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Abstract: Using a solid-state reaction strategy, nominal Li3TiO3F oxyfluorides ceramics were fabri-
cated, and its sintering behavior, microstructure, phase assemblages, as well as microwave dielectric
performances were all investigated. The main phase of Li3TiO3F with cubic structures accompanied
with small amounts of the LiF or Li2TiO3 secondary phase was identified by XRD analysis. SEM
analysis showed that a uniform and dense microstructure was obtained for 750 ◦C-sintered samples.
The dielectric constant (εr) and quality factor (Q × f ) were found to be strongly correlated with
porosity and grain size distribution, whereas the temperature coefficient of resonance frequency (τf)
was mainly dominated by the phase assemblages. In particular, the 750 ◦C-sintered Li3TiO3F samples
exhibited good microwave dielectric performances: εr = 18, Q × f = 57,300 GHz (under 9.2 GHz),
τf = −43.0 ppm/◦C.
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1. Introduction

Microwave dielectrics ceramics (MDCs) have become extraordinarily alive with the
advent of the fifth-generation (5G) mobile network and the Internet of Things (IoT), which
have been widely utilized in miscellaneous microwave devices [1,2]. Among the MDCs, low
temperature co-fired ceramics (LTCCs) are able to simultaneously hold low firing temperatures
(≤960 ◦C), moderate permittivity (εr), and possess a high quality factor (Q × f ), as well as
approaching a zero temperature coefficient of resonant frequency (τf), which is profitable for
the assembling of electronic devices and environmental protection [3,4]. Thus, it is necessary
to explore these MDCs, especially the LTCCs, to better meet the current demands for the IoT
and 5G era [5–9].

Recently, a series of oxyfluorides have been prepared either by solid solution or an-
ion substitution, which exhibited inherently low sintering temperatures and excellent
microwave dielectric performances concurrently [10–12]. For example, in 2019 the struc-
ture and microwave dielectric performances of novel Ti-containg oxyfluorides, such as
Li7Ti3O9F and Li5Ti2O6F were first reported by Fang et al. [10,11]. Subsequently, several bi-
nary, ternary, and multicomponent Nb-containing oxyfluorides with promising microwave
dielectric performances, such as Li5.5Nb1.5O6F, Li4Mg2NbO6F, and Li7(Nb1−xTix)2O8−xF,
Li6MgTiNb1−xVxO8F, have been reported by Liu et al. [13–15]. In 2023, Zhang et al. re-
ported a new oxyfluoride dielectric ceramic system of Li2+xZrO3Fx, among which the
Li3ZrO3F ceramics simultaneously exhibited a near zero τƒ (1.2 ppm/◦C), a high Q × f
(65,100 GHz), and a low firing temperature (925 ◦C) [16]. The abovementioned research
opened a scheme to develop novel LTCCs with superior dielectric performances [16]. Li-
containing rock salt structured Li2AO3 (A = Ti, Sn, Zr) system ceramics have drawn a
tremendous amount of attention due to their promising microwave dielectric performances
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(εr = 13~22, τf = 20~38 ppm/◦C and Q × f = 38,000~120,000 GHz) [17,18]. However, the
high heating temperature (≥1300 ◦C) and non-near zero τf have severely impeded the
commercial application of Li2AO3 ceramics. Through a mixture of Li2TiO3 and LiF, along
with subsequent sintering, the Li3TiO3F major phase has been synthesized by Szymanski
and Bian et al. [19,20]. However, the Q × f (~30,000 GHz) of nominal Li3TiO3F ceramics is
not high due to the appearance of the LiF second phase. Until now, there are no relative
reports on pure phase Li3TiO3F ceramics along with their microwave dielectric properties.
Thus, in this study, we aimed to fabricate a pure Li3TiO3F compound using a solid-state
reaction route, and its sinterability, phase assemblages, microstructures and microwave
dielectric performances were all further investigated.

2. Materials and Methods

Li3TiO3F oxyfluorides were synthesized following a solid-state reaction route. Accord-
ing to the stoichiometric formula of Li3TiO3F, the raw materials of Li2CO3 (98%, Guo-Yao
Co. Ltd., Shanghai, China), LiF (98%, Guo-Yao Co. Ltd., Shanghai, China), and TiO2 (99.9%,
Guo-Yao Co., Ltd., Shanghai, China) were individually weighed, and then milled for 8 h
using a planetary ball mill with a milling rate of 350 r/min. After drying, these powders
were calcined under 600 ◦C for 4 h. The prebaked powders were reground after crushing,
granulated with 6 wt.% solution of polyvinyl alcohol, and then pressed into cylindrical
discs (12 mm-diameter and 6 mm-thick) at 100 MPa. Finally, these cylindrical discs were
agglutinated under 500 ◦C for 2 h to remove the binder, and then fired at 700–800 ◦C for 5 h.
In order to compensate for the volatilization of Li and F during sintering, the samples were
muffled with sacrificial powders owing the same composition and in a covered crucible.

The crystalline phases were characterized by X-ray diffraction (XRD, Smartlab, Japan)
with CuKα radiation. XRD data for Rietveld refinement were collected in the range of
10−80◦, with a step size of 0.02◦, and a count time of 1 s. The lattice parameters, phase
quantity, and theoretical density of the sample were refined and calculated via GSAS
software and Equation (1) (shown below) [21,22]. In Equation (1), % and ρm represent
the weight percentage and the theoretical density of the given phase, respectively. The
bulk densities of the Li3TiO3F ceramics were assessed by Archimedes’ principle. The
microstructures were observed with scanning electron microscopy (SEM, JSM-6610, Jeol,
Tokyo, Japan). Using the Rohde & Schwarz network analyzer, the Hakki-Coleman dielectric
resonator approach modified by Courtney [23,24] was utilized to measure the microwave
dielectric performances of the Li3TiO3F ceramics. The τf was achieved by Equation (2):

ρt =
100

%phase1
ρmphase1 +

%phase2
ρmphase2

(1)

τf =
f85 − f25

f25 × (85 − 25)
× 106(ppm/°C) (2)

where f 25 and f 85 represent the resonant frequency at 25 ◦C and 85 ◦C, respectively.

3. Results and Analysis

The bulk density (ρb) and relative density (ρr) of the Li3TiO3F ceramics are illustrated
in Figure 1. The theoretical density of sample was gauged from the refined XRD data, as
shown in Table 1. Following the rise in heating temperature from 700 ◦C to 750 ◦C, the
ρb and ρr of Li3TiO3F sintered bodies were found to have enhanced from 2.870 g/cm3 to
3.150 g/cm3, and from 89.1% to 98.3%, respectively. The increase in ρr resulted from the
removal of the porosity, whereas the abatement in ρr was due to the over-sintering [25].
From the view of density, the optimal sintering temperature of the Li3TiO3F ceramics was
750 ◦C. Compared to Li2TiO3 ceramics (1300 ◦C), the inherently low sintering temperature
of the Li3TiO3F ceramics (750 ◦C) is benefited from the alleviation of the chemical potential
caused by the co-occupied anion position of the F− and O2− ions, and a similar phenomenon
was reported in our previous article [26].



Crystals 2023, 13, 897 3 of 8

Crystals 2023, 13, x FOR PEER REVIEW 3 of 9 
 

 

shown in Table 1. Following the rise in heating temperature from 700 °C to 750 °C, the ρb 
and ρr of Li3TiO3F sintered bodies were found to have enhanced from 2.870 g/cm3 to 3.150 
g/cm3 , and from 89.1% to 98.3%, respectively. The increase in ρr resulted from the removal 
of the porosity, whereas the abatement in ρr was due to the over-sintering [25]. From the 
view of density, the optimal sintering temperature of the Li3TiO3F ceramics was 750 °C. 
Compared to Li2TiO3 ceramics (1300 °C), the inherently low sintering temperature of the 
Li3TiO3F ceramics (750 °C) is benefited from the alleviation of the chemical potential 
caused by the co-occupied anion position of the F-and O2− ions, and a similar phenomenon 
was reported in our previous article [26].  

 
Figure 1. Bulk density (ρb) and relative density (ρr) of nominal Li3TiO3F ceramics sintered at different 
temperatures. 

Figure 2 displays the typical fresh fracture of nominal Li3TiO3F ceramics sintered at 
different temperatures. Several intergranular pores were observed for the 725 °C-sintered 
sample. The 750 °C-sintered sample exhibited a relatively uniform and compact 
microstructure with a mean grain size of around 210 nm, as shown in Figure 2b, 
corresponding to the achieved maximum relative density. However, when the sintering 
temperature surpassed 775 °C, poor grain uniformity and exaggerated grain growth 
appeared as shown in Figure 2c,d, which would therefore deteriorate the sample’s 
dielectric properties.  

Figure 1. Bulk density (ρb) and relative density (ρr) of nominal Li3TiO3F ceramics sintered at
different temperatures.

Table 1. Refinement data of nominal Li3TiO3F ceramics sintered under different conditions.

S.T. Phase Phase Quantity ρm ρt a = b = c V Rwp Rp

(◦C) (%) (g/cm−3) (g/cm−3) (Å) (Å3) (%) (%)

725
Li3TiO3F 96.657 3.192

3.200
4.133 70.599

8.490 6.720Li2TiO3 3.343 3.430 8.277 566.980

750
Li3TiO3F 97.245 3.199

3.204
4.130 70.450

9.660 7.420Li2TiO3 2.755 3.407 8.295 570.830

775
Li3TiO3F 92.367 3.229

3.172
4.126 70.218

8.400 6.620LiF 7.633 2.622 4.035 65.707

800
Li3TiO3F 94.102 3.210

3.170
4.125 70.198

7.240 5.780LiF 5.898 2.637 4.028 65.337

Figure 2 displays the typical fresh fracture of nominal Li3TiO3F ceramics sintered at
different temperatures. Several intergranular pores were observed for the 725 ◦C-sintered
sample. The 750 ◦C-sintered sample exhibited a relatively uniform and compact microstruc-
ture with a mean grain size of around 210 nm, as shown in Figure 2b, corresponding to
the achieved maximum relative density. However, when the sintering temperature sur-
passed 775 ◦C, poor grain uniformity and exaggerated grain growth appeared as shown in
Figure 2c,d, which would therefore deteriorate the sample’s dielectric properties.

Figure 3 exhibits the XRD profiles of nominal Li3TiO3F specimens fired at 725~800 ◦C.
For the samples sintered at 725 and 750 ◦C, their XRD patterns were identified as cubic
structure Li3TiO3F (#04-002-4527) and Li2TiO3 (#01-075-1602) phases, and no diffraction
peaks of LiF were observed. With increasing the temperature to 775 and 800 ◦C, except for
the major phase Li3TiO3F, the diffraction peaks from the Li2TiO3 phase vanished, whereas
the diffraction peaks from the LiF phase (#01-089-3610) appeared. In our experiment, pure
phase Li3TiO3F was not obtained, and this was similar with the report published by Bian
et al. [20], but somewhat different with the previous report by Szymanski et al. [19].
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Figure 3. XRD profiles of nominal Li3TiO3F specimens fired at 725~800 ◦C.

To further clarify the crystal structure information and phase assemblage, Rietveld
refinements of the XRD data were conducted on the nominal Li3TiO3F ceramics via GSAS
software using three phase models consisting of Li3TiO3F, LiF, and Li2TiO3. Figure 4
displays the comparison of the simulated and measured XRD profiles of Li3TiO3F specimens
fired at 725~800 ◦C, and the resultant refined results are summarized in Table 1. As shown
in Figure 4 and Table 1, small reliability factors below 10% were observed, suggesting that
the refinement results obtained were creditable.
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Figure 5 displays the εr values of nominal Li3TiO3F ceramics based on the heating
temperatures employed. The εr was found to initially increase, reaching a maximum value
under 750 ◦C, and then subsequently declined with further rising sintering temperatures.
The change in the εr and ρr values with firing temperature illustrated an analogous vari-
ation tendency, suggesting that the ρr played a vital role in impacting the εr of current
ceramics [27]. Moreover, for the samples sintered above 750 ◦C, the degradation of εr was
also found to be connected with the disappearance of Li2TiO3 (εr = 22.0) and the occurrence
of LiF (εr = 8.0) phases, respectively [17,28].
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The variations of τf and Q × f in nominal Li3TiO3F ceramics are illustrated in Figure 6.
The τf is dependent on phase constitution and crystal structure [8]. In this study, the τf
exhibited a downward tendency from −42.0 ppm/◦C to −48 ppm/◦C as the sintering tem-
perature increased from 725 ◦C, to 800 ◦C, respectively, which was attributed to the changed
phase assemblages (Figure 3) since the LiF registered a negative τf (−117.0 ppm/◦C), while
the Li2TiO3 registered a positive τf (20.0 ppm/◦C) [17,28]. In addition, as the sintering
temperature rose from 725 ◦C, to 750 ◦C, the Q × f of Li3TiO3F ceramics gradually increased
from 52,600 GHz to 57,300 GHz, respectively. Subsequently, the Q × f values showed a
downward trend and ultimately obtained 54,400 GHz at 800 ◦C. In practical ceramics, the
Q × f is typically dominated by the extrinsic loss rather than intrinsic losses corresponding
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to the electromagnetic field interaction with the phonons [29–31]. This extrinsic loss has
been associated with microstructural characteristics (such as pores, grain morphology,
grain boundaries, and secondary phases, etc.) [32]. The influence of the secondary phases
of Li3TiO3 (Q × f = 63,500 GHz) and LiF (Q × f = 73,800 GHz) on the Q × f in present
ceramics can be ignored due to their relative high Q × f values [17,28], as shown in Figure 3.
Hence the porosity and grain size distribution were considered to determine the Q × f of
present ceramics [32]. The enhancement of Q × f was associated with the synergistic effects
of the enhancement of a uniform microstructure and reduction of porosity, whereas the
reduction of Q × f was associated with the nonuniform and exaggerated grain growth
(Figure 2). In addition, the Q × f value of present ceramics was found to be lower than
those of Li2TiO3 and LiF, which may be connected with the disordered charge distribution
in the crystal as reported in previous research [30,31]. Table 2 summarizes the sintering
temperature (Ts) along with the microwave dielectric performances of several rock salt
structured ceramics and present ceramics. As shown in Table 2, although the microwave
dielectric performances of the present ceramics are somewhat inferior to other counter-
parts, its remarkable advantages include the relatively low sintering temperature, which is
conducive to energy conservation.
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Table 2. The sintering temperature (Ts), along with the microwave dielectric performances of several
rock salt structured ceramics and present ceramics.

Compounds εr Q × f(GHz) τf (ppm/◦C) TS (◦C) Ref.

Li7Ti3O9F 22.5 88 200 −24.0 950 [10]
Li5Ti2O6F 19.6 79 500 −30.0 880 [11]
Li3ZrO3F 15.8 65 100 1.0 925 [16]
Li2TiO3 22.0 63 500 20.0 1300 [17]

Li3TiO3F 18.6 30 000 −58.0 875 [20]
Li3TiO3F 18.0 57 300 −42.0 750 This study

4. Conclusions

The relationships between the microstructure and microwave dielectric properties of
Li3TiO3F ceramics were investigated in this study. XRD analysis showed that the major
phase of Li3TiO3F accompanied with small amounts of Li2TiO3 and LiF phases were formed.
Dense ceramics with a mean grain size of around 210 nm were obtained from Li3TiO3F
sintered at 750 ◦C. As the sintering temperature increased, the εr and Q × f values first
increased and then decreased, whereas its τf decreased slightly. Typically, the nominal
Li3TiO3F ceramics fired at 750 ◦C displayed favorable microwave dielectric properties:
εr =18.0, Q × f = 57,300 GHz (under 9.2 GHz), and τf =−43.0 ppm/◦C, respectively.
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