool of potential participants can lead work to be completed

more quickly through larger scale and parallelization.

Programming is an example of complex work, involving

many interdependencies among components of the work

produced. Recent crowdsourcing work has begun to explore

approaches for microtasking complex work. For example,

CrowdForge [12] introduces a Map-Reduce style paradigm

in which the crowd first partitions a large problem into sev-

eral smaller sub-problems, then solves the sub-problems

(map), and finally merges the multiple results to a single

result (reduce). However, an important limitation of exist-
ing workflows for complex work is that the decomposition

structure is static and fixed by the requestor. For example,

while a requestor might specify a workflow in which work-

ers first partition work into sub-problems before workers

then perform a map step, the workflow itself is fixed and

cannot vary in response to the work done. For many crea-

tive tasks, this is an important limitation. For example, in

programming, it is impossible to specify, a priori, the set of

functions and tests necessary to implement a program. In

Figure 1. An example of a microtask in CrowdCode.

the process of implementing functions, developers may

discover new parts of the problem, requiring new functions

to be written. Then, in the process of writing functions, de-

velopers may discover they must change their interface,

requiring changes to be made to functions elsewhere.

Here, we present an approach for crowdsourcing problems
using dynamically generated microtasks and illustrate this

approach through the design of a system for microtask pro-

gramming. Our key insight is to coordinate work through a

graph of artifacts, generating microtasks in response to

events that occur on artifacts rather than through a static

workflow. Each microtask asks workers to perform a short

well-defined task on a single artifact – a function or a test

(e.g., Figure 1), allowing work to proceed on many artifacts

in parallel. As workers complete microtasks, events are

generated on the artifact, which may then trigger further

microtasks to be generated. When an artifact changes,

events are sent to artifacts that depend on it, allowing mi-
crotask structures to be dynamic and non-hierarchic. For

example, when a function changes its signature (e.g., add-

ing a parameter), artifacts that depend on it (callers and

tests) are notified, generating microtasks to handle these

changes. As artifacts may have many dependencies, arti-

facts may have multiple pending notifications of changes.

To coordinate this work, each artifact has a microtask

queue, allowing changes to be performed sequentially and

preventing conflicts.

We implemented our approach in a prototype online IDE

for microtask programming for Javascript: CrowdCode.
Our approach has a number of important limitations: it does

not support design tasks, does not crowdsource the design

of data types, is limited to crowdsourcing small functional

libraries, and requires the correctness of work to be evaluat-

ed solely through tests. Within this limited scope, we have

explored an approach for microtasking writing code, writ-

ing tests, and debugging. To achieve this, we present a nov-

el approach for the dynamic generation of microtasks

through an artifact network, a microtask decomposition of

programming, and self-contained microtasks for program-

ming. To evaluate the possibility of a small crowd working

on programming microtasks in parallel and to evaluate the
basic feasibility of the approach, we performed a small user

study in which 12 participants worked on a small program-

ming task. We found that the participants were able to suc-

cessfully program part of a library, completing 265 mi-

crotasks, writing 480 lines of code across 16 functions, and

an additional 61 unit tests. We found that decontextualizing

programming work had both strengths and weaknesses; but,

overall, 11 of the 12 participants felt that a microtasking

approach would make them more likely to contribute to an

open source project.

RELATED WORK

Our research builds on work across several communities:

open source software development, crowdsourcing complex
work, and crowdsourcing software development. In open

source, workers complete tasks to accrue status [4]. Yet this

process differs fundamentally from microtasking, as tasks

exist at a far larger granularity of hours or days. Workers

face many barriers to contributing, including discovering

ways to contribute, learning about tools, and tolerating

harsh feedback from senior members [10][14][21]. Our
approach is intended to reduce these barriers by decompos-

ing work into microtasks, which take only minutes.

Complex work comprises interdependent tasks that require

more cognitive effort than the typical tasks of labeling and

transcribing data. Approaches to tackle interdependent and

complex tasks rely on workflow mechanisms and crowd

algorithms. For example, Soylent [2] enables a writer to

partition work in smaller proof reading and editing tasks to
be performed by a crowd. TurKit [16], provides a frame-

work based on scripts to create and run tasks in Mechanical

Turk. CrowdForge [12] expands those solutions by enabling

the crowd to partition work. Our approach extends these

models, supporting dynamic, non-hierarchic workflows.

Other work has begun to apply microtasking to program-

ming at the level of individual development tasks such as
testing or question answering. In Stack Overflow1, develop-

ers ask questions, other developers answer them, and yet

other developers evaluate the quality of the answers, con-

currently curating a knowledge repository of frequent ques-

tions [11,17]. Other work has explored the use of

crowdsourcing for recommending fixes to bugs [9,18] and

compilation errors [22] and to checking and fixing unit test

assertions [19]. In order to leverage larger pools of workers,

some systems enable non-specialists to contribute. For in-

stance, several systems have explored applying a gamifica-

tion paradigm to verifying software models for correctness

[15] or verifying for security vulnerabilities by playing with
pipes [5].

One of the few systems to explore microtasking a pro-

gramming process is Collabode [7,8]. In Collabode, an

“original programmer” describes in prose short microtasks

to be performed and workers then use a provided web IDE

to complete the requested tasks. An evaluation of the sys-

tem found that, while it was possible to microtask pro-

gramming, there were several significant issues with the
workflow used. As workers all worked with a global view

of the entire codebase, it was sometimes distracting to see

changes being made elsewhere. And there was a large over-

head for the requestor in managing the crowd workers, as

they needed to answer questions about the request and

evaluate the work in detail. Moreover, code often had subtle

bugs, which was difficult for the requestor to find through

code inspection. Finally, workers were anonymous and thus

sometimes did not take responsibility for their work. These

considerations directly influenced our design choices in

1 stackoverflow.com

!

activity feed

group chat

score

leaderboard

microtask

instructions

data structures

pseudocall

pseudocode

code editor

function description

project statistics current user

Figure 2. The CrowdCode environment and the Write Function microtask.

CrowdCode, leading us to adopt a model with local, self-

contained microtasks and test-based correctness evaluation.

EXAMPLE

To illustrate microtask programming in CrowdCode, we

present an example. After logging in to CrowdCode and

viewing a welcome screen, Alice is immediately presented

with her first microtask. The microtask provides her with

the description of a function in prose and asks her to enu-

merate test cases.

Not feeling in the mood for testing, she clicks the skip link

at the bottom of the page. She’s then presented a new mi-

crotask – Write Function (Figure 2) – and asked to write

some code. Rather than completely implement the function,

she sketches some pieces of it that come to mind, noting

portions still to be done with pseudocode (yellow back-

ground). She thinks some of the functionality should really

be implemented in other functions, and writes several pseu-

docalls describing what she thinks those functions should

do. She submits the task.

She next receives a microtask to Debug, and is given some
code and unit tests and sees that the unit test is failing. She

edits the code, but the unit tests still are not passing. Look-

ing at a list of inputs and outputs for function calls at the

bottom, she sees that one of the functions is returning an

erroneous value. After editing the output value, she reruns

the tests, sees that they pass, and submits. She sees that her

score has now increased to 20 points!

Alice next is assigned another microtask to edit a function,

and sees that she has been reassigned the microtask for the

function she started working on earlier. But it has now

changed – some of the pseudocode she had written has now
been replaced with code, and several of the pseudocalls

have been replaced with actual calls. But she also sees that

some of the new algorithm does not appear to work correct-

ly, so she rewrites some of the code, adding new pseudo-

code and pseudocalls for some of the new portions.

DESIGN

The core of CrowdCode is a system for tracking work as a

graph of artifacts, dynamically generating microtasks in

response to state changes in artifacts and propagating events

across dependencies. To enable workers to program using

these microtasks, CrowdCode decomposes programming

work into a set of microtasks, enabling workers to write

code, reuse functions, test, and debug within self-contained

microtasks. Finally, CrowdCode provides social features to
motivate contributions including a simple point system. The

following sections greater detail CrowdCode’s design and

concepts.

Generating Microtasks

In CrowdCode, all work performed by the crowd occurs in

microtasks. A microtask is a short, independent, self-

contained request for a piece of work to be completed. Each

microtask focuses on a single artifact – a work product be-

ing produced by the crowd. After a crowd worker com-

pletes and submits a microtask, the microtask’s correspond-
ing artifact processes the work completed, updating its data

and state accordingly.

In CrowdCode, the overall work product is maintained as a

graph of artifacts (Figure 3). Each artifact – functions, tests,

and the project – includes a set of attributes describing its

state, describing the work which has been completed and

the work which may be required. When a microtask is sub-

mitted, an artifact may change state, transitioning attributes

as necessary. For example, when the Write Function De-

scription microtask is submitted, a function changes state

from not described to described. See Figure 4 for the func-

tion state machine.

Microtask submissions may also trigger an artifact to send

an event to other artifacts that depends on it. For example,

when a parameter is added to a function’s signature, the

function sends a signature change event to all functions that

call it and all of the unit tests for the function, enabling the-

se artifacts to generate microtasks in response. In Figure 3,

adding a parameter to function a results in events being sent

to functions b and c and tests t1 and t2. In this way, changes

to an artifact may propagate across the call graph, allowing

related artifacts to be updated. CrowdCode currently im-

Figure 4. The function state machine.

Figure 3. A graph of artifacts with functions (black back-

ground), tests (blue outline), and dependencies (arrows).

plements two types of dependencies: function calls and tests

that test a function.

CrowdCode also supports iterative workflows, where mi-

crotasks for the same work are repeatedly generated until

work has been completed. If, after a microtask is submitted,

the artifact’s data is updated but it remains in the same
state, it may generate a new microtask to continue the work.

For example, developers editing a function can write pseu-

docode, leaving the state of the artifact in the not written

state and iteratively generating microtasks until all of the

pseudocode has been replaced with code.

Organizing work through explicit global tasks is challeng-

ing and fragile. As workers do work at scale throughout the

system, in parallel throughout the system, this work must

then be reassembled into a consistent whole. In our early

work, we explored the use of global tasks, spanning multi-

ple artifacts. For example, a debugging task might spawn a

set of microtasks to be done on a set of functions, and
would not be completed until the bug was definitively lo-

cated in a function. However, as each function may be con-

currently changing, a single function might concurrently

participate in multiple debugging tasks all while other work

is being done. Determining if a bug has been found, when

the buggy function might have been concurrently changed

as part of another task, was challenging.

As a result, we instead adopted a simpler, but powerful

principle: each artifact may have a single microtask concur-

rently being performed and each microtask must act inde-

pendently. When there are multiple microtasks to be done
(e.g., a function fails a test and must also update a call to

match a changed signature), each microtask is added to a

queue. Each artifact ensures that it has only a single availa-

ble microtask in the global queue at a time. Other mi-

crotasks are maintained in a separate per-artifact queue and

released into the global queue as microtasks are completed.

This design prevents merge conflicts, as only at most one

microtask and worker have commit access to an artifact at

any point in time. This poses the secondary issue that aban-

doned tasks could hold up development on an artifact, and

timers that strictly or arbitrarily limit total microtask time

might cause issues for e.g. function implementation tasks
that a worker is spending more time on. Our implementa-

tion uses soft notices to submit after 8 minutes and includes

inactivity timers, to help address this issue.

Workflow

CrowdCode crowdsources the implementation of libraries

requested by a client developer. All work in CrowdCode

begins with a client request specifying the API of a library

to be implemented by the crowd. Clients describe an API

through a set of functions, each containing a prose descrip-

tion of the functions purpose and its signature, including its

name, return type, and list of parameters (including name,

type, and text description/interpretation). Together, these

functions describe the behavior of a library that can be in-

corporated by the client into a larger codebase. Clients also

specify a set of data types, allowing each function to have a

type describing the legal values that may be passed to and

returned from the client and to be used internally within the

library’s implementation.

A central decision in the design of a crowdsourcing system
is the granularity at which workers interact with the work

products produced. A smaller granularity enables greater

parallelism, as it increases the amount of crowd workers

that can be working at the same time, in turn decreasing the

time required to complete work. However, decomposing

work into smaller pieces can also increase the amount of

overhead, as more workers may need to understand some of

the same aspects of the current status of the work to con-

tribute.

CrowdCode attempts to balance these factors towards the

smaller end of the granularity scale, using the function as

the central unit of granularity. Functions are a natural and
central boundary in programs, enabling a set of related

statements to be organized into a coherent whole providing

a single piece of functionality. Functions are a central unit

of abstraction in programs, providing an interface through

which clients may invoke the described functionality with-

out seeing or reasoning about the code providing the func-

tion’s implementation.

As workers work with code in CrowdCode, workers inter-

act with a single function at a time. Through the function’s

description, workers can understand what callers expect of

the function, enabling them to reason about and work on the
function in isolation from the code of the other functions.

Similarly, workers may request some functionality to be

created (or reused) in the system. This request leads the

crowd to find or create a function, which can then be called

from the requesting function. In this way, functions and

their interfaces provide boundaries establishing individual

units of work that can each evolve separately.

Another central consideration in a crowdsourcing system is

providing mechanisms to produce quality work. In Crowd-

Code, this is done through unit tests. Drawing inspiration

from test-driven development [1], microtasks are separately

created to write tests for each function. When all of the tests
pass, the system is considered to be ready for acceptance

testing by the client. If a test fails, a microtask is created to

debug the function. By creating separate microtasks for

writing code and testing, CrowdCode creates redundancy,

ensuring that the code produced is correct enough that it

passes its tests. If workers produce code that fails to pass

the tests, more work will be created until the tests pass. Of

course, the tests themselves may also be incorrect. When

debugging, workers may report an issue with a test, gener-

ating a microtask to address the issue and correct the test.

As a result of requiring that bugs be able to be detected
through tests, CrowdCode requires that code written is

functional and neither mutates global state nor interacts

with the external environment (e.g., writing output to a

screen). Functions must be able to be completely specified

simply by evaluating the output they produce for each set of

inputs. This enables functions to be evaluated for correct-

ness simply by seeing if, for all tests, they produce the cor-

rect output. While this does not allow CrowdCode to write

web apps with GUIs, CrowdCode can be used to write a
library implementing key behavior as part of a larger appli-

cation containing a GUI and other interactions with an envi-

ronment.

Table 1 lists the microtasks in CrowdCode, which are dis-

cussed in detail in the following sections.

Writing code

Writing code involves a number of distinct tasks – writing

descriptions for functions, envisioning and sketching a

high-level outline or algorithm, implementing the sketch

with code, locating existing functions to reuse or describing

new functions to be created, adding function calls, and re-

sponding to changes in the interface of functions being

called. In CrowdCode, each of these are separate microtasks

performed by the crowd.

The first functions are initially requested and described by

the client. The crowd begins contributing through a Write

Function microtask (Figure 2). Workers are provided a de-

scription of the function and its signature and asked to

begin implementing it. As workers begin writing the func-

tion, they may choose to simply sketch portions of the code

using pseudocode. Workers may indicate that a portion of a

line is pseudocode by the leading characters //#; pseudo-

code is indicated visually with a yellow background. Work-

ers may submit incomplete functions with pseudocode,

generating additional microtasks to iteratively continue the
work [16].

Workers editing a function may also wish to reuse existing

functionality or break up the work to be implemented into

multiple functions. In CrowdCode, workers do not need to

choose between these cases. Workers may write pseudo-

calls, indicated by a portion of a line beginning with //! and

visually highlighted with a white background (against the

black code editor background), to request that the crowd
either locate an existing function with the specified behav-

ior or to create a new function if no such function exists.

This allows the worker editing the function to be oblivious

to the other functions that may or may not currently exist –

they simply request a function, and the crowd determines

the most appropriate way to provide it.

CrowdCode also provides error checking. When a function

has pseudocalls or pseudocode remaining, error checking of

the function’s body is suppressed. This allows workers to

incorporate pseudocalls and pseudocode into lines of code

in ways that makes the code itself syntactically invalid (e.g.,

branches and loops with some pseudocode components). In
early pilot testing, we found that workers often wished to

produce such code, and forcing them to always create syn-

tactically valid code was a significant barrier. Whenever a

function has no pseudocalls or pseudocode present,

CrowdCode provides error checking, displaying an error

panel below the code whenever code errors are present.

CrowdCode provides basic syntax checking using JSHint2.

In CrowdCode, workers can only create functions through

the pseudocall mechanism. This prevents a single worker

from writing a whole program in a single microtask and

encourages workers to break the work to be done into addi-
tional microtasks, increasing the parallelism of the work

2 www.jshint.com

Microtask type Description Possible subsequent

microtasks

Write Function Sketch or implement a function using code, pseudocode, and pseudocalls. Write Function, Reuse Search,

Machine Unit Test

Reuse Search Given a pseudocall and the surrounding code, determine if an existing func-
tion provides the functionality or that no function does.

Write Call, Write Function

Description

Write Function

Description

Given a pseudocall and the surrounding code, write a description and signa-
ture for a new function for this behavior.

Write Call

Write Call Replace the specified pseudocall with a call to the specified function or edit
the function to implement the behavior in an alternative way.

Write Function, Reuse Search,

Machine Unit Test

Write Test Cases Given a description of a function, list test cases. Write Test

Write Test Given a test case and the description of a function, implement the test case or
report an issue in the test case.

Machine Unit Test, Write Test

Cases

Machine Unit Test Executes all implemented tests, notifying functions if they fail a test Debug

Debug Edit code to fix bug, report an issue in a test, or create stubs describing issues
in function call

Machine Unit Test, Write

Function, Reuse Search

Table 1. The microtasks in CrowdCode.

process. To enforce this rule, CrowdCode displays an error

message whenever the code editor contains more than one

function.

Data types serve an important role in communicating the

expected parameters of a function, signaling, for example,

that the parameter player is expected to be a String in our
example task described below. Defining good data types is

often a central task of high-level design, requiring a global

understanding of a code base. In a microtasking environ-

ment where no single worker has such a global view, this is

challenging to achieve. Moreover, if a crowd were to itera-

tively create data types, every time the data types changed,

all functions and tests with parameters using those data

types might need to change, creating the potential for large

amounts of work. Thus, in CrowdCode, all data types are

defined by the client as part of the initial client request.

Clients specify data types with a name, list of fields, list of

data types for each field, and a prose description (e.g.,
Board in Figure 2). CrowdCode supports nested data types

and arrays of data types. Each parameter to a function and

the return value must have a type, which is either a data

structure or a primitive type (i.e., Number, Boolean, or

String). Parameter types are specified in the comments of

the function description (e.g., lines 15 – 17 in Figure 2).

CrowdCode displays an error message when a provided

type name is invalid. Descriptions of all data types in the

system are listed above the code editor.

Reuse and creating functions

Whenever a worker submits code with a new pseudocall, a

Reuse Search microtask is created. This microtask provides

the text from the pseudocall and the code surrounding the
pseudocall and asks the worker to search through existing

function descriptions to determine if such a function already

exists. When search text is entered, it is matched against

existing descriptions, and a list of matches displayed.

Workers can either select one of the functions or indicate

that no existing function provides the requested functionali-

ty.

When a new function is required, a Write Function Descrip-

tion microtask is next generated (Figure 5). This again pro-

vides the pseudocall and the code surrounding the pseudo-

call and provides a structured editor for writing function

descriptions. For each parameter, a textbox is provided for
workers to provide the name, type, and description. Error

checking is performed, checking for syntax errors, ensuring

the function name is unique, and ensuring that the types

provided are valid types.

After an existing function has been located or a new func-

tion has been described in Write Function Description, an

Add Call microtask is generated (Figure 6). Workers are

provided a code editor, functionally equivalent to the Edit a

Function microtask, but more specific instructions to re-

place a specified pseudocall (also highlighted in the code)

with a call to the described function or determine another

Figure 5. The Write Function Description microtask.

Figure 6. The Add Call microtask.

way to implement the specified behavior. Workers are free

to edit whatever aspects of the code they wish, enabling

them to make arbitrary changes in response to the new

function or even to decide that a different way of imple-

menting the requested behavior would be more effective.

As in the Write Function microtask, adding pseudocode or
pseudocalls generates the appropriate new microtasks.

Whenever a function call is added, a dependency is created

on the function by the function being called. As Crowd-

Code only permits direct calls to functions in the global

scope (e.g., calls to functions on objects are not permitted),

function calls can always be uniquely resolved to a single

function, eliminating the possibility of any false positives or

false negatives in creating dependencies.

When working in a function, workers may also decide to

edit a function’s description or signature. Workers may

rename a function; add, remove, or rename parameters; and

change the type of any parameter. Any of these changes
signals a change in the function’s interface. As a result,

callers or tests of the function may need to change to reflect

the function’s new interface. Thus, CrowdCode generates

microtasks signaling the description has changed for each

caller and test. Each microtask includes a text-based diff of

the old and new description and signature, describing the

change to the function and allowing the worker to perform

an appropriate edit, if necessary.

Testing

Tests are written in two-steps. As soon as a function has

been described by a client or by the crowd, a microtask is

generated to Write Test Cases (Figure 1). Workers are pro-

vided a description of the function and asked to enumerate
short prose descriptions of test cases. Allowing a single

worker to write all of the test cases helps ensure that test

cases are not duplicative and have good coverage. To keep

the microtask short, workers are asked to provide a prose

description of test cases rather than a full implementation.

In the second step, each submitted test case generates a

Write Test microtask. A worker is provided the function

description and test case and asked to concretely specify the

test case as a unit test. To make unit tests quicker and easier

to write, CrowdCode provides an editor for simple unit

tests, asking workers to specify appropriate values for each

parameter and the return value (Figure 7). Test values are
checked for syntax errors and that they are of the correct

type.

If a worker feels that the prose description of a test case is

incorrect for the function (e.g. testing an invalid input when

the parameter is specified to have been validated), they may

report an issue in the test case. This generates a new Write

test cases microtask that prompts a different worker to con-

sider the issue and edit, add, and remove the test cases to

address the issue. Any changes to a test a case generate a

new Write test microtask reporting the change to the test

case and asking the worker to edit the test.

Determining when tests should be run presents a potential

need for global coordination. Generally, tests should be run

whenever a function no longer contains pseudocode or

pseudocalls (is written) and all of the functions it directly or

indirectly calls are written. Global coordination such as this

is again fragile: if a microtask is scheduled to run a test for

a function and one of the functions it calls concurrently
transitions to not written (e.g. by the addition of pseudo-

code in an editing task responding to a callee signature

change), running the tests is no longer required. To prevent

this need for global coordination, CrowdCode uses a sim-

pler, local rule. Whenever (1) a function is edited which no

longer contains any pseudocalls or pseudocode and (2) all

of the functions’ tests are currently implemented, the func-

tion notifies the project that it is ready to be tested. The

project then generates a special Machine Unit Test mi-

crotask. This microtask requires no work by the worker; the

worker simply briefly sees a microtask appear and a pro-

gress notification. The machine unit tests executes all im-
plemented tests for all described functions, regardless of if

they are written. The body of functions that are not yet writ-

ten is replaced with an empty body that simply throws a Not

Implemented exception. When running tests, if a Not Im-

plemented exception is encountered, the test result is ig-

nored. Otherwise, if a function fails its tests, the function is

notified, transitions to the buggy state, and generates a De-

bug microtask.

Debugging

Whenever a function fails to pass a unit test, it transitions to

the buggy state (Figure 4), and a Debug microtask is gener-

ated. Workers are provided a code editor and a list of unit

tests, with passing unit tests listed in green and failing unit
tests listed in red. To fix the bug, workers can edit the code,

rerun the unit tests, and view the output. A worker may also

decide that the issue is not in the code but in the test itself

and instead submit a prose description of an issue for the

unit test, generating a microtask to edit the test to address

the issue.

In other cases, however, the bug may not be in the function

under test but in one of the functions it calls. Indeed, much

of the challenge of debugging often rests in the process of

Figure 7. When implementing a unit test, workers are asked

to write JSON literals for each parameter, which are

checked for syntax and semantics errors.

fault localization and determining the location within the

program where the problem is located. Such a task is non-

modular in that it requires developers to navigate the whole

program, traversing function calls to determine the location

of a fault.

How can workers debug such bugs through local microtasks
which provide a view of a single function? Our solution is

to allow workers to edit the return value of function calls,

creating a stub overriding the function’s return value for a

specific set of inputs. For example, a worker might see that

the call to the function add with the parameters -1 and 2 is

returning -1 and edit the return value to be 1. Workers may

then rerun the tests to determine if changing the callee’s

behavior fixes the bug, with the system automatically sub-

stituting the stubs for calls to the actual function through

source rewriting. After the microtask is submitted, each

stub then generates a test for the callee, which will be run

and fail (assuming the callee has not been concurrently
changed). A new worker can then continue debugging in

the function being called.

Social features

To encourage workers to contribute, CrowdCode imple-

ments a simple point system. All microtasks are initially

assigned a point value based on their type, approximately

proportional to the anticipated difficulty of the task type.

Each worker has a score and is awarded the microtask’s

points when the microtask is submitted. Workers can see

the score of all workers in the system on a leaderboard

(Figure 2), which is updated in real-time.

When a worker logs in to the system, they are automatically

assigned a microtask by the system. Compared to manual
task assignment in which workers themselves select mi-

crotasks, automatic task assignment has two key ad-

vantages. First, workers do not spend time searching for

microtasks, increasing the time in which they can be work-

ing. Second, by using a queue to assign work to workers,

the system can ensure that no microtasks starve because

workers do not wish to attend to them, even initially. How-

ever, automatic task assignment reduces worker motivation,

as workers no longer have a choice of work [13]. In order to

provide the benefits of both automatic task assignment and

choice, CrowdCode lets workers skip microtasks. Skipping

a microtask adds the microtask back to the global queue,
enabling it to be assigned to the next worker seeking work.

To encourage workers to do microtasks that may be unde-

sirable, skipping a microtask increases the points that will

be awarded on successful completion of that microtask.

CrowdCode provides a number of features to help workers

maintain awareness of the current state of the project. As

workers complete microtasks, they are added to a personal

activity feed (right side of Figure 2), letting workers track

their work. Statistics on the current status of the project –

the total lines of code, functions fully written, and mi-

crotasks completed (top of Figure 2) – let workers see a

summary of overall progress in real-time.

In some cases, workers may require information that is not

provided by the current microtask. In these cases, workers

may choose to use a group chat with all currently logged in

workers, a feature we termed Ask the Crowd. While global
group chat is ultimately unscalable, we introduced the Ask

the Crowd feature as a fail-safe measure to enable the

crowd to still make progress in the face of unexpected in-

formation needs. It also enables workers to go off topic and

forge closer relationships with other workers [13].

CrowdCode ultimately depends on workers in the system to

work in ways that produce work for other workers to do,

especially through writing code containing pseudocode and

pseudocalls. In our early testing, we found that workers

sometimes attempted to implement large portions of func-

tionality in a single function rather than using pseudocalls

to break the work up into separate functions. To address
this issue, workers are explicitly encouraged to use pseudo-

calls and explicitly prompted after every 8 minutes of work

on a microtask to submit, even if their work is incomplete,

to create microtasks for other workers to do.

Implementation

CrowdCode is implemented as a web application on Google

App Engine3, providing an infrastructure for seamless tech-

nical scaling. All artifact and microtask state is stored serv-

er-side in AppEngine. When a worker logs into the system,

the browser requests a microtask, transferring the necessary

state to the browser. When a worker submits a microtask,

the modified state is returned to the server and the state

updated. All other information – points, the activity feed,
leaderboard, chat – is synchronized across browsers in real-

time using Firebase4.

CrowdCode provides a project model. For each new client

request, a project is created with its own artifacts, mi-

crotasks, and user statistics. Each project is associated with

a unique URL, enabling workers to select a project by visit-

ing its URL.

CrowdCode enables workers to write code in Javascript.

This has several advantages. Javascript is currently a popu-

lar language whose syntax is well-known, making it more

likely that workers can contribute without needing to learn

a new language, and making it more likely they will easily
be able to find answers to syntax questions on the Web.

Moreover, Javascript can be executed client-side, enabling

the unit tests to be run in the browser and quickly provide

feedback for the debugging microtasks. However, a test that

runs in the browser might also execute an infinite loop,

causing the browser to hang and the worker to be unable to

3 developers.google.com/appengine

4 www.firebase.com

continue. To address this issue, all worker written code is

executed on a separate thread using the HTML5 web work-

er API. Long running tests timeout and fail. The code editor

is implemented using the CodeMirror editor5 and the Es-

prima ECMAScript parsing infrastructure6.

USER STUDY

To examine the possibility of a small crowd working on

programming microtasks in parallel and to evaluate the

basic feasibility of the approach, we performed a small user
study. We used email distribution lists and personal con-

tacts to recruit 12 participants from our university, all of

whom had and/or were working on graduate degrees in

computer science and/or related fields. All participants had

prior experience programming in Javascript (average 0.6

years) and at least 6 months of experience in industry as a

software developer (average 1.8 years). 11 participants

were male and 1 female (P7). Participants were paid $60 for

two hours of their time.

All participants participated in a single simultaneous ses-

sion and were each given their own room to ensure that
they were only able to communicate through CrowdCode.

Participants were first provided a hands-on tutorial with the

system and assigned to separate projects in which they each

completed several representative microtasks for 10 – 20

minutes. After completing the tutorial, participants then

entered a single project and worked on the primary task.

Participants were asked to crowdsource game logic for

checkers (i.e., English draughts). The experimenters seeded

the project with a client request describing two functions to

be written and several simple data types specific to check-

ers. Throughout the study, two experimenters circulated
through participants’ rooms and verbally answered ques-

tions about how to use CrowdCode (which we recognize as

of limited scalability) but did not answer any questions

about the work itself. Several participants were interna-

tional students unfamiliar with the rules of Checkers and

made use of the link to the rules we provided.

Midway through the Checkers task, participants were asked

to complete a short mid-task survey, asking questions about

their experiences and challenges. Fifteen minutes before the

conclusion of the study session, all participants were

stopped and asked to complete a more extensive post-task

survey, containing items about their experiences and per-
ceptions with working in CrowdCode.

Results

The twelve participants each worked for about 1.25 hours in

CrowdCode (totaling exactly 14.25 person-hours). In total,

participants completed 265 microtasks, wrote 480 lines of

code across 16 functions, and an additional 61 unit tests

5 codemirror.net

6 esprima.org

(Table 2). Participants did not finish implementing checkers

in the course of the study session.

One central characteristic of microtasking is a reduced con-

text, enabling microtasks to be self-contained and inde-

pendent. Participants differed in their reaction to this loss of

context. Some found it to be freeing: “I had to keep less

context in my head when writing functions, because I could

not make assumptions [about] the rest of the program” (P6).

Others found it burdensome and wanted other information

about the current state of the system that the microtasks did

not provide. One participant (P9) also reported that the
mental context switching required by microtasks was a hin-

drance to usability.

A majority of participants agreed that the opportunity for

communication beyond what was provided would help

them to work more effectively. Participants cited a desire to

share technical experience, clarify tasks, ask questions

about material that others had written. This may partially

reflect the patterns of work to which participants were ac-

customed. One participant stated that additional communi-

cation “might lead to conflicts in the case of disagreements.

I thought guiding communication via the work and tasks
itself was fairly productive” (P1). Participants used the

global chat to socialize and clarify the rules of checkers.

Participants appreciated the ability to specialize in tasks

they wanted to do and the ability to contribute according to

their knowledge and abilities: “I think that CrowdCode

would make me more likely to contribute as I could solve

the tasks which I could do, and skip the others. I could take

on tasks with higher difficulty as and when I feel comforta-

ble. Hence, CrowdCode would be ideal in working in an

open source project… [What I liked best was] collaborative

coding - each person can effectively contribute according to
his knowledge. For example, a testing person might con-

Microtask Type Com-
pleted

Skipped Mean com-
pletion time
(minutes)

Debug 28 2 2.67

Machine Unit Test 16 0 0.17

Reuse Search 30 0 1.84

Add Call 8 1 3.81

Write Function 39 10 5.41

Write Test 99 25 2.84

Write Test Cases 36 7 1.85

Write Function Description 20 3 3.06

Table 2. Microtasks completed and skipped by participants.

tribute for test cases, and skip the code development parts if

he feels so” (P11). P1 also reported that “I was willing to be

imperfect with my work. It was more important for me to

constantly push out new work.” This suggests that the

iteration process may have created an important “failure for

free” condition ([20], Ch. 10) in which the cost of trying
something and doing it is less than the cost of figuring out if

it's OK to try. Participants found the social features of

CrowdCode, especially the points and leaderboard, to be

motivating and to “help building a productive vibe to cod-

ing” (P10).

11 of the 12 participants agreed that they would be more

likely to contribute to an open source project using Crowd-

Code than with a traditional development process. Each

cited the lower barrier to entry and ease of jumping in as

opposed to the “taxing” “learning and involvement curve”

(P7) of open source projects now, as well as the ability to

specialize by skipping some tasks. P1 pointed out that the
microtasks could be too constraining for seasoned develop-

ers but may be better for someone starting out and under-

standing a new system.

Work submitted with errors sometimes created issues in the

microtasks that derived from the completed work. For ex-

ample, workers sometimes entered incorrect parameter

types in the Write Function Description microtask, such as

indicating the type of a parameter or return value to be a

String when it should be a client-defined data type. As a

result, participants in the Write Test microtask were forced

to write tests with the wrong data types, as they were unable
to request a change in the function description.

The study also revealed several usability and platform ro-

bustness issues. Participants submitted syntactically invalid

code that was not correctly flagged by the system. As a

result, some participants were unable to successfully com-

plete the Debugging microtask, as the test running infra-

structure threw an exception and could not display the re-

sults of running the unit tests. Early in the session, some

workers were forced to wait to receive microtasks. All of

the microtasks were initially spawned in response to a client

request for two functions, generating initial microtasks to

write the functions and write test cases. Workers writing the
functions initially spent a long time working, causing a de-

lay in creating other microtasks for workers to perform.

DISCUSSION

We found that the workers in our study were successfully

able to write code and tests within a dynamic microtasking

workflow. Especially after the tutorial and early experience

with the system, participants seemed to “get it” and found

aspects of the system and microtask style that they enjoyed.

We were surprised at the motivational power of the points

system and leaderboard, especially because participants

were well-paid and did not expect the points to have value

after the conclusion of the study.

CrowdCode enables developers in a larger project to speci-

fy the behavior of a requested functionality as a library

through an API (e.g., the API for executing checkers moves

in our study), which can be implemented through Crowd-

Code and added to the project. However, this model impos-

es a significant burden on the requesting developer: they
must precisely specify the behavior of the library, listing

descriptions of functions and all necessary data structures.

This model might be relaxed by enabling iterative commu-

nication between the crowd and requestors, allowing the

API to evolve through the joint work of the requesting de-

veloper and crowd. Or, in some cases, it may be advanta-

geous to allow requesting developers to play a larger role in

the work itself, enabling them to see and direct a global

view of the crowd’s work.

Microtasking workflows clearly impose an overhead on a

development process, and the total amount written per per-

son-hour is likely lower with CrowdCode than with tradi-
tional approaches. However, if microtasking is able to suc-

cessfully reduce the barriers to contribution and thereby

harness value from the “long tail” of participation – the

many willing to donate small amounts of time and effort –

the benefits of tapping into a much larger available resource

may still outweigh the overhead costs of using that “free”

resource less efficiently.

Another important question is whether or not participants

engaged in microtasked work feel that they are making an

important and meaningful contribution. On the one hand,

microtasked work decontextualizes contributions, which
may make it more challenging for workers to understand

the impact and significance of their work. On the other

hand, by making work products more fine-grained and ex-

plicit, it may be possible to provide more information about

the impact of work done. For example, a worker writing a

function description might receive a notification in the

newsfeed whenever the function is reused, letting them see

how successfully they were able to craft a reusable API.

A fundamental challenge in crowdsourcing is that workers

may produce bad work, even through good faith efforts. In

CrowdCode, any of the information workers enter in mi-

crotasks may ultimately be wrong and need to be corrected.
Unlike more traditional microtasking workflows in which

redundant work or explicit reviews are used to ensure the

quality of the work [6], CrowdCode embeds corrections

into the workflow itself. CrowdCode provides two mecha-

nisms to enable such corrections: workers may directly edit

the artifact corresponding to the current microtask or may

report an issue with related artifacts that are visible but not

editable (e.g., a test case description in Write Test). Work-

ers were often faced with a microtask resulting from bad

work. The one area in which this was impossible – report-

ing an issue with a function signature when writing a test –
caused significant problems. This highlights the importance

of ensuring that all worker-produced data can be corrected.

Creative work done by large groups often has the structure

of separate artifacts with dependencies, leading to corre-

sponding challenges communicating about these dependen-

cies (i.e., socio-technical congruence [3]). The general prin-

ciples of our approach may apply to many of these do-

mains. For example, in an engineering task, sub-
components may be spun off like pseudocalls, and automat-

ed test cases could include static and thermal analyses. In

writing text, editing a paragraph in an article might be a

microtask, enabling workers to create bullet points fleshed

out by the crowd, requests for other related paragraphs to be

written, and automatic tracking of dependencies to create

microtasks to update work. Our approach may be most use-

ful in contexts where parallelism-based speedups or broad

participation through low barriers to entry are needed.

ACKNOWLEDGEMENTS

We thank Steven Morad, Patrick Nguyen, and Eric Chiquil-

lo for their contributions to CrowdCode, we thank the par-

ticipants in the study for their participation, and we thank

Christoph Hannebauer and the anonymous reviewers for
their helpful comments and suggestions on previous drafts.

This work was supported in part by the National Science

Foundation under grants NSF IIS-1111446, IIS-1302522,

and CCF-1414197.

REFERENCES

1. Beck, K. Test-Driven Development: By Example. Addi-

son-Wesley, Boston, 2003.

2. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent: A

Word Processor with a Crowd Inside. Proc. of UIST

2010, 313–322.
3. Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Car-

ley, K. M. Identification of Coordination Requirements:

Implications for the Design of Collaboration and

Awareness Tools. Proc. of CSCW 2006, 353-362

4. Crowston, K., Wei, K., Howison, J., and Wiggins, A.

Free/Libre Open-source Software Development: What

We Know and What We Do Not Know. ACM Comput.

Surv. 44, 2 (2012), 7:1–7:35.

5. Dietl, W., Dietzel, S., Ernst, M.D., et al. Verification

Games: Making Verification Fun. Proc. of FTfJP 2012,

42–49.

6. Doan, A., Ramakrishnan, R., and Halevy, A. Y.
Crowdsourcing Systems on the World-Wide Web.

Commun. of ACM 54, 4 (2011), 86-96.

7. Goldman, M., Little, G., and Miller, R.C. Real-time Col-

laborative Coding in a Web IDE. Proc. of UIST 2011,

155–164.

8. Goldman, Max. Software Development with Real-Time

Collaborative Editing. PhD Diss. Massachusetts Insti-

tute of Technology, 2012.

9. Hartmann, B., MacDougall, D., Brandt, J., and Klemmer,

S.R. What Would Other Programmers Do: Suggesting

Solutions to Error Messages. Proc. of CHI 2010, 1019–

1028.

10. Jergensen, C., Sarma, A., and Wagstrom, P. The Onion

Patch: Migration in Open Source Ecosystems. Proc. of

ESEC/FSE 2011, 70–80.

11. Jiau, H.C. and Yang, F.-P. Facing Up to the Inequality

of Crowdsourced API Documentation. SIGSOFT Softw.

Eng. Notes 37, 1 (2012), 1–9.

12. Kittur, A., Smus, B., Khamkar, S., and Kraut, R.E.

CrowdForge: Crowdsourcing Complex Work. Proc. of

UIST 2011, 43–52.

13. Kraut, R.E. and Resnick, P. Building Successful Online

Communities: Evidence-Based Social Design. MIT

Press, 2012.

14. Krogh, G. v., Spaeth, S., and Lakhani, K. R. Communi-

ty, Joining, and Specialization in Open Source Software
Innovation: A Case Study. Research Policy 32, 7

(2003), 1217–1241.

15. Li, W., Seshia, S.A., and Jha, S. CrowdMine: Towards

Crowdsourced Human-Assisted Verification. Proc. of

DAC 2012, 1254–1255.

16. Little, G., Chilton, L.B., Goldman, M., and Miller, R.C.

TurKit: Human Computation Algorithms on Mechanical

Turk. Proc of UIST 2010, 57–66.

17. Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G.,

and Hartmann, B. Design Lessons from the Fastest

Q&A Site in the West. Proc. of CHI 2011, 2857–2866.
18. Mujumdar, D., Kallenbach, M., Liu, B., and Hartmann,

B. Crowdsourcing Suggestions to Programming Prob-

lems for Dynamic Web Development Languages. CHI

’11 Extended Abstracts on Human Factors in Compu-

ting Systems, ACM (2011), 1525–1530.

19. Pastore, F., Mariani, L., and Fraser, G. CrowdOracles:

Can the Crowd Solve the Oracle Problem? Proc. of

ICST 2013, 342–351.

20. Shirky, C. Here Comes Everybody: the Power of Or-

ganizing Without Organizations. Penguin, 2008.

21. Steinmacher, I., Silva, M. A. G., and Gerosa, M. A.

Barriers Faced by Newcomers to Open Source Projects:
A Systematic Review. IFIP Adv. Inf. Commun. Technol.

47 (2014), 153-163, Springer Berlin Heidelberg.

22. Watson, C., Li, F.W.B., and Godwin, J.L. BlueFix: Us-

ing Crowd-Sourced Feedback to Support Programming

Students in Error Diagnosis and Repair. In E. Popescu,

Q. Li, R. Klamma, H. Leung, and M. Specht, eds., Ad-

vances in Web-Based Learning - ICWL 2012. Springer

Berlin Heidelberg, 2012, 228–239.

