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Abstract

Spin-dependent optical potentials allow us to use microwave radiation to manipulate the

motional state of trapped neutral atoms (Förster et al 2009 Phys. Rev. Lett. 103 233001). Here,

we discuss this method in greater detail, comparing it to the widely employed Raman sideband

coupling method. We provide a simplified model for sideband cooling in a spin-dependent

potential, and we discuss it in terms of the generalized Lamb–Dicke parameter. Using a master

equation formalism, we present a quantitative analysis of the cooling performance for our

experiment, which can be generalized to other experimental settings. We additionally use

microwave sideband transitions to engineer motional Fock states and coherent states, and we

devise a technique for measuring the population distribution of the prepared states.

(Some figures may appear in colour only in the online journal)

1. Introduction

Motional state control of atomic particles is achieved by

the absorption and emission cycles of a resonant or near

resonant radiation, i.e. by light scattering typically at optical

frequencies. For instance, laser Doppler cooling reduces the

momentum of atoms or ions through multiple recoil processes

[1]. Coherent momentum transfer can be performed with two-

photon Raman processes [2] for applications in, e.g., atom

interferometry [3].

The quantum state of the atomic particles is composed

of the internal states, e.g., two spin states {|↑〉 , |↓〉} for

a two-level atom and the external motional state. For free

particles, the simplest motional state is the momentum state

|�p 〉. Trapped particles are instead characterized by vibrational

eigenstates |n〉, which in the simplest case of a harmonic

oscillator of frequency ωvib have their energies equally spaced

as �ωvib(n + 1/2).

In free space, the momentum state of a particle and

consequently its kinetic energy are changed by the momentum

transfer |�p 〉 → |�p ′〉 in the absorption/emission cycle of an

optical photon. While the momentum transfer picture also

applies approximately to trapped particles when the energy

separation between motional states is not spectroscopically

resolved, recoil-free transitions become possible in the

resolved-sideband regime (Mössbauer effect). While carrier

transitions do not change the vibrational quantum state |n〉,
the motional state can be controlled via sideband transitions

|n〉 →
∣

∣n′〉 (n′ �= n), for instance, in incoherent cooling

processes |n〉 → |n − 1〉 or in the coherent manipulation

of vibrational states [4]. With trapped ions or neutral atoms

trapped in optical lattices, the resolved-sideband regime is

typically realized by two-photon Raman transitions connecting

two different hyperfine ground states [5–7]. Alternatively, in

spin-dependent potentials it becomes also possible to use

microwave transitions, which also offer sufficient spectral

resolution [8–12].

In the semi-classical picture, as shown in figure 1, an

atomic transition exchanges either kinetic or potential energy

with the motional degree of freedom of the atom. With

the absorption of an optical photon, the kinetic energy is

changed by the momentum kick from the photon, and quantum

mechanically the process can be interpreted in terms of

a displacement of the wavefunction in momentum space.

With the absorption of a microwave photon, which carries

a negligible momentum, the potential energy of the atom

0953-4075/13/104006+11$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/46/10/104006
mailto:alberti@iap.uni-bonn.de
http://stacks.iop.org/JPhysB/46/104006


J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 104006 N Belmechri et al

(b)(a)

Figure 1. In a semi-classical picture, an atomic transition can affect the motional state of an atom either (a) by a kinetic energy change
caused by the momentum transfer from an optical photon of wavevector kopt (velocity selective transition [1]), or (b) by a potential energy
change when the potentials of the two internal states are displaced in space by �x (position selective transition). In the two cases, the
motional energy is decreased when the detuning is set to the Doppler shift koptvat or the potential energy m ω2�x2/(2�), respectively.

can be changed if the trapping potentials of the two states

are different; this allows an interpretation in terms of a

wavefunction displaced in position space.

2. Microwave induced motional sideband transitions

2.1. Motional states in a state dependent lattice

We consider a single atom with two spin states {|↑〉, |↓〉}
trapped in a one-dimensional (1D) optical lattice. We will

initially ignore the internal degree of freedom of the atom and

take the Hamiltonian governing its motion in the trap as given

by

Ĥext = p̂2

2m
+ U0

2
cos2(kLx̂), (1)

with U0 being the trap depth, kL = 2π/λL being the

wavenumber of the two counter propagating laser fields

creating the lattice, and x̂, p̂, the atom’s position and

momentum, respectively.

The motional eigenstates of an atom in such a potential

are the well-known Bloch wavefunctions
∣

∣�B
n,k

〉

, where n is the

band index (n = 0 for the first band) and k is the wavevector

in the first Brillouin zone (BZ). In the limit of deep lattice

potentials that we are considering here, the atoms remain

localized for the timescales of the experiment and their spatial

state is best described by the maximally localized Wannier

state [13]

|n, r〉 = 1√
N

∑

k∈BZ

e−ikrd
∣

∣�B
n,k

〉

. (2)

Here N is the lattice size, r is the site index and d = λL/2 is the

lattice spacing. In this deep lattice regime, we can safely view

the vanishingly narrow energy bands εn(k) as the vibrational

level energies εn of the corresponding Wannier state |n, r〉 at

lattice site r; in the harmonic approximation we would have

εn = �ωvib(n + 1/2).

The Wannier states form an orthonormal basis set

such that the overlaps between two different states yield
〈

n, r | n′, r′〉 = δn,n′δr,r′ . This means that the interaction of

the atomic spin with a microwave field will fail to induce

motional sideband transitions, |n, r〉 ↔ |n′, r′〉, because of the
nearly negligible momentum carried by microwave photons,
five orders of magnitude smaller than that by optical photons.
This restriction can be lifted if the atom experiences a
different trapping potential depending on its internal spin
state as the corresponding motional eigenstates are then no
longer orthogonal [14, 15]. A simple relative spatial shift
of the potentials trapping each internal state induces such
a difference. A shift by a distance �x is accounted for by
the position space shift operator T̂�x ≡ exp(−i p̂�x/�), see
figure 2(a). The overlap between the two Wannier states then
becomes

〈n′, r′ | T̂�x | n, r〉 ≡ In′,r′

n,r (�x). (3)

The resulting overlap integral, −1 � In′,r′
n,r (�x) � 1, is hence

a known function of �x, see figure 2(b). It is analogous
to the Franck–Condon factor from molecular physics and it
determines the strength of the transitions coupling different
vibrational levels [16].

One way to realize the shift operator T̂�x is by two
overlapped lattices which trap each spin state separately and
can be independently shifted in the longitudinal direction
as shown in figure 2. The trapping potential thus becomes
dependent on the spin state s = {↑,↓} and the shift distance
�x = x0

↑ − x0
↓,

Ĥext = p̂2

2m
+

∑

s={↑,↓}

U s
0

2
cos2

[

kL

(

x̂ − x0
s

)]

⊗ |s〉 〈s| , (4)

with x0
s being the position of the lattice trapping the state |s〉.

The total transition matrix element for two spin states coupled
by an interaction Hamiltonian HI, with a free-atom bare Rabi
frequency 	0, is then given by

�	n′,r′

n,r (�x)/2 = 〈s′, n′, r′|T̂�x ⊗ HI|s, n, r〉
= In′,r′

n,r (�x) × �	0/2. (5)

The Franck–Condon factors In′,r′
n,r (�x) can be explicitly

evaluated using equations (2) and (3). We first rewrite
equation (2) using Bloch’s theorem,

Wn,r(x) = 1√
N

∑

k∈BZ

∑

q∈Z

e−ikrdei 2π
d

q an,q(k) |k〉 , (6)
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Figure 2. (a) The coupling strength of a sideband transition in a spin-dependent lattice is the bare spin state coupling 	0 multiplied by the
overlap between the two involved vibrational states, the Franck–Condon factor, which is controlled by the relative shift �x between the two
lattices. ηx is the spatial Lamb–Dicke parameter defined in section 2.1 and later in section 3.1. (b) Lattice shift dependence of the
Franck–Condon factors for different transitions, denoted as n − m, calculated for typical experimental parameters (see the text).

with an,q(k) being the Fourier coefficients of the Bloch

functions and |k〉 the planewave state. These functions can

be constructed using the periodic solutions of the Mathieu

differential equation [17, 18] with their phase chosen such that

the resulting Wannier states are real and have the proper parity

corresponding to their respective vibrational levels [13]. The

coefficients an,q(k) are numerically obtained from algorithms

for the computation of Mathieu coefficients [19]. Inserting (6)

into (3) and taking into account the parity of the Wannier states,

or equivalently the parity of the band n, one eventually arrives

at the following expression for the Franck–Condon factors:

In′,r′

n,r (�x)

= 2
∑

k∈BZ

∑

q∈Z

F

[(

k + 2π

d
q

)

(�x + r − r′)

]

a∗
n,q(k) an′,q(k),

(7)

where we have defined F (x) := cos(x) if n and n′ have

the same parity, and F (x) := sin(x) otherwise. Numerical

evaluation of (7) is shown in figure 2.

Considering a single lattice site and assuming the

harmonic approximation for the potential, the shift operator

takes the simple form T̂�x = exp[ηx(a
† − a)], where a† (a) is

the raising (lowering) operator acting on the vibrational states.

Here, we introduced the spatial Lamb–Dicke parameter

ηx = �x/(2x0), (8)

where x0 is equal to the rms width of the motional ground

state. When ηx ≪ 1, taking the first-order term in ηx of

T̂�x allows for a simple expression of the Franck–Condon

factors for transitions on the same lattice site (i.e. r = r′ = 0),

In′,0
n,0 (�x) ≈ δn,n′ + ηx(

√
n′δn′,n+1 − √

nδn′,n−1).

2.2. Experimental setup

We load caesium (133Cs) atoms from a magneto optical trap

into a 1D optical lattice formed by two counter-propagating,

far-detuned, linearly polarized laser beams. The filling factor

is at most one atom per lattice site due to light-induced

collisions [20]. A weak guiding magnetic field of 3 G

oriented along the lattice lifts the degeneracy between the

Zeeman sublevels of the caesium 62S1/2 ground state such that

atoms can be initialized by optical pumping beams into the

hyperfine state |↑〉 ≡ |F = 4, mF = 4〉. Microwave radiation,

at around ωMW = 2π × 9.2 GHz, couples states |↑〉 and

|↓〉 ≡ |F = 3, mF = 3〉 with the bare Rabi frequency of

	0 = 2π × 60 kHz [21]. The spin state of the atom is probed

using the so-called push-out technique [22] which consists of

counting the fraction of atoms left in |↓〉 after all the atoms in

|↑〉 have been removed by an intense radiation pulse.

An angle θ between the linear polarization vectors of the

two beams forming the lattice is equivalent in the circular

basis to a phase delay of 2θ between two collinear and

independent circularly polarized standing waves, σ+ and

σ−, or equivalently to a standing wave longitudinal relative

shift of

�xsw(θ ) = θ d/π. (9)

The polarization angle θ is controlled by an electro-optical

modulator (EOM) and two quarter-wave plates in the path

of one of the two lattice beams. The two in-phase circular

components of the beam are mapped by the first λL/4 plate

onto orthogonal linear polarizations parallel to the EOM

axes. The retardation 2θ induced by the EOM is proportional

to the voltage signal applied to it. The last plate then converts

the linear polarizations back into the circular ones while

conserving the delay.

The trapping potentials resulting from the σ+ and σ−

standing waves for a spin state |s〉 are

Us = U tot
s + Ws cos2

[

kL

(

x − x0
s

)]

, (10)

where Ws and U tot
s are the lattice contrast, taking positive

values, and total trap depth for the state |s〉, respectively.

Both Ws and U tot
s depend on the lattice laser’s wavelength

λL and the lattice shift �x or equivalently the polarization

angle θ , see figure 3. For alkali atoms, one can define the

‘magic wavelength’ as the one where the state |↑〉 experiences

the σ+ standing wave only. This occurs at λL = λ2 + (λ1 −
λ2)/(2λ1/λ2 + 1) ≈ λ2 + (λ1 − λ2)/3, where λ1 (λ2) is the

wavelength of the D1 (D2) line [23, 24], which is λL = 866

3
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Figure 3. State-dependent optical lattices relatively shifted by a
distance �x. The total trap depth difference �U tot = U tot

↑ − U tot
↓ ,

and lattice contrast Ws for spin state |s〉 are shown. Unlike the spin
|↑〉 lattice, the contrast and total depth of the spin |↓〉 lattice vary
with the shift distance.

nm in our case. At this wavelength, for the spin |↑〉 state,

equation (10) reads

U↑ = −W↑ + W↑ cos2(kLx − θ/2), (11)

while the spin |↓〉 state experiences both σ+ and σ− standing

waves with the relative weights of 1/8 and 7/8, respectively.

The lattice potential in this case is

U↓ = −W↑ + (1/8)W↑ cos2(kLx − θ/2)

+ (7/8)W↑ cos2(kLx + θ/2). (12)

With the notation of equation (10), one finds that W↑ = −U tot
↑

is independent from the angle θ , while W↓ = [cos(θ )2 +
(3/4)2 sin(θ )2]1/2 W↑ and U tot

↓ = −(W↑ +W↓)/2. In addition,

one obtains the lattice relative shift �x = (d/π ){θ +
arctan[3 tan(θ )/4]}/2. Equations (11) and (12) constitute the

closest realization of the idealized spin-dependent lattice

discussed in section 2.1. The small admixture of a σ+

component in equation (12) results in a lattice depth W↓ that

depends on θ , or equivalently on the lattice shift �x, which

makes the energy levels εs,n(�x) depend on the spin state and

on the shift �x, see figure 3. The nonlinear position shift of

the U↓ potential, x0
↓, makes �x deviate from the standing wave

relative shift �xsw in equation (9), and this has to be taken into

account in the calculation of the Franck–Condon factors [23].

The typical total lattice depth used in our experiment

is W↑ ≈ 850 E latt
R (corresponding to 80 μK), with E latt

R =
�

2k2
L/2mCs as the lattice recoil, which amounts to an oscillation

frequency along the lattice axis of ωvib ≈ 2π ×116 kHz. In the

transverse direction, atoms are confined only by the Gaussian

profile of the lattice lasers which results in a transverse

oscillation frequency of ωrad ≈ 2π × 1 kHz. The typical

initial temperature of the atoms loaded into the lattice is

T ≈ 10 μK, which in the harmonic approximation amounts

to mean vibrational numbers of nvib ≈ 1.4 and nrad ≈ 280 in

the axial and transverse directions, respectively.

2.3. Microwave sideband spectra

We investigate sideband transitions by recording microwave

spectra for different lattice shifts. Controlling the relative

distance �x allows us to continuously tune the parameter ηx

from 0 to about 5. In order to resolve the sidebands, we use

Gaussian microwave pulses with an FWHM of 30 μs and a

bare Rabi frequency of 	0/2π = 36 kHz, corresponding to

x=43nm

x=111nm

x=176nm
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Figure 4. (a) Microwave spectrum of sideband transitions
|↑, n = 0〉 ↔ |↓, n′〉 for lattice shifts �x ={0 nm (•), 43 nm (◦),
111 nm(�), 176 nm (�)} corresponding to the parameter
ηx = {0, 1.2, 3.1, 4.9} defined in section 3.1 (data points from [11]).
The microwave detuning is given with respect to the carrier
transition frequency. Data points are the average on about 100 atoms
and they are here fitted with a model that takes into account
broadening mechanisms detailed in the text. The error bars, reported
only for three representative peaks, are obtained with the 68%
Clopper–Pearson interval method for binomial statistics. Panels
(b) and (c) compare the expected values (dashed lines) for the lattice
contrast W↓ and total trap depth difference �U tot (see figure 3 and
text in section 2.2) with the values extracted from the fits (1%
uncertainty).

the π -pulse condition for the carrier transition. Figure 4 shows
a combined spectrum where transitions from n = 0 to levels
up to n′ = 14 are well resolved [11]. Four spectra are recorded
for four different lattice shifts. With an unshifted lattice only
the carrier transition is visible, and it defines the zero of the
microwave detuning δMW. The remaining three lattice shifts
were chosen such that for each shift distance �x the sideband
coupling strength on the same site (i.e. r = r′), 	

n′,0
n,0 (�x), is

simultaneously close to maximum for a small group of adjacent
sideband transitions. The coupling strength for sites r �= r′ can
be neglected at the given shifts.

For each shift distance �x, the microwave spectra are
fitted using the spectra yielded by a numerical calculation of
the time evolution based on the following Hamiltonian:

Ĥ = Ĥ0 + ĤMW, (13)

with

Ĥ0 =
∑

s=↑,↓

∑

n

(εs,n(�x) + δs,↑ �ωHS) |s, n, r〉 〈s, n, r| , (14)

ĤMW =

−�

2
	0

∑

r,r′

∑

n,n′

In′,r′

n,r (�x) (e−iωMWt | ↑, n, r〉〈↓, n′, r′| + h.c.),

(15)

where ωHS denotes the hyperfine splitting frequency of the
ground state. With this notation, the microwave detuning reads
δMW = ωMW − ωHS.

4
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Figure 5. (a) Inhomogeneous broadening effect due to the
transverse motion of the atoms in the trap. The overall peak profile
(bottom curve) is the convolution of the other two profiles. The
Fourier-limited FWHM and the thermal broadening are typically
20 and 5 kHz (for T2D ∼ 10 μK and first sideband), respectively.
(b) Left panel: Franck–Condon factors as a function of the radial
distance ρ (here, θ = 15◦). The grey profile shows the 2D radial
distribution from equation (16) for the same temperature. Right
panel: resulting thermal distribution of Franck–Condon factors.

Given the deep lattice regime considered here, in the

numerical solution of equation (13), the maximum number

of vibrational levels per site can be restricted with a good

approximation to nmax = 15, before atoms start to behave

like free particles tunnelling between sites or directly coupling

to the continuum. In this regime, the coupling strength for a

sideband transition between two lattice sites separated by a

distance x > d are two orders of magnitude lower than the

typical timescales of our experiment; therefore, we limit the

site indices to r = r′.
In the fitting of the sideband spectra, the energy levels

εs,n and Franck–Condon factors In′,0
n,0 depend on the fitting

parameters �x, U tot
s and Ws. In particular, in the harmonic

approximation the spacing between two adjacent peaks is

equal to the trap frequency of the U↓ potential, which therefore

determines the lattice contrast W↓; the absolute offset of each

spectrum is mainly determined by the difference of the total

trap depths, �U tot = U tot
↑ − U tot

↓ , expressed in frequency

units. Additionally, an average over the thermal motion of

the atoms in the transverse direction of the 1D optical lattice

has to be performed. In fact, the lattice parameters U tot
s and

Ws depend on the transverse position of the atom, and to

take this dependence into account we assume that during

the microwave dynamics an atom has a ‘frozen’ transverse

position ρ. This assumption is justified by the slow transverse

motion of the atoms, ωrad/2π ≈ 1 kHz, compared to

the lowest bare Rabi frequency used for the microwave pulse,

	0/2π ≈ 14 kHz. The transverse positions of the atoms are

then assumed to be distributed according to a two-dimensional

Boltzmann distribution, as shown in figure 5(b), and given in

the harmonic approximation by

P(ρ) = ρ

σ 2
exp

(

− ρ2

2σ 2

)

, with σ =
√

kBT2D

mCs ω2
rad

(16)

and T2D being the transverse temperature. The thermal

transverse position distribution results in an inhomogeneous

(a) (b)

Figure 6. (a) Raman sideband cooling scheme: a two-photon Raman
transition between two identical trapping potentials reduces the
vibrational state, |↑, n〉 → |↓, n − 1〉. The wavefunction is shifted in
momentum space by ��k. (b) Microwave sideband cooling scheme:
a microwave transition between two shifted trapping potentials
reduces the vibrational state. Note that we use here a blue sideband
transition to reduce the vibrational state, instead of the typical usage
of a red sideband transition [7].

distribution of microwave sideband resonance frequencies

and Franck–Condon factors, shown qualitatively in figure 5.

Both distributions are used to weight the calculated spectra,

with T2D being an additional fitting parameter. The figure

shows that the thermal broadening effect becomes larger for

higher sidebands, exhibiting a more pronounced asymmetric

peak shape. This behaviour has a clear explanation: in the

harmonic approximation, for instance, one expects the thermal

broadening to increase linearly with band index n, while the

Fourier-limited FWHM remains constant.

The best-fit results for W↓ and �U tot are shown in

figures 4(b) and (c). This method allows us to spectroscopically

determine the parameters of the spin-dependent potentials seen

by the atoms with a relative uncertainty of about 1%. The

small deviations from the expected values (dashed curves

in the figure) can be attributed in part to measurement

uncertainty and to polarization imperfections in the standing

wave beams, resulting in slightly distorted potentials. For

instance, polarization distortion can be responsible for the non-

monotonic behaviour of the data points in figure 4(c). From

the fit, we obtain a temperature of T2D = (2.7 ± 0.5) μK.

Without axial ground state cooling, we measure a three-

dimensional temperature of 10 μK by means of the adiabatic

lowering technique [25]. This discrepancy requires further

investigations.

3. Microwave sideband cooling

The general principle of resolved sideband cooling, depicted

in figure 6, relies on the repetition of cooling cycles where

each cycle starts by a sideband transition |↑, n〉 → |↓, n − 1〉
removing a vibrational energy quantum �ωvib. The cycle is then

closed by an optical repumping process with a transition to an

optically excited state |e〉 followed by a spontaneous decay

to the initial spin state. Because of the optical repumping,

the motional energy of the atom in each cycle increases on

5
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Table 1. Raman versus microwave sideband cooling in the harmonic
approximation. The sideband couplings are first-order expansions in
ηk and ηx in the Lamb–Dicke regime defined by
|η| = |ηk + iηx| ≪ 1, under the harmonic approximation.

Raman Microwave

Sideband coupling strength 	n−1,n/	0 i2ηk

√
n −ηx

√
n

Recoil heating per cycle 2�ωvib η2
k 2�ωvib η2

k

Projection heating per cycle – �ωvib η2
x

Overall heating per cycle 2�ωvib η2
k �ωvib (η2

x + 2η2
k )

average, which corresponds to heating. Therefore, in order to

achieve cooling the overall energy gained by an atom after

one cycle must be negative. In general, heating is caused by

the momentum recoil from the optical repumping photons,

i.e. recoil heating. In the microwave-based scheme, however,

as shown in figure 6(b), an additional source of heating,

called hereafter ‘projection heating’, is present. It is due to

the difference between the trapping potentials of the internal

states, in this case it is a spatial shift. This difference makes

the projection of a vibrational state |↓, n〉 on an arbitrary state

|↑, m〉 appreciable in contrast to the case of identical potentials

where transitions beyond m = n, n ± 1 are negligible.

3.1. Raman versus microwave sideband cooling

In the standard Raman-based sideband cooling schemes

[6, 26], the sideband is induced by a two-photon transition

where the coupling is given by the matrix element

	Raman
n−1,n = 〈↓, n − 1|T̂�k| ↑, n〉 × 	Raman

0 , (17)

where T̂�k ≡ exp(i x̂�k) is the momentum shift operator and

�k ≈ 2kopt is the wavevector difference between the two

optical photons for counterpropagating beams. From here on, it

is understood that all transitions occur on the same site, r = r′.
In the microwave-based scheme, we neglect the microwave

photon recoil, and the sideband coupling corresponding to

a lattice shift �x between nearest-neighbouring sites is then

given by

	n−1,n = 〈↓, n − 1|T̂�x| ↑, n〉 × 	0. (18)

Using the harmonic approximation, the Raman and microwave

sideband couplings can be approximated to the first order in the

parameters ηk = �kopt/(2 p0) and ηx = �x/(2x0), as shown

in table 1, where p0 =
√

mCs�ωvib/2 and x0 =
√

�/(2mCsωvib)

are the momentum and spatial rms width of the ground-state

wavefunction, respectively [27]. From table 1, we can note a

clear duality between momentum and spatial shifts in the two

sideband cooling methods. The duality is better emphasized

by using the general complex Lamb–Dicke parameter

η = ηk + iηx = �kopt/(2 p0) + i�x/(2x0)

= kopt x0 + i p0 �x/�, (19)

which accounts for both degrees of freedom via the momentum

and spatial Lamb–Dicke parameters, ηk and ηx, respectively.

This generalized approach was introduced first in ion systems

to describe microwave-induced sidebands in the presence of

spin-dependent forces [14].

In the Raman-based cooling schemes with identical

trapping potentials, the spatial Lamb–Dicke parameter ηx

vanishes and the heating comes from the recoil of the optical

repumping photons, as depicted in the figure 6(a). In the

microwave-based scheme, however, the generalized Lamb–

Dicke parameter is complex and the heating is caused by a

combination of recoil and projection heating.

The energy gained by an atom from recoil heating after

one cycle results from two recoils, one from absorption and

one from spontaneous emission, and is therefore given by

�Erec = 2ER, (20)

where ER = �
2k2

opt/2mCs is the optical photon recoil energy

[28]. This quantity does not depend on the details of the

potentials but only on the atom’s properties, and it expresses

the overall three-dimensional recoil heating.

In the shifted potentials shown in figure 6(b), in addition

to the recoil heating, the atom’s motional energy increases

on average by the projection heating energy �Eproj. This

is due to the non-vanishing projection of the atom’s initial

vibrational state |↓, n〉 onto the vibrational basis |↑, m〉 of

the final spin state in the optical repumping process. In the

harmonic approximation, with Hext = �ωvib(n+1/2), and after

adiabatic elimination of the excited state |e〉, the projection

heating contribution for a relative shift �x can be derived as

�Eproj = �ωvib

∑

m

(m − n)|〈m | T̂�x | n〉|2

=
∑

m

〈

m | ˆ[HT̂�x − T̂�xĤ] | n
〉〈

n | T̂
†
�x | m

〉

=
〈

n |
(

Ĥext(�x) − Ĥext

)

| n
〉

, (21)

where we have introduced the shifted Hamiltonian

Ĥext(�x) = T̂
†
�xĤextT̂�x = p̂2

2mCs

+ 1

2
mCsω

2
vib(x̂ + �x)2. (22)

The result of equation (21) applies in general to any potential

profile, and in the harmonic approximation it results in a

quantity which is independent of n,

�Eproj = 1
2
mCsω

2
vib�x2, (23)

which is nothing but the potential energy difference as expected

from the semi-classical picture in figure 1.

Using the same method, one can generally show that in the

microwave sideband cooling scheme the total average heating

energy gained by an atom in one cooling cycle is the sum of the

recoil and projection contributions. The total energy balance

per cycle then becomes

�Etot = �Eproj + �Erec − �ωvib = �ωvib(η
2
x + 2η2

k − 1).

(24)

Similarly to the usual definition of the Lamb–Dicke regime

[29], the condition for cooling �Etot < 0 defines a generalized

Lamb–Dicke regime as the range where |η| < 1.
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Figure 7. Microwave sideband cooling scheme in a realistic
physical system using 133Cs atoms. (i) Microwave radiation tuned to
the first blue sideband induces a |↑, n〉 → |↓, n − 1〉 transition
decreasing the motional quantum number by 1. (ii) The cooling
cycle is closed by an optical repumping transition |↓〉 → |F ′ = 4〉,
with rate R↓, and (iii) a spontaneous decay back to the state |↑〉. (iv)
An additional pumping laser brings the atoms which have decayed
to the state |a〉 back into the cooling cycle, with rate Ra. Atoms
reaching the dark state |↑, n = 0 〉 are out of the cooling cycle unless
off-resonantly excited or heated externally.

3.2. Quantitative model based on master equation

The general theory of sideband cooling is very well known and

has been extensively studied in the literature [5, 27, 30, 31].

Here, we discuss a quantitative model based on the Lindblad

master equation formalism. To provide a concrete example,

we apply the model to the level scheme of our specific system,

though the model can be adapted to other similar systems.

In the cooling cycle depicted in figure 7, microwave

radiation resonant with the first blue sideband transfers atoms

from states |↑, n〉 to states |↓, n − 1〉. Concurrent with the

microwave, a σ+-polarized repumper laser beam couples the

state |↓〉 to the state
∣

∣62P3/2, F ′ = 4
〉

≡ |e〉, from where

the atoms close the cooling cycle by spontaneously

decaying back to the state |↑〉. Due to the appreciable

probability of atoms decaying from the state |e〉 to the state

|F = 4, mF = 3〉 ≡ |a〉, a second equally polarized pumping

laser couples the two states and brings the atoms which have

decayed to the state |a〉 back into the cooling cycle. In each

cycle, an atom loses energy on average until it reaches the

‘dark state’ |↑, n = 0〉 where it is no longer affected by the

microwave or the repumping lasers. Nevertheless, a small

probability remains that the dark state is depopulated due to

photon scattering from the lattice lasers or an off-resonant

microwave carrier transition.

To describe the cooling dynamics, we reduce the problem

at hand to an effective model with three spin states with the

set of motional states associated with each one of them. The

considered Hilbert space is then the one spanned by the states

|s, n〉, with n being the vibrational level and |s〉 being one of

the three internal states |↑〉 ,|↓〉 or |a〉. The optically excited

state |e〉 is adiabatically eliminated due to its very short

lifetime, τ = 30 ns, compared to the motional timescale. We

use the Lindblad master equation formalism to write the time

evolution of the effective model’s density matrix as [31]

dρ

dt
= − i

�
[Ĥ ′

0 + ĤMW, ρ] + L[ρ], (25)

82.0%

86.0%

88.0%

90.0%

93.0%

95.0%

97.0%

98.2%

98.7%

99.0%

0

0.5

0.4

0.3

0.2

0.1

0.0 0.2 0.4 0.6 0.8

Figure 8. Steady-state population in the motional ground state P|n=0〉
as a function of ηx and the bare microwave Rabi frequency 	0.

where Ĥ ′
0 is the extension of the Hamiltonian from

equation (14) to the states |a, n〉
Ĥ ′

0 =
∑

s={↑,↓,a}

∑

n

εs,n(�x) |s, n, r〉 〈s, n, r|, (26)

and L is the Lindblad superoperator with the projectors

Ln′,r′,s′

n,r,s = |s, n, r〉 〈s′, n′, r′| , (27)

and the effective decay rates γ s′,n′,r′
s,n,r for the transitions

∣

∣s′, n′, r′〉 → |s, n, r〉 which are given by

γ s′,n′,r′

s,n,r = αsRs′
〈

|Ms′,n′,r′

s,n,r |2
〉

�ksp
, (28)

with

Ms′,n′,r′

s,n,r = 〈n, r, s| T̂�ks,s′ T̂�x|s′, n′, r′〉. (29)

Here, αs is the branching ratio for the spontaneous emission

from the state |e〉 to the state |s〉, and Ra, R↓ are the pumping and

repumping rates, respectively, as shown in figure 7. In addition,

we account for the possibility that an atom in the |↑〉 state

scatters a photon from the lattice with the rate R↑. The matrix

element Ms′,n′,r′
s,n,r accounts for the relative spatial shift between

the two involved vibrational states and for the transferred

momentum of both optical photons �ks,s′ = kopt +�ksp · �ex in

the optical repumping process, with �ksp being the wavevector

of the spontaneously emitted photon and �ex being the unit

vector along the lattice direction. Additionally, one has to

perform an average over �ksp, indicated by the angle brackets

in equation (28).

Given our experimental parameters, we compute the

steady-state solution to equation (25) numerically, using the

same approximations as in section 2.3. In the computation,

the microwave is resonant with the |↑, 1〉 → |↓, 0〉 transition.

The rates Ra and R↓ are set by the experimental values,

which are chosen comparable to 	0,1 and smaller than the

vibrational level separations to avoid off-resonant transitions

by power broadening of the vibrational levels of the F = 3

ground state. Figure 8 shows a contour plot of the ground

state population P|n=0〉 ≡
∑

s,r P|s,0,r〉 in the steady state

7
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(a)

(b)

(c)

Figure 9. Microwave spectroscopy performed (a) before cooling and (b) after 20 ms of microwave cooling, with optimal experimental
parameters (see table 2). (c) Blue sideband height versus detuning of the microwave cooling frequency (◦) and atom survival probability
measured after the cooling (�), (data points in (a) and (b) are from [11]).

as a function of the bare microwave Rabi frequency and

the relative shift distance expressed in terms of ηx. When

projection heating dominates, ηx � ηk, the energy balance

in equation (24) just requires ηx < 1 for cooling; for instance,

figure 8 shows that a ground state population P|0〉 > 80%

can be reached with ηx < 0.8. For very small lattice shifts,

however, with ηx ≪ 1, the microwave coupling for the blue

sideband transition becomes small compared to that of the

carrier transition, which renders the microwave action of

removing an energy �ωvib per cycle inefficient compared to

the recoil heating, which is the dominant heating source for

such small shifts. Weak microwave sideband coupling and

hence inefficient microwave cooling will also be present at

very low bare Rabi frequency, namely at the Rabi frequencies

where the sideband coupling becomes lower than the rate of

depopulation of the dark state. For high Rabi frequencies of

the same order of magnitude as the vibrational level spacing,

the carrier coupling becomes comparable to the blue sideband

coupling, and the microwave cooling action is again reduced.

3.3. Experimental results

Microwave cooling is obtained by applying microwave

radiation on resonance with the first blue sideband, |↑, 1〉 →
|↓, 0〉, for a certain duration τcooling, at a certain lattice shift

�x, concurrently with the two optical pumping lasers as

shown in figure 7. In order to probe the final vibrational state

distribution, we record a spectrum of the first-order sideband

transitions using a Gaussian microwave pulse satisfying the

π -pulse condition for the first red sideband, figure 9(a). In

the low-temperature limit, the height of the first blue sideband

peak provides a good measure of the motional ground state

population, P|↑,0〉, and thus of the cooling efficiency. For

instance, for atoms in the ground state one expects to detect

no blue sideband. Figures 9(a) and (b) show two microwave

spectra recorded before and after cooling, clearly indicating a

reduction of temperature by the cooling process.

In order to determine the optimum cooling parameters, the

blue sideband height is remeasured while scanning different

variables, namely the optical pumping intensities, the cooling

microwave power and frequency, the lattice shift distance and

the duration of the cooling pulse. Figure 9(c) shows a scan of

the cooling microwave frequency. As indicated by a nearly

zero detected signal from the blue sideband, the optimum

frequency for cooling lies evidently in the vicinity of the first

Table 2. Optimal microwave cooling parameters for
ωvib = 2π × 116 kHz.

	0/2π ηx ηk R↓ Ra R↑ τcooling

16 kHz 0.3 0.1 35 ms−1 35 ms−1 15 s−1 20 ms

blue sideband, while a less pronounced cooling is also present

at the position of the second blue sideband. Furthermore, the

measurement reveals the absence of the blue sideband signal in

a broad range extending to negative detunings in addition to a

weak dip at the position of the carrier. These two observations

are correlated with a decrease in the atom survival given in the

same figure. This shows that, instead of being due to cooling,

the absence of the blue sideband here is due to increased atom

losses. In fact, for zero and negative microwave detunings, that

is, if the microwave is resonant with the carrier |↑, n〉 → |↓, n〉
or red sideband |↑, n〉 → |↓, n + m〉 transitions, respectively,

the energy of the atom increases on average in each cooling

cycle. In the case of zero detuning, the increase is due mainly

to recoil and projection heating in the absence of microwave

cooling, while for negative detunings microwave sideband

heating occurs in addition to the recoil and projection heating.

Once the optimum cooling parameters have been

determined, we extract the achieved steady-state temperature

assuming a thermal Boltzmann distribution and neglecting

the anharmonic spacing of the vibrational levels. The ratio

between the red and blue sideband heights is proportional to

the Boltzmann factor which is related to the average motional

quantum number 〈n〉 by

P↑,1

P↑,0

= exp

(

−�ωx

kBT

)

= 〈n〉
〈n〉 + 1

. (30)

Using the fitted sideband heights from figure 9(b), we calculate

〈n〉 = 0.03 ± 0.01, and a ground state population of P↑,0 ≃
97%, corresponding to a temperature T ≃ 1.6 μK. Table 2

summarizes the optimum cooling parameters for our setup.

4. Motional state control

4.1. Motional state detection

We have developed a vibrational state detection scheme which

allows us to determine the vibrational state distribution of any

given motional state. It relies on removing all atoms above

a selected vibrational state n from the trap and counting the

8



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 104006 N Belmechri et al

(a) (b)

Figure 10. (a) Method for measuring vibrational state population distributions: (i) an initial microwave pulse resonant with the nth red
sideband transfers all atoms in states |↓, m〉, with m � n, to the state |↑〉; (ii) the transferred atoms are pushed out of the lattice; (i) and (ii)
are repeated N times to overcome low pulse efficiency. (b) Surviving fraction of atoms for a thermal state, with the dotted lines indicating a
thermal distribution of T ≈ 11.6 μK; this temperature is compatible with the independently measured one of about 10 μK. For each
sideband n, after N = 3 repetitions of the microwave pulse plus push-out, only the atoms in states m < n survive. The horizontal dashed line
indicates the maximum survival probability, limited by the off-resonant transitions during the repeated pulses. For the sake of clarity, error
bars have been displayed for the carrier transition only.

remaining atoms, as illustrated in figure 10(a). The distribution

is then reconstructed from the differences of subsequent

measurements.

Atoms are first transferred to the state |↓〉 by means of

an adiabatic passage microwave pulse that is resonant with

the carrier transition in unshifted lattices, which preserves

vibrational states’ populations. A microwave pulse resonant

with the red sideband |↓, n〉 → |↑, 0〉 transfers atoms from

states |↓, m〉 with m � n to states | ↑, m − n〉. The

transferred atoms are eventually pushed out of the trap (see

section 2.2). However, since the sideband transition rates

depend on the initial vibrational state |↓, n〉 (due to, e.g.,

trap anharmonicity and Franck–Condon factor differences),

the microwave pulse does not achieve full transfer efficiency

for all transitions. To overcome this limitation, the procedure

of microwave pulse plus push-out is repeated several times

to deplete all vibrational states |↓, m〉 with m � n. If f is

the population transfer efficiency for a given n, then after N

repetitions the effective population transfer efficiency becomes

f ′ = 1 − (1 − f )N . For instance, an initial efficiency of

f = 70% is thus increased to f ′ ∼ 97% with N = 3

repetitions. Measuring the fraction of remaining atoms as a

function of the microwave frequency, we obtain a sequence of

plateaus at the successive sideband frequencies, as shown in

figure 10(b). The plateau corresponding to the nth sideband

indicates the integrated population of states m < n, that is, the

cumulative distribution function Fn =
∑n−1

m=0 pm, from which

the individual populations of the vibrational states are then

derived.

4.2. Motional state engineering

With 97% of the atoms cooled to the state |↑, n = 0〉 (see

section 3.3), controlled preparation of different motional states

is possible using a combination of microwave pulses and

selected lattice shifts.

The simplest state that can be prepared is the Fock state
|↓, m〉. It requires addressing the mth red sideband transition

at the lattice shift �x chosen to maximize the coupling
|↑, 0〉 ↔ |↓, m〉. The fidelity for preparing this state is limited
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Figure 11. Motional state preparation and analysis. Shown are the
populations of the vibrational states n = 0, . . . , 3 after (a) creating
superposition states of |n = 0〉 and |n = 2〉 with different weights
(from top to bottom, area of the first MW pulse 0.30, 0.40, 0.55,
0.70 in units of π ) and (b) coherent vibrational states for different
amplitudes α, where the left bars (brighter red) indicate the
theoretically expected populations. The analysis technique used
here, see figure 10(a), can only measure vibrational states’
populations but not coherences.

by the cooling efficiency, the population transfer efficiency

and the selectivity of the microwave pulse. Using an adiabatic

passage pulse [32], a state preparation fidelity close to 98%

has been achieved for states up to m = 6.

A superposition of two Fock states is created by a two-

pulse sequence as shown in the inset of figure 11(b). An initial

microwave pulse resonant with the transition |↑, 0〉 → |↓, 2〉,
performed at the lattice shift which maximizes the coupling

for the transition, generates the state

|ψ〉 = c↑,0 |↑, 0〉 + c↓,2 |↓, 2〉 , (31)
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with variable coefficients c↑,0 and c↓,2 determined by the pulse

duration. The lattice shift �x is then changed to the distance

at which the Franck–Condon factor for the transition |↑, 2〉 ↔
|↓, 2〉 is zero. The shifting is precisely timed so that the

probability of changing the vibrational state by the acceleration

of the lattices is zero [33]. At the new lattice shift, a second

microwave pulse resonant with the carrier transition maps the

population |c↑,0|2 onto |↓, 0〉. One would expect as a result

a coherent superposition between |↓, 0〉 and |↓, 2〉. However,

because of the appreciable duration of the sequence of 320 μs

(two sideband-resolved pulses plus lattice shift operation)

compared to the total spin coherence time of ∼250 μs in

our setup, the coherence between the two vibrational states

is partially lost during the preparation procedure. This is a

technical limitation which can be overcome by improving

the coherence time, for instance in our setup, by cooling the

transverse motion of the atoms to the three-dimensional ground

state [34]. This scheme represents a relevant step towards the

use of the vibrational state as the physical carrier for a qubit

and/or the preparation of arbitrary motional superposition

states when working with neutral atoms.

In the same vein of engineering motional states, we project

the state |↓, n = 0〉 onto a shifted potential to create the state

|α〉 = T̂�x |↑, n = 0〉 = eαa†−α∗a |↑, n = 0〉 (32)

with α = ηx. We realize this by applying an optical repumping

pulse while the lattice is displaced by �x. This corresponds to

exciting the transition |↓〉 → |e〉 followed by a spontaneous

decay to the state |↑〉, which occur on a timescale much

shorter than the oscillation period of the atom in the trap. We

also neglect the recoil transferred by the optical repumping

photons, which is equivalent to assuming ηk = 0. Because

the decay process additionally involves transitions to states

|a〉 and |↓〉, the resulting state is a statistical mixture of the

three internal states; our analysis scheme however measures

the vibrational population of the state projected on the |↑〉 state

shown in equation (32). The statistical mixture can be avoided

by replacing the optical repumping pulse and spontaneous

decay by a fast two-photon Raman transition. Measuring

the population distribution of the created state reveals a

clear agreement with the theoretical expectation, as shown

in figure 11(b). With the state detection scheme presented

in section 4.1, so far we can only measure populations,

while coherences could be accessed in the future through

interferometric schemes.

5. Conclusions and outlook

We have shown that microwave sideband transitions in spin-

dependent optical lattices are a favourable alternative to

Raman transitions for sideband cooling and motional state

engineering. The effective Lamb–Dicke parameter can be

continuously adjusted from zero to above one, giving the

possibility to address directly higher order sideband with

coupling frequencies comparable to the bare Rabi frequency.

We investigated the performance of microwave sideband

cooling in the generalized Lamb–Dicke regime, and we

compared it to the Raman sideband cooling; our analysis can

be easily extended to the three-dimensional case [15].

Quantum engineering of motional states represents one

of the most attractive uses of microwave-induced sidebands.

We demonstrated here the first step towards the creation of

superposition between Fock states, and the preparation of

coherent states. In the future, the interest resides in proving the

coherence properties of these states through interferometric

schemes, for instance, by measuring the accumulated phase

between two distinct Fock states, or through quantum beat

experiments [35].

Along the same line, spin-dependent shift operations

can be employed to transfer a state-dependent momentum

kick, allowing the realization of a superposition of opposite

coherent states, producing Schrödinger-cat-like states as has

been realized with ions [36].

Microwave control of atomic motion in a spin-dependent

optical lattice can be of interest for storing and processing

quantum information via the motional states [37]. For instance,

the strength of coherent collisions for atoms close to the

motional ground state exhibits a marked dependence on the

relative motional state, which can be exploited, in analogy to

[24], to realize maximally entangled states in the motional

degree of freedom.

In addition, microwave sideband transitions open the

way for quantum transport experiments, where continuous

tunnelling between adjacent lattice sites occurs when �x is

close to d/2, i.e. close to half the lattice spacing [38].

Finally, it is worth noting that the microwave cooling

technique studied here does not strictly require the use of the

‘magic’ wavelength for the lattice potential, but can still be

operated with the same efficiency at other wavelengths, e.g., at

λL = 1064 nm as we have tested. In fact, the optimal cooling

efficiency occurring at around ηx ∼ 0.3, see figure 8, can be

reached by adjusting the polarization angle θ .
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