
Citation: Zamisa, S.J.; Omondi, B.

Microwave Assisted Synthesis,

Crystal Structure and Hirshfeld

Surface Analysis of Some

2-Formimidate-3-carbonitrile

Derivatives Bearing 4H-Pyran and

Dihydropyridine Moieties. Molbank

2022, 2022, M1364. https://

doi.org/10.3390/M1364

Academic Editor: Kristof Van Hecke

Received: 17 March 2022

Accepted: 4 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molbank

Communication

Microwave Assisted Synthesis, Crystal Structure and Hirshfeld
Surface Analysis of Some 2-Formimidate-3-carbonitrile
Derivatives Bearing 4H-Pyran and Dihydropyridine Moieties
Sizwe J. Zamisa * and Bernard Omondi

School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
owaga@ukzn.ac.za
* Correspondence: zamisas@ukzn.ac.za

Abstract: Two 4H-pyran- and four dihydropyridine-based 2-formimidate-3-carbonitrile derivatives
were synthesized via the conventional solvothermal and microwave radiation methods. The use of
the latter technique led to the formation of the desired products in the order of minutes as compared
to the former. The formation of the 2-formimidate-3-carbonitrile derivatives was confirmed using
spectroscopic techniques whilst the molecular geometry and intermolecular interactions were investi-
gated using single-crystal X-ray diffraction. The formimidate functional group was found to adopt
an E configuration in all compounds and this coincides with those of closely related compounds on
the Cambridge Structural Database (CSD). Classical but weak intermolecular C—H. . . O, C—H. . . N
and C—H. . .π hydrogen bonds were observed in the crystal lattice. According to the Hirshfeld
surface analysis, the C—H. . .π hydrogen bonds contributed the most towards the Hirshfeld surface
(14.3–23.9%) than the other two hydrogen bonding types (9.6–12.7%).

Keywords: intermolecular contacts; triethylorthoformate; 2-amino-3-carbonitrile derivatives

1. Introduction

Compounds that contain 2-formimidate-3-carbonitrile moieties have gained attention
in the synthesis of biologically active heterocycles, i.e., fused pyrimidines. The medicinal
potency and function of fused pyrimidines can be tweaked by varying the nature of the
ring that is adjoined to the pyrimidine [1]. For instance, 4H-pyran-fused pyrimidines
have recently been used as potential antimicrobial [2–4], antiproliferative [5] and anti-
cancer [6] agents whilst dihydropyridine-fused pyrimidines exhibit antidiabetic [7] and
antioxidant [8] properties, amongst others. Although fused pyrimidines can be synthesized
using precursors containing 2-formimidate-3-carbonitrile moieties, it is worth mentioning
that they can also be formed using compounds bearing 2-formamidine-3-carbonitrile [2].
Using the former and latter precursors leads to the formation of ethanol [9] and dimethy-
lamine [10] as by-products, respectively. Since ethanol is more environmentally friendly
than dimethylamine, the use of 2-formimidate-3-carbonitrile precursors is ideal.

The conventional method of synthesizing 2-formimidate-3-carbonitrile derivatives
involves a solvothermal reaction of the corresponding 2-amino-carbonitrile precursor and
triethyl orthoformate in the presence of a suitable catalyst. Though the desired product is
often isolated in good yields, the reaction times are often in the order of hours [11–23]. Thus,
there is a need to explore other synthetic protocols that can significantly reduce the reaction
times without compromising the reaction yields. Since these compounds are intermediates
in the synthetic route of fused pyrimidines, there are very few structure-related reports
on them.

In this work, we report the microwave-assisted synthesis of some novel 4H-pyran-
and dihydropyridine-bearing 2-formimidate-3-carbonitrile derivatives. We hypothesize
that using microwave radiation will lead to shorter reaction times whilst maintaining or
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improving the reaction yields. We also investigated their preferred molecular geometry
and the intermolecular interactions in the solid-state using single-crystal X-ray diffraction.
The intermolecular interactions were further studied using Hirshfeld surface analysis.

2. Materials and Methods

All chemicals used in the syntheses of target molecules were of reagent grade purchased
from commercial sources. These included: 2-fluorobenzaldehyde, 9-anthracenecarboxaldehyde,
benzaldehyde, malonitrile, dimedone, ethanol, methanol, triethyl orthoformate, acetic acid,
4-bromoaniline, 4-methylaniline, and aniline. DMSO-d6 was used as a solvent in solution NMR
studies. 1H- and 13C-NMR spectra were recorded on a BRUKER 400 MHz (Karlsruh, German)
spectrometer at room temperature and were referenced internally using the chosen deuterated
solvent (see Supplementary Materials Figures S1–S12). Infrared spectra were recorded using
a PerkinElmer (Waltham, MA, USA) spectrum 100 FT-IR spectrometer, and the data are
reported as percentage transmittances from 4000 cm−1 to 400 cm−1 (see Supplementary
Materials Figures S13–S17). Microwave reactions were carried out using a CEM Discover
system. All reactions were performed in 30 mL pressurized vials fitted with “snap-on” caps.
The 2-amino-4-(aryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (i-a
and i-b) and 2-amino-1-phenyl-7,7-dimethyl-5-oxo-4-(aryl)-1,4,5,6,7,8-hexahydroquinoline-
3-carbonitrile (i-c to i-f) precursors were synthesized using a modified procedure from
the literature [24]. A Thermo-Scientific Flash 2000 was used to determine the elemental
composition, and the melting-point determination was carried out using the Stuart Scientific
SMP3 (Staffordshire, United Kingdom) melting-point apparatus.

2.1. General Procedure for the Conventional Solvothermal Synthesis of
2-Formimidate-3-carbonitrile Derivatives (ii-a to ii-f)

Triethyl orthoformate (20 mL), acetic acid (1 mL) and the corresponding 2-amino-3-
carbonitrile precursor (2 mmol) were added to a 50 mL round bottom flask. The mixture
was refluxed, and the reaction was monitored using TLC. Initially, the mixture had a very
pale yellow colour, which gradually turned to dark red over the course of eight hours.
The mixture was then left open overnight in the fume hood to allow evaporation of the
excess triethyl orthoformate. The pure product was obtained by hot recrystallization using
ethanol, filtered and dried under vacuum.

2.2. General Procedure for the Microwave Synthesis of 2-Formimidate-3-carbonitrile Derivatives
(ii-a to ii-f)

Triethyl orthoformate (20 mL), acetic acid (1 mL) and the corresponding 2-amino-
3-carbonitrile precursor (2 mmol) were added to a sealed 30 mL pressurized vial. The
mixture was irradiated at 120 W in a single-mode microwave synthesis system. The reaction
temperature was set at 150 ◦C for a duration of 20 min. The color of the mixture changed
from colorless to dark red, signifying the completion of the reaction (confirmed via TLC).
The mixture was then left open overnight in the fume hood to allow evaporation of the
excess triethyl orthoformate. The pure product was obtained by hot recrystallization using
ethanol, filtered and dried under vacuum.

2.2.1. Ethyl (E)-N-(3-Cyano-4-(2-fluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-
chromen-2-yl)formimidate (ii-a)

Compound i-a was used as the 2-amino-3-carbonitrile precursor. Pale brown solid,
yield (conventional solvothermal reaction) = 0.630 g (85%), yield (using microwave-assisted
reaction) = 0.648 g (88%); m.p: 205–207 ◦C; IR (selected νmax, cm−1): 2946 (C—H), 2213
(C≡N), 1612 (C=O); 1H-NMR δ(ppm): 0.99 (s, 3H, CH3), 1.06 (s, 3H, CH3), 1.28–1.32
(t, 3H, 3J = 7.1 Hz, CH3 formimidate), 2.12–2.16 (d, 1H, 2J = 16,2 Hz), 2.26–2.30 (d, 1H,
2J = 16.2 Hz), 2.53–2.58 (d, 1H, 2J = 17.9 Hz and 2J = 17.8 Hz), 4.28-4.34 (m, 2H, CH2
formimidate), 4.70 (s,1H, Hmethine), 7.15–7.19 (m, 2H, Haromatic), 7.26–7.33 (m, 2H, Haromatic),
8.56 (s, 1H, N=C(Hformimidate)—O); 13C-NMR δ (ppm): 14.3, 27.2, 28.8, 31.7, 32.4, 50.4, 64.6,
81.3, 110.9, 115.9, 116.1, 117.5, 125.1, 125.2, 129.7, 129.9, 130.6, 156.9, 159.2, 161.7, 162.5, 164.0,
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196.1; Anal. Calcd. (%) for [C21H21FN2O3]: C, 68.47; H, 5.75; N, 7.60; O, 13.03; found (%): C,
68.23; H, 5.73; N, 7.57; O, 12.98.

2.2.2. Ethyl (E)-N-(4-(Anthracen-9-yl)-3-cyano-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-
chromen-2-yl)formimidate (ii-b)

Compound i-b was used as the 2-amino-3-carbonitrile precursor. Yellow solid, yield
(using microwave-assisted reaction) = 0.802 g (89%), yield (using microwave-assisted
reaction) = 0.838 g (93%); m.p: 192–194 ◦C; IR (selected νmax, cm−1): 2957 (C—H), 2206
(C≡N), 1604 (C=O); 1H-NMR δ(ppm): 0.83 (s, 3H, CH3), 1.05 (s, 3H, CH3), 1.26-1.30 (t, 3H,
3J = 7.1 Hz, CH3 formimidate), 1.92-1.96 (d, 1H, 2J = 16,2 Hz), 2.13-2.17 (d, 1H, 2J = 16.2 Hz),
2.60–2.70 (overlapping doublets, 2H, 2J = 18.0 Hz and 2J = 18.0 Hz), 4.26–4.34 (m, 2H, CH2
formimidate), 6.25 (s,1H, Hmethine), 7.46–7.49 (m, 2H, Haromatic), 7.54–7.62 (m, 2H, Haromatic),
8.10–8.15 (m, 3H, Haromatic), 8.59 (s, 1H, Haromatic), 8.68 (s, 1H, N=C(Hformimidate)—O),
8.70–8.72 (d, 1H, 3J = 9.0 Hz, Haromatic); 13C-NMR δ (ppm): 14.2, 27.1, 28.9, 31.6, 31.9, 50.4,
64.8, 82.8, 113.4, 117.4, 123.2, 124.8, 125.1, 125.6, 126.3, 126.9, 128.6, 129.4, 129.5, 130.4, 131.3,
132.9, 156.4, 162.4, 163.4, 196.7; Anal. Calcd. (%) for [C29H26N2O3]: C, 77.31; H, 5.82; N,
6.22; O, 10.65; found (%): C, 77.09; H, 5.80; N, 6.20; O, 10.62.

2.2.3. Ethyl (E)-N-(3-Cyano-4-(2-fluorophenyl)-7,7-dimethyl-5-oxo-1-phenyl-1,4,5,6,7,8-
hexahydroquinolin-2-yl)formimidate (ii-c)

Compound i-c was used as the 2-amino-3-carbonitrile precursor. Pale yellow solid, yield
(microwave-assisted reaction) = 0.833 g (94%), yield (microwave-assisted reaction) = 0.798 g
(90%); m.p: 197–199 ◦C; 1H-NMR δ(ppm): 0.78 (s, 3H, CH3), 0.81–0.85 (t, 3H, 3J = 6.3 Hz,
CH3 formimidate) 0.88 (s, 3H, CH3), 1.83–1.87 (d, 1H, 2J = 17,5 Hz), 1.97–2.01 (d, 1H,
2J = 16.2 Hz), 2.07 (2H, CH2 formimidate), 2.17–2.22 (overlapping doublets, 2H, 2J = 18.5 Hz
and 2J = 15.6 Hz), 4.89 (s,1H, Hmethine), 7.14–7.22 (m, 2H, Haromatic), 7.27–7.28 (m, 3H,
Haromatic), 7.39–7.52 (m, 4H, Haromatic), 7.90 (s, 1H, N=C(Hformimidate)—O); 13C-NMR δ

(ppm): 13.7, 26.6, 29.4, 31.1, 32.4, 32.9, 41.2, 49.6, 63.6, 74.2, 109.2, 115.8, 120.0, 125.2, 129.4,
129.9, 130.6, 132.2, 137.9, 152.0, 153.9, 159.1, 160.2, 161.6, 195.7; Anal. Calcd. (%) for
[C27H26FN3O2]: C, 73.12; H, 5.91; N, 9.47; O, 7.21; found (%): C, 72.83; H, 5.89; N, 9.43;
O, 7.18.

2.2.4. Ethyl (E)-N-(3-Cyano-7,7-dimethyl-5-oxo-1,4-diphenyl-1,4,5,6,7,8-
hexahydroquinolin-2-yl)formimidate (ii-d)

Compound i-d was used as the 2-amino-3-carbonitrile precursor. Pale yellow solid,
yield (conventional solvothermal reaction) = 0.774 g (91%), yield (microwave-assisted
reaction) = 0.783 g (92%), m.p: 192–194 ◦C, IR (selected νmax, cm−1): 2965 (C—H), 2195
(C≡N), 1635 (C=O); 1H-NMR δ (ppm): 0.78 (s, 3H,CH3), 0.91 (overlapping triplet and
singlet, 6H, 2CH3), 1.87–1.91 (d,1H, 2J = 17,45), 2.02–2.04 (d, 1H, 2J = 16,13), 2.17–2.21 (d,
2H, 2J = 16.60), 3.85–3.86 (q, 2H, J= 6,82), 7.35–7.38 (m, 4H, Haromatic), 7.58–7.61 (m, 4H,
Haromatic), 8.01 (s, 1H, N=C(Hformimidate)—O). 13C-NMR δ (ppm): 13.5, 26.3, 29.1, 31.5, 31.8,
36.3, 49.3, 50.2, 61.3, 64.8, 110.7, 113.8, 120.0, 127.4, 129.8, 132.5, 144.7, 149.5, 151.5, 161.3,
194. 2; Anal. Calcd. (%) for [C27H27N3O2]: C, 76.21; H, 6.40; N, 9.87; O, 7.52; found (%): C,
75.93; H, 6.38; N, 9.83; O, 7.49.

2.2.5. Ethyl (E)-N-(1-(4-Bromophenyl)-3-cyano-7,7-dimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-
hexahydroquinolin-2-yl)formimidate (ii-e)

Compound i-e was used as the 2-amino-3-carbonitrile precursor. Pale yellow solid,
yield (using microwave-assisted reaction) = 0.938 g (93%), yield (using microwave-assisted
reaction) = 0.908 g (90%); m.p:172–174 ◦C, IR (selected νmax, cm−1): 2957 (C—H), 2196
(C≡N), 1625 (C=O); 1H-NMR δ (ppm): 0.78 (s, 3H,CH3), 0.91 (overlapping triplet and
singlet, 6H, 2CH3), 1.87–1.91 (d,1H, 2J = 17,5 Hz), 2.02–2.04 (d, 1H, 2J = 16,1 Hz), 2.17–2.21
(d, 2H, 2J = 16.6 Hz), 3.85–3.86 (q, 2H, 3J = 6,8 Hz), 7.35–7.38 (m, 4H, Haromatic), 7.58–7.61
(m, 4H, Haromatic), 8.01 (s, 1H, N=C(Hformimidate)—O). 13C-NMR δ (ppm): 13.2, 26.2, 28.9,
31.2, 37.9, 38.9, 402.2, 50.1, 61.3, 64.8, 110.7, 119.5, 121.9, 126.9, 128.9, 132.3, 136.9, 145.16,
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149.9, 160.02, 194.7; Anal. Calcd. (%) for [C27H26BrN3O2]: C, 64.29; H, 5.20; N, 8.33; O, 6.34;
found (%): C, 64.08; H, 5.18; N, 8.30; O, 6.32.

2.2.6. Ethyl (E)-N-(3-Cyano-7,7-dimethyl-5-oxo-4-phenyl-1-(p-tolyl)-1,4,5,6,7,8-
hexahydroquinolin-2-yl)formimidate (ii-f)

Compound i-f was used as the 2-amino-3-carbonitrile precursor. Pale yellow solid,
yield (conventional solvothermal reaction) = 0.694 g (79%), yield (microwave-assisted
reaction) = 0.747 g (85%); m.p:163–165 ◦C, IR (selected νmax, cm−1): 2958 (C—H), 2193
(C≡N), 1631 (C=O); 1H-NMR δ(ppm): 0.78 (s, 3H,CH3), 0.91 (overlapping triplet and singlet,
6H, 2CH3), 1.87–1.91 (d, 1H, 2J = 17, 5 Hz), 1.99–2.04 (d, 1H, 2J = 16, 1 Hz), 2.05–2.03 (d, 2H,
2J = 16.6 Hz), 2,02 (s, 3H,CH3) 3.85-3.86 (q, 2H, 3J = 6,8 Hz), 7.35-7.38 (m, 4H, Haromatic),
7.58–7.61 (m, 4H, Haromatic), 7.96 (s, 1H, N=C(Hformimidate)—O). 13C-NMR δ(ppm): 13.2,
20.7, 26.3, 30.6, 31.9, 49.3, 50.1, 61.3, 79.1, 110.3, 113.9, 126.7, 127.3, 126.8, 134.9, 138.3, 145.3,
150.5, 153.2, 161.3, 194.2; Anal. Calcd. (%) for [C28H29N3O2]: C, 76.51; H, 6.65; N, 9.56; O,
7.28; found (%): C, 76.23; H, 6.62; N, 9.53; O, 7.25.

2.3. Crystal Structure Determination

Light yellow block-shaped crystals of ii-b, ii-c and ii-f that were suitable for single-
crystal X-ray diffraction were obtained via hot recrystallization using ethanol. Crystal
evaluation and data collection for ii-b, ii-c and ii-f was performed on a Bruker Smart
APEXII (Madison, WI, USA) diffractometer with a Mo Kα radiation source. Reflections
were collected at different starting angles, and the APEXII program suite was used to
index the reflections [25]. Data reduction was performed using the SAINT [26] software,
and the scaling and absorption corrections were applied using the SADABS [27] multi-
scan technique. The structures were solved by the direct method using the SHELXS [28]
program and refined using the SHELXL program [29]. Graphics of the crystal structures
were drawn using OLEX2 [30]. Non-hydrogen atoms were first refined isotropically and
then by anisotropic refinement with the full-matrix least-squares method based on F2 using
SHELXL [29]. The disordered formimidate and 2-fluorophenyl moieties in ii-b and ii-c
were modelled using PART instructions with the major components having 0.85 and 0.89
site occupancy factor, respectively. The crystallographic data and structure refinement
details are summarized in Table 1.

Table 1. Crystal data and structure refinement for ii-b, ii-c and ii-f.

Compound ii-b ii-c ii-f

Empirical formula C29H26N2O3 C27H26FN3O2 C28H29N3O2
Formula weight 450.52 443.51 439.54
Temperature/K 150 100 99.99
Crystal system Monoclinic Monoclinic Triclinic

Space group P21/n P21 P-1
a/Å 12.811(3) 9.1077(8) 9.6966(2)
b/Å 13.560(2) 24.039(2) 10.2417(2)
c/Å 14.965(3) 11.0293(10) 12.4853(2)
α/◦ 90 90 103.850(1)
β/◦ 115.110(2) 105.3140(10) 90.328(1)
γ/◦ 90 90 102.621(1)

Volume/Å3 2354.0(8) 2329.0(4) 1172.57(4)
Z 4 4 2

ρcalcg/cm3 1.271 1.265 1.245
µ/mm−1 0.083 0.086 0.079

F(000) 952.0 936.0 468.0
Crystal size/mm3 0.24 × 0.16 × 0.11 0.34 × 0.26 × 0.21 0.23 × 0.18 × 0.14

2Θ range for data collection/◦ 4.25 to 52.256 3.388 to 54.268 4.206 to 56.9
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Table 1. Cont.

Compound ii-b ii-c ii-f

Index ranges
−15 ≤ h ≤ 15
−16 ≤ k ≤ 15
−18 ≤ l ≤ 14

−11 ≤ h ≤ 10
−30 ≤ k ≤ 30
−14 ≤ l ≤ 14

−12 ≤ h ≤ 12
−13 ≤ k ≤ 13
−16 ≤ l ≤ 14

Reflections collected 17738 34566 23267

Independent reflections
4523

Rint = 0.0230
Rsigma = 0.0225

10,085
Rint = 0.0166

Rsigma = 0.0162

5772
Rint = 0.0262

Rsigma = 0.0269
Data/restraints/parameters 4523/0/328 10085/21/610 5772/0/302

Goodness-of-fit on F2 1.022 1.030 1.030

Final R indexes [I>=2σ (I)] R1 = 0.0392
wR2 = 0.0950

R1 = 0.0323
wR2 = 0.0844

R1 = 0.0432
wR2 = 0.1090

Final R indexes [all data] R1 = 0.0563
wR2 = 0.1059

R1 = 0.0346
wR2 = 0.0865

R1 = 0.0570
wR2 = 0.1171

Largest diff. peak/hole/e Å−3 0.26/−0.16 0.38/−0.18 0.36/−0.27
Flack parameter - 0.07(14) -

2.4. Hirshfeld Surface Analysis

The Hirshfeld surfaces for compounds ii-b, ii-c and ii-f, including their respective
two-dimensional fingerprint plots [31–33], were generated using CrystalExplorer17 [34]. All
C—H bond distances were constrained to 1.083 Å when a crystallographic information
file of the respective compound was read into the CrystalExplorer17 program [34]. The
Hirshfeld surface maps generated are of a normalized contact distance, dnorm. This contact
distance is defined in terms of the distance to the nearest atoms outside (de), the distance to
the nearest atoms inside (di) [35] and the van der Waals radii [36] of the two atoms external
and internal to the surface. The isovalue for the dnorm property of the Hirshfeld surfaces of
ii-b, ii-c and ii-f ranged from −0.300 to 1.300.

3. Results and Discussion
3.1. Synthesis Consideration and Spectroscopic Characterization

The microwave reaction of 2-amino-3-carbonitrile derivatives (i), excess triethyl ortho-
formate and catalytic amounts of acetic acid, formed the corresponding 2-formimidate-3-
carbonitriles (ii) as shown in Scheme 1. The short reaction time (20 min) and excellent yields
(88–95%) of the desired products were obtained using this microwave radiation technique.
The conventional solvothermal method also formed the desired products (ii) at yields that
are comparable to those obtained via a microwave-assisted method in this work. However,
the long reaction times are a major drawback of the conventional solvothermal method, as
noted in the literature [11–23]. The 1H-NMR spectra of 4H-pyran-bearing ii derivatives in
DMSO-d6 exhibited triplet and quartet signals at 1.3 and 4.3 ppm, which were attributed to
the resonance of ethoxy protons. Furthermore, the singlet at around 8.6 ppm was attributed
to the —N=C(H)—O— proton, which signified the formation of the formimidate backbone.
Interestingly, the —N=C(H)—O— and ethoxy protons in the dihydropyridine-bearing ii
derivatives are all shifted upfield with respect to those containing the 4H-pyran core. This
is due to the anisotropic effect of the anilinyl ring in dihydropyridine-bearing ii derivatives.
The IR spectra of ii have absorption bands at 2946–2958 cm−1 and 2193–2213 cm−1 were
attributed to C—H and C≡N vibration modes, respectively. The presence of the imine
functional group (C=N) was confirmed by the absorption bands at 1664–1665 cm−1 (in
ii-a and ii-b) and 1568–1571 cm−1 (in ii-c to ii-f). The NMR and IR data both confirm the
conversion of the NH2 functional group in i, to an imine in ii.
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Scheme 1. Reaction scheme of 2-fomimidate-3-carbonitrile derivatives.

3.2. Crystal Structure Descriptions of ii-b, ii-c and ii-f

The crystal structures of ii-b and ii-f have one molecule in the asymmetric unit, whilst
that of ii-c consist of two symmetrically non-equivalent molecules (Figures 1–3). In each
molecule, the aryl group bonded to the C7 atom is almost orthogonal with respect to either
the 4H-pyran or dihydropyridine rings. In ii-c and ii-f, the anilinyl rings were also found
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to be almost perpendicular with respect to the dihydropyridine ring (C1—N1—C18—C19
torsion angle = 78.5(2)◦ (in ii-c) and 85.0(1)◦ (in ii-f)). The geometric orientation of the
aryl rings is comparable to those of closely related 2-amino-3-carbonitrile in the litera-
ture [37–40]. The formimidate group in ii-b, ii-c and ii-f adopts an E configuration and
is planar since the root mean squared deviation of the fitted atoms (Nimine=Cformimidate—
O—Cmethylene) ranged from 0.001 to 0.016 Å. Due to the two-part disorder in the crystal
lattice in ii-b, near synperiplanar and synclinal conformations were observed between
the formimidate group and 4H-pyran ring with Cformimidate=Nimine—Cpyran—Opyran tor-
sion angles of −12.6(2)◦ and 63.7(9)◦, respectively. The disorder observed in ii-b can be
attributed to the rotation along the C9—N1 bond. As for ii-c and ii-f, the formimidate
group adopted an almost anticlinal conformation with respect to the dihydropyridine
ring since the Cformimidate=Nimine—Cdihydropyridine—Ndihydropuridine torsion angles were
−114.2(2)−121.3(2)◦ and 120.5(1)◦, respectively. The Cformimidate=Nimine—Cdihydropyridine—
Ndihydropuridine torsion angle is much wider than Cformimidate=Nimine—Cpyran—Opyran, and
this could be attributed to the steric demand of the anilinyl rings in ii-c and ii-f. All
other intramolecular bond parameters are similar to those of previously reported com-
pounds [11,41,42].
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3.3. Evaluation of Intermolecular Interactions in the Crystal Packing of ii-b, ii-c and ii-f

The crystal packing of ii-b, ii-c and ii-f is stabilized by intermolecular hydrogen
bonding interactions, which are depicted in Figures 4–6. The geometrical parameters of the
various interactions are listed in Table 2. The alternating C23—H23 . . . O1 and C11—H11B
. . . O3A hydrogen bonds in ii-b sew together neighbouring molecules to form chains that
extend diagonally with respect to the crystallographic a and c axes (Figure 4a). These
chains are further linked by C24—H24 . . . N2 (Figure 4b) and C28—C28A . . . πanthracenyl
(Figure 5a) interactions along the crystallographic b axis and form a two-dimensional
supramolecular structure. In ii-c, C12—H12 . . . F2 and C39—H39 . . . F1 hydrogen bonds
with the R2

2(8) graphset descriptor were observed between neighbouring 2-fluorophenyl
moieties (Figure 5b). Intermolecular C—H . . . O were also observed in ii-c between the
aromatic hydrogens (H19 and H50) and the carbonyl oxygen atoms (O1 and O3). The
C—H . . . F and C—H . . . O hydrogen bonds connect neighbouring molecules form chains
that extend along the crystallographic c axis (Figure 5b). Since the C11—H11B . . . O3A
and C12—H12 . . . F2 hydrogen bonds include some disordered atoms (O3A in ii-b, F2
in ii-c), these intermolecular interactions are not formed in all domains of each crystal.
The carbonyl oxygen (O1) in ii-f is involved in bifurcated C—H . . . O hydrogen bonding
with the aromatic H14 and H19 atoms and form chains that propagates diagonally with
respect to the crystallographic a and b axes, as shown in Figure 6a. These chains are further
linked together via C—H . . . O hydrogen bonds between the aromatic H12 atom and O2 of
the formimidate group along the crystallographic b axis, thus forming a two-dimensional
supramolecular architecture that extends with respect to the crystallographic ac plane.
The resultant supramolecular architecture is further stabilized by C22—H22 . . . N3 and
C24—H24C . . . πphenyl hydrogen bonds (Figure 6b).
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Table 2. Selected hydrogen bonds for ii-b, ii-c and ii-f.

D H A d(D-H)/Å d(H . . . A)/Å d(D . . . A)/Å D-H . . . A/◦

Compound ii-b
C11 H11C O3A i 0.98 2.66 3.481(3) 142
C15 H15 O2 0.95 2.62 3.559(2) 168
C23 H23 O1 ii 0.95 2.57 3.487(2) 164
C24 H24 N2 iii 0.95 2.63 3.574(2) 170
C28 H28A πanthracenyl

iv 0.98 2.92 3.692(2) 136
Compound ii-c

C12 H12 F2 i 0.95 2.58 3.361(3) 140
C19 H19 O3 0.95 2.56 3.396(3) 147
C50 H50 O1 0.95 2.52 3.371(3) 149

Compound ii-f
C19 H19 O1 i 0.95 2.52 3.440(2) 163
C12 H12 O2 ii 0.95 2.65 3.469(2) 145
C14 H14 O1 iii 0.95 2.55 3.484(2) 170
C22 H22 N3 iv 0.95 2.66 3.351(2) 131
C24 H24C πphenyl

iv 0.98 2.66 3.558(2) 152

Symmetry codes for ii-b: (i) 1/2- x,-1/2+ y,5/2- z; (ii) -1/2+ x,1/2- y,-1/2+ z; (iii) -1/2- x,-1/2+ y,3/2- z; (iv) -x,1-
y,2- z; for ii-c: (i) x,+y,-1+ z; for ii-f: (i) 1- x,2- y,-z; (ii) x,-1+ y,+ z; (iii) -x,1- y,-z; (iv) 1- x,2- y,1- z.
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Figure 6. Representation of intermolecular (a) C—H . . . O, (b) C12—H12 . . . O2, C22—H22 . . . N3
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3.4. CSD Survey of Closely Related Compounds

To put our work into some perspective, a survey of the Cambridge Structural Database
(CSD; version 5.42, September 2021 update) [43] was conducted. Figure 7 shows the
three hits that were obtained for closely related 2-formimidate-3-carbonitrle derivatives
bearing a 4H-pyran moiety (CSD refcodes: BEPZAZ, GINZOT and ZAQFUV). The aryl
rings bonded to the stereogenic centre in the three hits have a similar geometric orienta-
tion to those observed in ii-b, ii-c and ii-f. The formimidate functional group is almost
syn-periplanar with the 4H-pyran ring in BEPZAZ, GINZOT and ZAQFUV since the
Cformimidate=Nimine—Cpyran—Opyran torsion angle was found to be 1.7(2)◦, 8.0(2)◦ and
3.7(3)◦, respectively. No crystal structure of 2-formimidate-3-carbonitrle derivatives bear-
ing a dihydropyridine moiety exists on the CSD. Thus, the first CSD entry of crystal
structures of such derivatives is reported in this work. Interestingly, the formimidate group
seems to prefer to adopt an E configuration in the solid state despite the variation in the
groups on the 4H-pyran or dihydropyridine core.
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3.5. Hirshfeld Surface Analysis

Hirshfeld surface analysis was used to examine the contribution of the various inter-
molecular interactions observed in ii-b, ii-c and ii-f towards the stabilization of the crystal
lattice. This was achieved by generating dnorm Hirschfeld surfaces and two-dimensional
fingerprint plots as depicted in Figure 8. The red regions on the dnorm surface signify close
intermolecular contacts attributed to the various hydrogen bonds discussed. The white
regions on the dnorm surface indicate van der Waals contacts whilst the blue regions signify
very weak intermolecular contacts. In all three compounds, the H . . . H contacts contribute
the most towards (50.2–58.6%) the Hirshfeld surface. The reciprocal H..C contacts were
attributed to C—H . . . π interactions, and they constitute 14.3–23.9% of the Hirshfeld
surface. Compound ii-b had the highest contribution of H . . . C/C . . . H contacts, and
this could be attributed to the presence of more aromatic rings than in ii-c and ii-f. The
lowest contribution of reciprocal C . . . H contacts was observed in ii-c, and this deficit was
attributed to the presence of C—H . . . F hydrogen bonds with reciprocal H . . . F contact
contributions of 9.4%. There seems to be no significant difference in the contribution of N
. . . H/H . . . N contacts across all three compounds. This is probably due to the very weak
intermolecular van der Waals forces in N . . . H contacts. The reciprocal O . . . H contacts
were attributed to intermolecular C—H . . . O hydrogen bonds, and the lowest contribution
was observed in ii-c (9.6%) due to the existence of C—H . . . F hydrogen bonds. This deficit
is further compounded by the low number of oxygen atoms in ii-c as compared to that in
ii-a and ii-f.
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4. Conclusions

The formation of 2-formimidate-3-carbonitrile derivatives via microwave reactions of
triethyl orthoformate with corresponding 4H-pyran- and dihydropyridine-based 2-amino-
3-carbonitrile precursors was successful. In comparison to the conventional synthesis
protocol, the use of microwave radiation significantly reduced the reaction times from the
order of hours to 20 min whilst maintaining the reaction yields. The synthesis of the desired
products was confirmed using NMR and IR spectroscopy. In the solid state, the formimidate
functional group adopts an E configuration based on the single-crystal X-ray diffraction.
The 4H-pyran-based derivatives adopt syn-periplanar and synclinal conformations between
the formimidate group and pyran ring whilst an anticlinal conformation was observed
for dihydropyridine-based derivatives. The crystal lattices of 2-formimidate-3-carbonitrile
derivatives in this work are stabilized by classical but weak intermolecular hydrogen bonds,
which include C—H . . . O, C—H . . . N, C—H . . . F (in ii-c) and C—H . . . π. According
to the Hirshfeld surface analysis, the 2-formimidate-3-carbonitrile derivative bearing 4H-
pyran (ii-b) has larger contributions of C—H . . . π and C—H . . . O hydrogen bonds
towards the Hirshfeld surface than those of the dihydropyridine-based derivatives (ii-c
and ii-f). This was attributed to the presence of anthracenyl and 4H-pyran moieties in ii-b.
However, the contribution of reciprocal H . . . N contacts towards the Hirshfeld surface
seems to be independent of the nature of the central ring (4H-pyran or dihydropyridine)
and the substituents on it. We are currently investigating the preferred isomerism of
2-formimidate-3-carbonitrile derivatives in solution state. These findings could provide
better insight into how the choice of solvent and reaction conditions play a key role in the
formation of fused pyrimidines.

Supplementary Materials: The following are available online. Figures S1–S12: 1H- and 13C-NMR
spectra of ii-a to ii-f, Figures S13–S17: IR spectra of ii-a to ii-f.
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