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We report the discovery of a discrete hierarchy of microtransitions occurring in models of continuous
and discontinuous percolation. The precursory microtransitions allow us to target almost deterministically
the location of the transition point to global connectivity. This extends to the class of intrinsically stochastic
processes the possibility to use warning signals anticipating phase transitions in complex systems.
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Introduction.—Percolation is a pervasive concept [1],
which has applications in a wide variety of natural,
technological, and social systems [2–7], ranging from
conductivity of composite materials [8,9] and polymer-
izations [10] to epidemic spreading [11–13] and informa-
tion diffusion [14,15]. Across all percolation systems, once
the density of links in the networked system exceeds a
critical threshold the system undergoes a sudden usually
unanticipated transition to global connectivity.
The prediction of tipping points and warning signals that

precede a sudden transition have been a subject of high
interest in many disciplines. Generalized models, based on
deterministic bifurcation dynamics, have been used to
predict phase transitions triggered by small fluctuations
[16–20]. Here we report on a fundamental property of
percolating systems which, in contrast, are dominated by
(nondeterministic) large-scale disorder.
Discrete scale invariance (DSI) arises when the

scale invariance of an observable OðxÞ ∼ xα obeying
OðλxÞ=OðxÞ ¼ λα, is broken such that the scaling relation
does not hold for all λ anymore but only for a countable set
λ1; λ2;… with a fixed λ being the fundamental scaling ratio
of the system and λn ¼ λn [21,22]. Here, we unravel both
genuine DSI and a generalized form of DSI in percolation,
where in the latter the scaling ratio from the exponential
is replaced by a scaling law. Analyzing individual events
allows us to link these concepts.
Perhaps most importantly, we show that the emergence

of global connectivity is announced by microscopic tran-
sitions of the largest component, the order parameter, well
in advance of the phase transition. We exemplify this for
the generalized Bohman-Frieze-Wormald (BFW) model of
genuinely discontinuous percolation [23,24], classic con-
tinuous percolation [1], and globally competitive percola-
tion [25]. This suggests the universality of our findings.
Discontinuous percolation.—The generalized BFW

model is tailored to investigate discontinuous percolation

transitions resulting from suppressing the growth of the
largest component [23], as characteristic of explosive
percolation. The process is initialized with N isolated
nodes and a cap set to k ¼ 2 specifying the maximally
allowed cluster size (a cluster is a set of linked nodes).
Links are sampled one at a time, uniformly at random from
the complete network. If a link would lead to the formation
of a component of size less than or equal to k it is accepted.
Otherwise, the link is rejected provided that the fraction of
accepted links is greater than or equal to a function
gðkÞ ¼ αþ ð2kÞ−1=2, where α is a tunable parameter.
Once rejecting a link would lead to the fraction of accepted
edges dropping below gðkÞ, then k → kþ 1 and the link is
reexamined. This continues until either k has increased
sufficiently that the link can be accepted, or gðkÞ becomes
sufficiently small that the link can be rejected. (see
Supplemental Material [26] for more details.) Tuning the
control parameter α allows for controlling the type and
position of the phase transition, as well as the number of
giant components that abruptly emerge [23,32]. Figure 1
shows the typical evolution of the relative size of the largest
component C1=N as a function of the link density p (i.e.,
number of links per node) for α ¼ 0.1, 0.3, 0.6.
The exact size of the largest component for a given link

density may depend on the realization. However, in tradi-
tional percolation in the thermodynamic limit the order
parameter, C1=N, is believed to be globally continuous
and thus not fluctuating—except at the phase transition
points [1,34–36]. In contrast, we next demonstrate that
the BFW model exhibits peaks in the relative variance Rv,
well before the phase transition, which importantly do not
disappear in the thermodynamic limit, and moreover,
announce the phase transition. The relative variance of
an order parameter O, such as the total magnetization
O ¼ M, or the relative size of the largest component
O ¼ C1=N, is defined as
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Rv ¼
hO − hOii2

hOi2 ; (1)

where h� � �i denotes ensemble averaging.
Microtransition cascades to percolation.—Figure 2(a)

shows sharp peaks in Rv well in advance of pc for the
BFW model with α ¼ 0.6 (figures for α ¼ 0.1, 0.3 are
in the Supplemental Material [26]). This is unexpected as
suggested from comparing Fig. 2(a), with the Rv plot for
the Erdős-Rényi (ER) model [1] shown in the inset in
Fig. 2(b). In the BFW model we observe not only the
standard transition to global connectivity, which is a
micro-macro transition, C1∶oðNÞ→OðNÞ at p¼pc, but as
well micro-micro transitions, C1 → C1 þ 1 causing sharp
jumps well before the emergence of global connectivity
[Fig. 2(b)]. Importantly, for increasing system size, the
peaks become sharper, their positions converge to a
well-defined set, and peak heights are independent of
system size; see Fig. 2 and the Supplemental Material,
Figs. S1–S5 [26].
We calculate the height of the Rv peaks, for jumps

C1 → C1 þ 1, where the ith jump corresponds to C1

increasing from i → iþ 1 at link density pi. (The jump
1 → 2 occurs always when the first link is added; thus, no
peak ofRv is observed then.)We estimate themaximumofRv
for the ith jump by assuming that for a fraction qi of the
realizationsC1 → C1 þ 1,whileC1 fora fraction1 − qi of the
realizations has not increased. Hence, from Eq. (1) we obtain

RvðpiÞ ¼
qið1 − qiÞ
ðiþ qiÞ2

with qi ¼
i

2iþ 1
; (2)

where the qi’s satisfy ð∂Rv=∂qiÞ ¼ 0. From Eq. (2), we
find q4 ¼ 4=9 q5 ¼ 5=11, and q6 ¼ 6=13, and that

Rvðp4Þ ≈ 0.0125, Rvðp5Þ ≈ 0.0083, Rvðp6Þ ≈ 0.0060 for
the oðNÞ transitions 4 → 5, 5 → 6, and 6 → 7, respectively.
These predictions are well supported by numerics; see the
Supplemental Material [26].
Analyzing additional peaks as shown in Fig. 3(a)

suggests a scaling law of the relative peak positions

piþ1 − pi

pi
≈ log

�
piþ1

pi

�
¼ Ai−b; i ≫ 1; (3)

with b close to 2, slightly depending on α, for some A > 0.
We infer p∞ from Eq. (3) (see the Supplemental

Material [26] for details) and find that p∞ ¼ pc ¼ 0.940,
0.998, 0.999 for α ¼ 0.6, 0.3, 0.1 respectively, which agree
exactly with the values of pc obtained from direct simulation
of the BFW model. (See the Supplemental Material [26]
for p∞ values obtained for additional α values.) In fact, the
inset of Fig. 3(a) shows that pc − pi < 0.01 when i > 600
for α ¼ 0.1, 0.3, 0.6. Thus we find here that the positions
of the microtransitions announce the phase transition.
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FIG. 2 (color online). Microtransition cascade to percolation in
the BFW model. (a) Relative variance Rv versus link density p
showing sharp microtransitions before pc. Peaks after pc result
from unstable giant components, discussed elsewhere [33].
(b) The typical evolution (and collapse) of C1 versus p, showing
jumps when C1 → C1 þ 1. Inset of (b): Rv versus p for
continuous ER percolation, shown for three different system
sizes. This reveals a spectrum of microresonances before
pc ¼ 1=2, that, in contrast to the BFW model, disappears as
N → ∞. All data shown are the average over 1000 realizations.
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FIG. 1 (color online). Discontinuous BFW percolation. A
typical realization of the relative size of the largest component
C1=N as a function of link density p for the BFW model with
α ¼ 0.1, 0.3, 0.6, and for the continuous ER model. Inset:
Discontinuous global competition model. System size N ¼ 106.
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Discrete scale invariance in percolation.—Next we
show that a percolation model with global competition
for link addition exhibits a discrete scale invariance that
underlies the observed cascade to percolation.
Start with N isolated nodes. At each step connect the

two smallest clusters in the system (if there are multiple
choices, throw a fair dice to choose among the equivalent
cluster pairs) [25,37]. In this model all possible links
compete for addition. Thus it is the limiting case
m → ∞ of the original explosive percolation models from
Ref. [38], where at each step a fixed number of m links
compete for addition [25,37]. The global competition
suppresses transitions different from doubling transitions
C1 → 2C1 resulting in pc ¼ 1. For N ≫ 1 fixed, these
occur at pn ¼ ð2n − 1Þ=2n, n integer [25], and hence

pn ¼ pc − 2−n; n ≥ 0: (4)

As a result, the doubling transitions announce the perco-
lation transition as pn → pc for n → ∞. This is a signature
of discrete scale invariance (DSI) [21,39] as we can rewrite
Eq. (4) to

pc − pnþ1

pc − pn
¼ 1=λ; C1ðpnþ1Þ ¼ λC1ðpnÞ; (5)

with the discrete scaling factor λ ¼ 2.
The DSI can be broken when the system stochastically

deviates from the strict size doubling rule, as generically
given in percolation and other disordered systems [22].
We thus consider jumps from any size C1 ≤ i to precisely
C1 ¼ iþ 1. The index transformation i ¼ 2nþ1 − 1 for-
mally breaks the genuine DSI and suggests, using Eq. (4),
the transition positions pi ¼ 1 − 2=ðiþ 1Þ.
The relative positions of the transitions then read

piþ1 − pi

pi
∼ i−b; for i ≫ 1; (6)

with b ¼ 2, which agrees well with the scaling law
Eq. (3). It is easy to see that any transformation of type
n → α logðβiþ γÞ, with constants α, β > 0 and any γ gives
the same qualitative result.
Relation to cutoff critical exponent.—Next we demon-

strate that microtransitions also announce the phase
transition well in advance for continuous percolation. In
continuous percolation as p → pc, from below (p < pc),
the emergence of the giant cluster is characterized by

C1 ∼ ðpc − pÞ−1
σ; (7)

where σ is the cutoff critical exponent that, given strong
disorder, is related to the correlation exponent ν and the
fractal dimension df via σ ¼ ð1=νdfÞ [1,27].
We estimate the positions of the microtransitions at pi

from Eq. (7) for C1 ¼ iþ 1 and p ¼ pi. Solving for pi
gives

pi ¼ pc − Aðiþ 1Þ−σ; (8)

with some prefactor A > 0. From Eq. (8) we find

piþ1 − pi

pi
≈
A½ðiþ 1Þ−σ − ðiþ 2Þ−σ�

pc
∼ i−ð1þσÞ

for i ≫ 1:

(9)

This equation predicts for any phase transition character-
ized by the exponent σ a cascade defined by Eqs. (6) and (9)
with exponent b ¼ 1þ σ.
Above the percolation upper critical dimension, and thus

for ER percolation, the set of critical percolation exponents
are known, σ ¼ ν ¼ 1=2, df ¼ 4 [1]. For ER percolation,
Eq. (8) is well supported by numerics; see Fig. 4. Further,
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FIG. 3 (color online). Scaling laws and convergence to pc for
the BFW model. (a) The positions pi of the microtransitions are
well fitted by Eq. (3) for α ¼ 0.1, 0.3, 0.6. Note that we display a
log-log plot suggesting logðpiþ1=piÞ ¼ Ai−b. Inset of (a): Evi-
dence forpi → pc forα ¼ 0.1, 0.3, 0.6 andN ¼ 107. (b) Exponent
σ defined in Eq. (8) for α ¼ 0.1, 0.3, 0.6 and N ¼ 107.
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numerics for 2D site percolation, where σ ¼ ð1=νdfÞ ¼
1=ð4=3 × 91=48Þ ≈ 0.396 is known from theory [1], well
supports our prediction (see inset in Fig. 4).
Specifically, we define pi as the position of the micro-

transition of the type C1∶x → iþ 1ðx ≤ iÞ. Since for a
given realization a jump of this type and thus pi may not
exist, to obtain hpii in Fig. 4, we average for each i over all
realizations where C1∶x → iþ 1ðx ≤ iÞ do occur and pi is
well defined,

hpii≔harg∃ði;x≤iÞfC1ðpÞ∶x → iþ 1gi: (10)

In contrast, for fixedN, most pronounced close to the origin
at p ¼ 0, microtransitions localize but ensemble averaging
“blurs out" peaks in Rv for larger values of p (see Figs. S7
and S8 in the Supplemental Material [26]).
For the BFW model we find the exponent σ, slightly

depending on α, close to unity; see Fig. 3(b). This result is
in agreement with Eq. (6), predicting b ≈ 2, and with the
numerics shown in Fig. 3(a).
For the globally competitive percolation model we

calculate for p < pc [25,40,41]

C1¼
N

N−L
¼ 1

1−p
¼ðpc−pÞ−1

σ; p¼L=N; (11)

with σ ¼ 1, which is an exact result.
Further, from Eq. (7) we calculate the relative positions

for transitions of type C1 → nC1, for n > 1 fixed,

pc−pni

pc−pi
→ n−σ ¼ n1−b¼ ∶1=λðnÞ; for i→∞: (12)

Equation (12) describes a family of microtransition scaling
relations parametrized by n.
We can also turn Eq. (12) around for predicting pc. For

the ER model we find for n ¼ 2, λð2Þ ¼ 2σ ¼ ffiffiffi
2

p
and

pc ¼ lim
i→∞

λð2Þp2i − pi

λð2Þ − 1
: (13)

Numerical evaluation of Eq. (13) suggests pc ¼ 0.4996 for
i ¼ 128, which is close to the exact value pc ¼ 0.5 [1].
Conclusion.—We have established the appearance of

well-defined peaks in the subcritical regime for standard
processes of continuous and discontinuous percolation.
The cause of those resonances in the relative fluctuation
function are microtransitions of type oðNÞ → oðNÞ that
generically announce the percolation phase transition well
in advance of pc. Therefore, genuine peaks in the relative
variance do not necessarily indicate a phase transition
point, as it is commonly exploited for characterization of
the phase transition point in classical and quantum critical
systems [27]. We have discovered an overlooked phenome-
non, microtransition cascades in percolation, which as
shown here can result from a (generalized) discrete scale
invariance of the order parameter at and before criticality.
Globally competitive percolation displays genuine dis-

crete scale invariance where the positions of the micro-
transitions are characterized by powers of the single
fundamental scaling factor λ ¼ 2. This results from a single
route of doubling transitions of the order parameter, for
large finite systems.
In contrast,we have demonstrated that systemswith strong

disorder display multiple microtransition cascades to perco-
lation that are not characterized by a single scaling factor
but by a set of scaling relations, exemplified for percolation.
The simplest subset of these scaling relations describes
transitions C1 → nC1, n ≥ 2 integer, which occur at local-
ized positions, for large finite systems. We call this pheno-
menon generalized discrete scale invariance in percolation.
We have established a novel type of finite size scaling

laws which crucially characterize percolation. As our
arguments are independent of the percolation process
and the system size, for any N < ∞ there necessarily exist
cascades to percolation imprinted both in the order param-
eter and its relative variance. Exemplified for a well-studied
discontinuous percolation process, we have shown that
these cascades can even survive the thermodynamic limit.
Continuous percolation exhibits a continuous power law

divergence at pc that does not show any localized peaks in
the relative variance in the thermodynamic limit. In contrast,
for fixed N, microtransitions do localize albeit ensemble
averaging blurs out peaks in Rv. Ensemble averaging in
accordwith Eq. (10), however, robustly unravels the discrete
hierarchy and thus overcomes the effect of blurring.
We find DSI and its (exponential or power law) scaling

laws from a nontrivial exponentiation (C1 → λC1 at
pi → piþ1) of a discrete translational invariance resulting
from the discreteness of the network, or lattice [21].
Hence, a percolation phase transition can be anticipated

by inferring information from ensemble averaged micro-
scopic state changes of the order parameter well in advance

FIG. 4 (color online). Scaling relations for continuous perco-
lation. Numerical evidence for the prediction ½ðpc − piÞ=ðpc −
pi−1Þ� ∼ ½i=ðiþ 1Þ�σ from Eq. (8), for the ER model (σ ¼ 1=2,
N ¼ 225, 30 000 realizations) and 2D lattice (σ ¼ 36=91,
N ¼ 1024 × 1024, 30 000 realizations).
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of the transition point. Thus we are able to extend the
possibility of early warning signals to classes of stochastic
dynamics. Future work must establish if these findings will
open new avenues for the prediction of phase transitions
unrelated to percolation.
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