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Microtomography of the Baltic amber tick
Ixodes succineus reveals affinities with the
modern Asian disease vector Ixodes ovatus
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Abstract

Background: Fossil ticks are extremely rare and Ixodes succineus Weidner, 1964 from Eocene (ca. 44–49 Ma) Baltic
amber is one of the oldest examples of a living hard tick genus (Ixodida: Ixodidae). Previous work suggested it was
most closely related to the modern and widespread European sheep tick Ixodes ricinus (Linneaus, 1758).

Results: Restudy using phase contrast synchrotron x-ray tomography yielded images of exceptional quality. These
confirm the fossil’s referral to Ixodes Latreille, 1795, but the characters resolved here suggest instead affinities with
the Asian subgenus Partipalpiger Hoogstraal et al., 1973 and its single living (and medically significant) species
Ixodes ovatus Neumann, 1899. We redescribe the amber fossil here as Ixodes (Partipalpiger) succineus.

Conclusions: Our data suggest that Ixodes ricinus is unlikely to be directly derived from Weidner’s amber species,
but instead reveals that the Partipalpiger lineage was originally more widely distributed across the northern
hemisphere. The closeness of Ixodes (P.) succineus to a living vector of a wide range of pathogens offers the
potential to correlate its spatial and temporal position (northern Europe, nearly 50 million years ago) with the
estimated origination dates of various tick-borne diseases.
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Background

Ticks (Acari: Ixodida) are iconic arachnids, being obli-
gate ectoparasites of vertebrates and often of consider-
able economic significance as disease vectors affecting
humans and/or domestic animals. For a recent summary
of their biology see Sonenshine & Roe [1]. Almost 900
living species of ticks in three families (Nutalliellidae,
Argasidae and Ixodidae) are currently recognized [2]
and their origins and evolution remain a topic of debate
[3–5]. Key questions include whether ticks share a com-
mon ancestor with mesostigmatid mites – or a lineage
thereof [6] – or alternatively with the large and rare
holothyrid mites [7]. Second, when did ticks originate,
given that modern taxa require terrestrial vertebrate hosts,
and on which palaeocontinent did they first appear?

Recent opinions include an inferred Gondwanan (specific-
ally South African) origin [8], in the Permian, although
the same authors subsequently preferred an East African
origin in the Carboniferous [9]. Other data suggest
Australia, perhaps as far back as the Devonian [10]. Fi-
nally what, therefore, were their initial hosts? The
monotypic and probably basal family Nutalliellidae has
been reported as feeding on lizards [8], but was later
shown to be a more generalist parasite [11] with, for ex-
ample, subadults found on mammals like elephant shrews
[12]. Note that tortoises, mammal-like reptiles, birds, and
perhaps even feathered dinosaurs, would have been pos-
sible hosts for at least the Mesozoic species.
Palaeontology has the potential to contribute to this

debate by recording when and where particular lineages
(families, genera) were present. The oldest acariform
mites are Devonian, but the oldest parasitiform mites –

the clade which includes the ticks – have only been re-
corded since the Cretaceous. Fossil ticks are extremely
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rare. The oldest are two hard tick species (Ixodidae)
from the Cretaceous (ca. 99 Ma) Burmese amber from
Myanmar [13, 14]. Both were assigned to extinct genera;
albeit not by recognized tick specialists. Burmese amber
also includes a report of the living genus Amblyomma

(Klompen in [15]), but was not described at species
level. Like this find, all other fossil ticks have been
assigned to extant genera, implicit of a strong degree of
morphological stasis. The next oldest record is a soft
tick (Argasidae: Carios) from Cretaceous (ca. 92 Ma) New
Jersey amber [16]. This is followed by an Ixodes from
Eocene (ca. 44–49 Ma) Baltic amber [17], which forms
the focus of the present study, as well as a record of
Hyalomma from Baltic amber [5], albeit without formal
description. A putative Ixodes from the contemporary
Green River Formation of Wyoming, USA is a nomen

dubium [18]. Miocene (ca. 16 Ma) Dominican Republic
amber has yielded an extinct species of the soft tick
Ornithodoros [19], plus two hard ticks effectively indis-
tinguishable from living Neotropical Ambylomma species
[20, 21]. The youngest records are subfossils (<1 Ma) and
include a Dermacentor from the ear of a fossilized
rhinoceros from Poland (Kulczyński in [22]) and an
Ixodes in an ancient owl pellet from Argentina [23]. In
both cases the specimens could be comfortably assigned
to living species.
Ixodes succineus Weidner, 1964 from Baltic amber

(Fig. 1) is thus of particular significance as one of the
oldest putative records of a living hard tick genus. We
should also stress that numerous Ixodes species act as
disease vectors today, thus understanding the origins of
the genus is of wider parasitological interest. Including
the amber fossil, Guglielmone et al. [24] recognized 244
valid Ixodes species and noted [see also 2] the, to some

extent controversial [25], attempts to split the genus
into subtaxa. The monophyly of Ixodes is by no means
certain and a broad division into an Australasian and a
non-Australasian clade has been proposed [26]. So where
does the amber fossil fit into this scheme? Baltic amber is
obviously geographically from northern Europe, but has
been shown to occasionally pick up Asian or even Gond-
wanan faunal elements. Yet both the original description
of I. succineus [17] and subsequent commentaries [27]
remarked on similarities between the amber fossil and the
common, Recent, largely European species Ixodes ricinus

Linneaus, 1758; often known as the sheep, deer or castor
bean tick. Ixodes succineus has been mentioned in tick
catalogues [25] and refigured in popular works on amber
[28–30], but a modern restudy of this important inclusion
is lacking.
Fossils can be useful in constraining times of clado-

genesis by acting as calibration points for molecular clocks
[31, 32]. However, this requires accurate taxonomic place-
ment, which in turn is facilitated by techniques which
maximize the amount of morphological data recovered
and allow the fossils to be placed using the same character
sets as those applied to living genera and species. In recent
years various forms of computed tomography (CT) have
proved particularly well suited for imaging inclusions in
amber, and have been successfully applied in acarology to
both oribatid [33] and astigmatid mites [34]. Here, we
offer the first CT study of a tick in amber. As well as pro-
ducing extremely high-quality images of the inclusion
(Fig. 2), our principal aim was to assess the fossil’s affin-
ities – specifically is it an Ixodes and if so how close is it to
Ixodes ricinus or to other living species? As noted above,
Ixodes ticks often transmit diseases. Confirming the iden-
tity of the fossil would also allow us to compare this

Fig. 1 Ixodes (Partipalpiger) succineus Weidner, 1964. A fossil tick in Eocene (44–49 Myr) Baltic amber; holotype and only known specimen
GSUB I21. a Light microscopy image in dorsal view; note the cloudy precipitate occluding much of the dorsal surface. b The same in ventral
view. Scale bar 1.0 mm
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Eocene record with estimates of origination dates for
pathogens typically carried by closely-related living tick
species.

Methods

Material

The holotype and only specimen of Ixodes succineus de-
rives from the legacy of a Baltic amber collection
owned by the former physiology professor Otto Weiss
(1871–1943) in Königsberg (now the Kaliningrad Oblast,
Russia). It was purchased by the Überseemuseum Bremen,
Germany in the early 1960s [17]. The geoscientific portion
of this museum was transferred to the University of
Bremen in 1994, thus the specimen is now held in the
‘Geowissenschaftliche Sammlung’ of the university under
the inventory number GSUB I21. Baltic amber is con-
ventionally dated to an Eocene (Lutetian) age of ca. 44–
49 Ma and is thought to have been deposited in a warm
forest environment [29]. The fossil was also examined
under a stereomicroscope and compared both to Recent

species held in the United States National Tick Collection
and the literature.

Tomography

Microtomographic data were collected at the bending
magnet beam line 2-BM at the Advanced Photon Source,
Argonne National Laboratory, USA. The amber specimen
was scanned with 27.2 keV x-ray and imaged with a lens-
coupled x-ray microscope. The microscope is composed
of a Coolsnap K4 2048 × 2048 CCD camera, a 100um
LuAG:Ce scintillator, and a Zeiss 5× objective lens. The
scintillator converts the amber x-ray shadow image into
an optical image, and the objective lens projects the image
onto the camera. The microscope has a 2.96 μm pixel size.
The exposure time was 200 ms. images were collected in
transmission mode by a CCD camera behind the sample
in the hutch configuration. The sample-detector distance
was set to 300 mm to optimize the phase contrast which
was needed to illustrate internal details of the poorly ab-
sorbing specimen; this distance being based on the evolu-
tion of the contrast in the reconstructed images. 1440
projections were acquired while the sample was rotated
over 180° in steps of 0.125°. A microtomographic data set
with a size of 2048x2048x1949 voxels (voxel size 2.96 μm)
was reconstructed using a phase retrieval algorithm [35].
Digital visualization was achieved using ZIBAmira
(https://amira.zib.de/). Synchrotron x-ray tomography
techniques are known to run the risk of darkening the
amber matrix surrounding the specimen, however no
noticeable darkening was observed using the parame-
ters listed above.

Results

Systematic palaeontology

Suborder IXODIDA Leach, 1815
Family IXODIDAE Leach, 1815
Genus Ixodes Latreille, 1795
Ixodes (Partipalpiger) succineus Weidner, 1964

Material

Geowissenschaftliche Sammlung Universität Bremen
(GSUB) I21, holotype (Figs. 1 and 2).

Horizon and locality

Baltic amber, probably from the Kaliningrad region,
Eocene (Lutetian).

Emended diagnosis

Extinct member of the subgenus Partipalpiger Hoogstraal,
Clifford, Saito & Keirans, 1973, which can be distinguished
from the single living species by a 3/3 dental formula on al-
most the entire hypostome (2/2 in Ixodes ovatus Neumann,
1899) and a moderately long posteromedian spur on coxae
I (short in Ixodes ovatus).

Fig. 2 Tomographic renderings of Ixodes (P.) succineus. Numerous
characters of taxonomic significance are now clearly revealed.
a Oblique view. b Dorsal view. c Ventral view. d Details of gnathosoma.
e Details of coxal region. Scale bar (for b and c) 1.0 mm
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Description

Female tick. Idiosoma (Figs. 2 and 3): suboval, widest at
level of coxae IV; length from scapular apices to poster-
ior body margin 0.86 mm, breadth 0.56 mm, 1.54 times
as long as broad. Scutum (Fig. 2b): Elongate, outline
broadly rounded, length 0.64 mm, width 0.47 mm, 1.36
times as long as broad. Lateral carinae distinct, divergent,
not reaching posterior margin; cervical grooves indistinct,
shallow. Genital aperture medial to posterior margin of
coxae IV; genital apron lacking. Genital groove well-
developed. Anal groove circular with open posterior
margin. Spiracular plates (Fig. 2b): sub-circular; diam-
eter in anteroposterior plane slightly greater than that
in dorsoventral plane; length 0.10 mm, width 0.09 mm,
1.11 times as long as broad.
Gnathosoma (Fig. 2d): length from palpal apices to

cornual apices dorsally 0.34 mm, width at apices of lateral
projections 0.23 mm, 1.48 times as long as broad. Basis
capituli (Fig. 2b): dorsally subtriangular; posterior margin
nearly straight; cornua small. Basis capituli ventrally

pentagonal; with posterior margin convex; auriculae ab-
sent. Palpi (Fig. 2d): elongate, narrow; length (I–III seg-
ments) 0.26 mm, width 0.08 mm, 3.25 times as long as
broad, length of segments in descending order: 2, 3, 1,
4; segment I well developed without spurs; segment II
narrow proximally and gradually widening to mid-length
and nearly parallel sided from mid-length to distal end;
segment III laterally straight and medially converging to
bluntly rounded apex. Hypostome (Fig. 2d): tapering with
sharply pointed apex; arising from a medial anterior exten-
sion of basis; length 0.17 mm, width 0.05 mm, 3.4 times as
long as broad; widest nearly at midlength; dental formula
3/3 throughout hypostomal length; denticles sharply
pointed.
Legs: moderately long, slender. Coxae (Fig. 2e): coxae I

with moderately long triangular posteromedian spur with
sharply pointed apex, posterolateral spur lacking; coxae II
without spurs; coxae III and IV with short triangular spur
with blunt apex; coxae I–II with syncoxae; syncoxae on
coxae II large, occupying posterior half of coxae. Tarsi

Fig. 3 Interpretative drawing of Ixodes (P.) succineus in ventral view, highlighting taxonomically significant characters (see text for details).
Scale bar 0.5 mm
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(Fig. 2a): tarsi I–IV not humped at distal end; tarsus I
length 0.22 mm; tarsus IV length 0.19 mm. Male, nymph
and larva unknown.

Remarks

GSUB I21 can be confirmed here both as a female fossil
tick, and as the oldest unequivocal record of Ixodes.
Based on the presence of syncoxae on coxae I and II
(Figs. 2 and 3), the female of I. succineus most closely re-
sembles members of the subgenera Afrixodes Morel,
1966, Exopalpiger Schulze, 1935 (including Endopalpiger

Schulze, 1935), Ixodes s. str. and Partipalpiger. Species
belonging to the Afrixodes subgenus – mostly distributed
in the Afrotropical region and with a few species present
in the Oriental region – have syncoxae present on coxae
I–III and a genital apron. By contrast, the female of I. suc-
cineus has no syncoxae on coxae III and we were unable
to find any trace of a genital apron. Most species of the
subgenus Exopalpiger, mostly distributed in Australasian
and Neotropical regions with a few species present in the
Palaearctic and Afrotropics, also have coxae III and IV
with syncoxae, no spurs on any coxae and palpal segment
I with large projections. The female of I. succineus has
syncoxae only on coxae I and II, a well-developed postero-
median spur on coxae I and posterolateral spurs on coxae
III and IV, and a palpal segment I without large projec-
tions (Figs. 2 and 3).
Females of a number of species of the subgenus Ixodes

s. str. also have syncoxae on coxae I and II only. These
species can be found in the Palearctic, Oriental, Nearctic
and Neotropical zoogeographic regions and probably do
not form a natural group (see Discussion). We examined
all valid species of Ixodes s. str. and were unable to find
a modern species with a combination of characters exactly
matching those in the amber fossil. In Ixodes s. str. species
the syncoxae are considerably narrower and many of them
have a posterolateral spur present on coxae II and/or lar-
ger and longer auriculae. By contrast, the female of I. suc-
cineus has very broad syncoxae on coxae II, no spurs on
coxae II and very short and blunt auriculae (Figs. 2 and 3).
It is the subgenus Partipalpiger – containing only Ixodes

ovatus and distributed in the Palaearctic and Oriental re-
gions from the Himalayas to Japan – which expresses a
morphology most similar to the fossil in amber. Females
of I. ovatus also have syncoxae only on coxae I and II and
the syncoxae on coxae II are broad, occupying the poster-
ior half of the coxae. Both the fossil and the extant species
have very short, blunt auriculae with their apices oriented
laterally. Nevertheless females of Ixodes ovatus can be eas-
ily distinguished from that of I. succineus by a 2/2 dental
formula on almost the entire hypostome, as opposed to 3/
3 in I. succineus, and a short posteromedian spur on coxae
I, which is moderately long in I. succineus (Figs. 2 and 3).

Discussion
Affinities

Weidner’s original suggestion [17] that Ixodes succineus

is closest to Ixodes ricinus could not be confirmed. It
seems unlikely that this common, Recent, European spe-
cies is derived directly from the lineage containing the
Baltic amber inclusion. We see no obvious morphological
continuum from the fossil to the Ixodes species which in-
habits the Baltic region today. The evolutionary origins of
the modern sheep tick must be sought elsewhere, and in
any case these ectoparasites must surely have immigrated
into north–central Europe after the last glaciation. Among
recent molecular phylogenies of Ixodes [26, 36–38] it is
worth noting the proposal that the genus is not monophy-
letic [26], and that ixodid ticks in general originated either
in Africa or Australia. Our data confirms that Ixodes had
reached Europe by at least 49 Ma. Furthermore, Xu et al.
[38] challenged the monophyly of the Ixodes ricinus

species complex and suggested that these ticks under-
went – at some stage – a rapid radiation. Perhaps this
was associated with the availability of their mammalian
hosts. Further studies are undoubtedly needed to unravel
the history of the modern European Ixodes tick fauna, and
fossils could be integral to this process. As has been ar-
gued for insects [39], resolving phylogenies associated
with rapid radiations in deep time can be problematic.
Amber fossils like Ixodes succineus can take on increased
importance for deciphering the phylogeny of rapidly-
radiating groups, as they can reflect extinct lineages
which sample different portions of the original radiation.
Our microtomography results suggest instead that Ixodes

succineus from Baltic amber is most closely related to a
modern Asian species, Ixodes ovatus, and can potentially be
assigned to the same subgenus, Partipalpiger. This in itself
is interesting and suggests that around 50 million years ago
the Partipalpiger lineage (or at least closely-related forms)
was more widespread across the northern hemisphere but
became, at some stage, extinct in Europe. Partipalpiger has
been resolved as the sister group of the subgenus Ixodes
(s. str.) [37] and if this is correct the latter subgenus
must also date back at least ca. 50 Ma. We may note
here the proposal of Filippova [40] that Ixodes (s. str.)
dates back to the Palaeogene, with an ecological niche in
mesophilic and moderately hydrophilic Cenozoic forests.
An open question is whether the loss of lineages, i.e., Par-
tipalpiger, from the Eocene of northern Europe also oc-
curred tens of millions of years ago, or perhaps as recently
as the Pliocene–Quaternary Ice Ages which began about
ca. 2.6 Ma. Baltic amber is thought to have concurred with
a warm period – the Paleocene–Eocene Thermal Max-
imum and Early Eocene Climatic Optimum – and is
known to host a range of taxa now restricted to other bio-
geographical areas. Larsson [41] reviewed Baltic amber
fossils belonging to lineages which survive today either in
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southern Africa or in Asia. We propose that Ixodes succi-
neus can be added to the latter group. Another example
among parasitiform mites would be the opilioacarid genus
Paracarus which has been recorded from Baltic amber
[42], but is found today only in Kazakhstan.

Correlations with pathogen origins?

In a wider context, Poinar [43] reviewed a number of in-
sects in amber – particularly mosquitos, sand flies and
assassin bugs – which today carry medically significant
pathogens, and in which these exceptionally preserved
inclusions even retained direct evidence for the protozoans
responsible for infection. In a similar vein, Poinar [44]
claimed to have observed rickettsial-like bacteria in one of
the Burmese amber ticks, implying a minimum age of
ca. 99 million years for this host–bacterial association.
Whether these structures are genuine internal features
or, e.g., an artefact of a reticulate surface ornament
under particular conditions of illumination needs to be
checked against the original material. This was, unfor-
tunately, not available for loan. Potential pathogens
cannot be resolved in our Baltic amber tick, but like a
number of Ixodes species, its closest living relative I.

ovatus is medically significant. For a detailed account of
its biology see Hoogstraal et al. [45]. Ixodes ovatus has
been recorded as a vector for the Borellia spirochetes
responsible for Lyme borreliosis (LB) [46], for the Ba-

besia protozoans responsible for babesiosis [47, 48], the
bacteria responsible for anaplasmosis, ehrlichiosis and
rikettsia-related infections [49, 50], and for the tick-borne
encephalitis virus (TBEV) [51].
It is thus interesting to speculate whether the closely-

related amber species was also a significant (mammalian)
disease vector? Mammals, of course, underwent an adap-
tive radiation in the aftermath of the end-Cretaceous mass
extinction. De la Fuente et al. [52] reviewed the role of
(living) ticks as vectors, and our present revision of Ixodes
(P.) succineus places a potential host in the Eocene of
Europe. It may be instructive to compare this date to
estimates of origination for the protozoa, bacteria or vi-
ruses which are intimately associated either with Ixodes,

or with hard ticks in general. For example, Florin-
Christensen & Schnittiger [31] discussed the evolution-
ary history of piroplasmids (including Babesia) and ticks.
Molecular clock data suggests that piroplasmids in general
originated ca. 57 Ma – i.e., just prior to the age of our
fossil – but that the radiation into subgroups, including
the babesids, is somewhat younger: ca. 25 Ma. Taking
the oldest Mesozoic ticks as a starting point, these au-
thors suggested that piroplasmids presumably entered a
tick host at some point between the Cretaceous and the
Oligocene.
Lyme disease is strongly associated with Ixodes species

today, although it remains to be resolved whether the

spirochetes entered ticks only once, or on multiple occa-
sions. As reviewed by Fukunaga et al. [37] the phylogeny
of the Borellia pathogen responsible is quite concordant
with the phylogeny of the Ixodes ticks which host them:
for example I. ovatus today hosts B. japonica. When the
ticks, and their pathogens, radiated is another question.
Margos et al. [53] noted that a molecular clock for the
evolution of the housekeeping genes of the causative
agent in humans, B. burgdorferi – which is strongly as-
sociated with the I. ricinus complex – has not yet been
established. Nevertheless, these authors suggested that its
origins were in Europe and that various lineages of this
pathogen may have separated a few (unspecified) millions
of years ago. The TBEV virus may also be a fairly recent
acquisition. It has been hypothesised that these flaviviruses
crossed over from argasid ticks on seabirds into ixodid
ticks in modern Eurasian forests, or that its emergence
may be associated with climate change at the end of the
last glaciation [54].
Further data is available for bacterial infections [55, 56]

and both studies inferred a Jurassic–Cretaceous split
into Rickettsia bacteria associated with protozoans and
a lineage more typical for hematophagous arthropods.
This would be consistent with Poinar’s Burmese amber
tick record (ca. 99 Ma) and his putative Rickettsia-like
inclusions. Interestingly, both these Rickettsia molecular
studies also reported a rapid radiation of this bacterial
genus among blood-feeding taxa going back to ca. 50–
65 Ma; more or less contemporary with the Baltic
amber fossil but also, of course, with a radiation of possible
mammalian hosts. Similarly, two medically significant strains
of Anaplasma (A. marginale and A. phagocytophilum) were
dated [57] as having split ca. 43–78 Ma.

Conclusions

We cannot prove that Ixodes succineus carried bacteria,
or other pathogens, but our study does confirm that at
least one anatomically modern species of Ixodes was
already present during the Eocene. It is closely related to a
modern disease vector and can be placed in the same sub-
genus (Partipalpiger) as the Asian tick Ixodes ovatus. Thus
the amber fossil may have acted as a vector too. Molecular
estimates of origination dates suggest that at least piro-
plasmids and the Rickettsia and Anaplasma bacteria
should have been present around 50 million years ago as
well. This begs a further question whether evolution and
radiation events among the pathogens are more closely
tied to the ticks – as one of their carriers – or to the
mammals as their principal hosts and reservoirs.

Additional file

Additional file 1: Ixodes succineus Weidner, 1964. (MP4 137020 kb)
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