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Abstract— In this paper, it is demonstrated that a chain of S-

shaped split ring resonators (S-SRRs) etched on a dielectric 
substrate can modulate the amplitude of a carrier signal injected 
to a transmission line (a coplanar waveguide –CPW). To this end, 
the S-SRR chain must be transversally displaced above the CPW, 
in close proximity to it. By this means, the transmission 
coefficient of the line is modulated by the time-varying 
electromagnetic (inductive) coupling between the line and the S-
SRRs of the chain, related to their relative motion. Based on this 
principle, two different applications can be envisaged: (i) angular 
velocity sensors, and (ii) near-field chipless radiofrequency 
identification (chipless-RFID) tags. In the former application, the 
S-SRR chain is circularly shaped and the S-SRRs are distributed 
uniformly along the perimeter of the rotor, at equidistant 
positions. By this means, the amplitude modulated signal 
generated by rotor motion exhibits envelope peaks whose 
distance is related to the angular velocity of the rotor. In the use 
of S-SRRs as microwave encoders for chipless RFID tags, not all 
the S-SRRs of the chain are present. Their presence or absence at 
the predefined (equidistant) positions is related to the logic state 
‘1’ or ‘0’. Tag reading is sequential and it is achieved through tag 
motion (at constant velocity) above the reader, a CPW 
transmission line fed by a carrier signal. The identification (ID) 
code is contained in the envelope function of the resulting 
amplitude modulated signal, which can be obtained by means of 
an envelope detector. With the proposed approach, a high 
number of pulses in angular velocity sensors can be achieved 
(with direct impact on angle resolution and sensitivity to changes 
in instantaneous rotation speed). Moreover, chipless-RFID tags 
with unprecedented number of bits can be obtained. The 
proposed angular velocity sensors can be useful in space 
environments, whereas the chipless-RFID systems based on the 
proposed tags are useful in applications where reading range can 
be sacrificed in favor of high data capacity (large number of bits), 
e.g., security and authentication. 

Index Terms—Angular velocity sensors, chipless RFID, 
coplanar waveguide, s-shaped split ring resonators (S-SRRs). 

I. INTRODUCTION 

ransmission lines loaded with electrically small resonators 

have been used in many different microwave applications  
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[1,2]. In particular, it has been demonstrated that split ring 

resonator (SRR) loaded lines [3] and complementary split ring 

resonator (CSRR) loaded lines [4,5] are useful for the 

implementation of one dimensional (1D) metamaterials. By 

combining SRRs with shunt inductors and CSRRs with series 

capacitors, left-handed lines exhibiting antiparallel phase and 

group velocities within a certain frequency band have been 

reported [3,5]. The controllability of the dispersion relation 

and characteristic impedance in these artificial lines has 

opened the door to the design of microwave devices with 

superior performance or with novel functionalities, on the 

basis of impedance and dispersion engineering [1,2]. 

In other applications, where a transmission line is simply 

loaded with resonant elements (SRR, CSRR, or other 

electrically small resonators), the resonance phenomenon, 

rather than dispersion and impedance engineering, is exploited 

[1]. Such resonator-loaded lines exhibit stopband functionality 

useful in many different microwave applications, such as 

blocking spurious signals in microwave circuits [6], multiband 

dipole and monopole antennas based on the concept of trap 

antennas [7,8], microwave sensors [9] and chipless-RFID tags 

[10].  

Concerning sensors implemented by means of resonator 
loaded lines, various approaches have been presented. Most of 
such sensors are based on the variation of resonance frequency 
caused by the variable to be measured (measurand) [11-17]. 
Other sensors implemented by means of resonator loaded lines 
are based on symmetry properties, including coupling 
modulation sensors [9,18-24] and sensors based on frequency 
splitting [25-28]. In coupling modulation sensors, a 
transmission line is symmetrically loaded with a symmetric 
resonator. The key aspect for sensing purposes is that the 
resonant element exhibits a symmetry plane acting as electric 
wall (at the fundamental resonance, the one of interest), 
provided the transmission line exhibits a magnetic wall at its 
axial symmetry plane (as occurs in most usual transmission 
lines, such as microstrip, CPW, etc.). If symmetry is 
preserved, the resonator is not excited due to perfect 
cancellation of electric and magnetic fields on the resonator 
area. However, if symmetry is broken, e.g., by the effects of a 
spatial variable, or by an asymmetric dielectric load, then the 
resonator is excited and a notch in the transmission coefficient 
appears. Moreover, the magnitude (depth) of such notch is 
related to the level of asymmetry, and can be used as output 
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variable in these coupling modulation sensors. In frequency 
splitting sensors, a transmission line is symmetrically loaded 
with a pair of identical (but not necessarily symmetric) 
resonant elements. Under these conditions, the structure 
exhibits a single transmission zero (notch) in the vicinity of 
the fundamental resonance frequency of the loading elements. 
Conversely, when symmetry is broken, frequency splitting 
appears, and the separation between the two notches gives a 
measure of the level of asymmetry. Both, coupling modulation 
and frequency splitting sensors are robust in front of cross 
sensitivities caused by environmental factors such as 
temperature and moisture drifts. The reason is that symmetry 
is invariant under changing ambient conditions. 

There is another type of sensors where the transmission 
coefficient of a transmission line is modulated by the effects of 
a movable resonant element, or set of resonant elements, in 
close proximity to the line. In [22], angular velocity sensors 
based on electric LC (ELC) resonators were reported. In that 
work, the transmission line is a CPW and the ELC resonator is 
axial to the rotor. Since the ELC resonator is a bisymmetric 
resonator exhibiting orthogonal electric and magnetic walls at 
the fundamental resonance, by rotating the ELC resonator in 
close proximity to the CPW transmission line, line-to-

resonator coupling is modulated and, consequently, the 
transmission coefficient varies between a maximum and a 
minimum value twice per cycle. By injecting a harmonic 
signal (carrier) tuned to the resonance frequency of the ELC 
resonators, the amplitude is modulated at the output, and the 
distance between adjacent maxima, or minima, in the envelope 
function corresponds to half the period of the rotor. Variations 
of the angular velocity sensor proposed in [22] can be found in 
[23,24].  

In the previous angular velocity sensors, also useful as 
angular displacement sensors, two pulses per cycle are 
generated. This prevents from the measurement of 
instantaneous angular velocities that can vary during a cycle. 
To solve this problem, the edge configuration was presented in 
[29], where the rotor was equipped with a circular chain of 
SRRs etched along its external perimeter. By situating the 
stator, a CPW transmission line, just below the SRR chain, the 
transmission coefficient of the line is modulated at the rhythm 
of the SRRs passing on top of the CPW axis. Since the number 
of SRRs of the chain can be made very large (300 in [29]), it 
follows that the number of pulses of the resulting envelope 
function is also large. Therefore, the measurement of quasi-
instantaneous angular velocities is possible. In a recent work 
[30], an angular velocity sensor exhibiting 1200 pulses per 
cycle, based on a double chain of SRRs and with optimized 
carrier frequency, was reported. 

Concerning chipless-RFID tags, there are three main 
approaches for their implementation: (i) time domain based 
tags, (ii) frequency domain based tags and (iii) hybrid tags. 
Time domain based tags are realized by loading a transmission 
line with scatterers, and the interrogation signal is a pulse 
injected to it [31-40]. The ID code is inferred from the echoes 
of that signal. In frequency domain based tags, a transmission 
line is loaded with as many resonators (each tuned to a 

different frequency) as number of bits (retransmission based 
tags) [41,42]. An alternative are the backscattered based tags 
[43-49]. The interrogation signal in both cases is a multi-
frequency signal that must be swept across the spectral 
bandwidth occupied by the resonant elements. The ID code is 
obtained from the singularities present in the amplitude 
(notches), phase or time delay response. The number of bits in 
retransmission based tags has been increased by using 
resonators able to provide more than two states. Such states 
are obtained from the relative orientation between the 
resonator and the line [10, 50,51], providing different notch 
depth. However, by this means, the number of bits achievable 
is still far from those of chipped RFID tags. Hybrid tags [52-

56] are multi-domain tags where more than one domain (e.g. 

time, frequency, phase, polarization, etc.) are used 

simultaneously in order to achieve more than one bit of 

information per resonant element. Examples of hybrid tags 

include encoders based on frequency position and polarization 

diversity [54], and encoders where frequency domain is 

combined with phase deviation [53], among others. 

In this paper, chains of S-SRRs are used as microwave 
encoders for two different applications: angular velocity 
measurements and near-field chipless RFID tags. The 
principle, identical in both applications, is explained in 
Section II. Section III is focused on the design of the S-SRR 
chain and the S-SRR-loaded line, necessary for tag reading 
and for the measurement of angular velocities. The validation 
of the two considered applications is reported in Section IV. In 
Section V, the use of S-SRRs as resonant elements is justified.  
Finally, the main conclusions are highlighted in Section VI. 

II. PHYSICAL PRINCIPLE 

The principle of the proposed devices, first reported in [29], 

is the modulation of the transmission coefficient of a 

transmission line produced by the motion of a chain of 

resonant elements in close proximity to the line. The 

proximity is necessary since the above-cited modulation in the 

transmission coefficient is achieved by the time-varying 

electromagnetic coupling between the line and the resonant 

elements. As the resonator chain moves with regard to the 

line, such coupling varies and, consequently, the transmission 

coefficient, whose magnitude decreases with the coupling 

level, also varies.  

For angular velocity measurements, the chain must be 
circularly-shaped and located in the external perimeter of the 
rotor. In this application the resonant elements must be 
equidistant and distributed uniformly along the rotor 
perimeter. If a transmission line (active part of the stator) is 
located in close proximity to the chain, and it is fed by a 
harmonic signal tuned to a certain frequency close to the 
resonance frequency of the resonators, rotor motion is 
expected to modulate the amplitude of the signal at the output 
port of the line (due to the modulation of the transmission 
coefficient). Obviously, the time distance between adjacent 
peaks (or valleys) in the envelope function is intimately 
related to the rotation speed, and hence such angular velocity 
can be inferred from the envelope function. Such function can 
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be obtained by means of an isolator and an envelope detector 
(composed of a Schottky diode and a low pass filter). The 
isolator can be implemented by means of a circulator and it is 
necessary to protect the transmission line against mismatching 
reflections from the diode (a highly nonlinear device). The 
working principle for this application is illustrated in Fig. 1. In 
[29,30], angular velocity sensors based on this principle and 
implemented by means of split ring resonators (SRRs) were 
considered. In this paper, we use S-shaped SRRs (S-SRRs), 
which are electrically small and are useful not only for angular 
velocity measurement, but also for the implementation of 
chipless RFID tags with high data density (advantages and 
disadvantages of S-SRRs as compared to SRRs are pointed out 
in the discussion).  

For chipless RFID systems, the tags are a set of aligned 
resonant elements printed on a dielectric substrate (typically a 
flexible substrate, including organic substrates, such as paper, 
plastics, or liquid crystal polymers). However, the resonators 
are not necessarily uniformly distributed. For this application, 
equidistant positions for the resonant elements of the tag, each 
one representing a bit of information, are predefined. The 
logic state ‘1’ is associated to the presence of resonant 
element, whereas the absence of resonator at the predefined 
positions corresponds to the logic ‘0’ state. Tag reading 
proceeds similarly to the measurement of angular velocities 
(see Fig. 2). The tag must be displaced on top of a 
transmission line fed by a harmonic signal (tuned to a 
frequency close to the resonance frequency of the tag 
resonators). By this means, the amplitude of the feeding signal 
is modulated, and the ID code of the tag is contained in the 
envelope function of the amplitude modulated signal present 
at the output port of the transmission line. The necessary 
stages to obtain such envelope function are identical to those 
needed in angular velocity measurements (specified in the 
previous paragraph). 

III. DESIGN OF THE S-SRR CHAIN AND S-SRR-LOADED CPW 

TRANSMISSION LINE 

In this paper, the resonant elements of the chain (for both 

the rotor and the chipless tags) are S-shaped split ring 

resonators (S-SRRs) [57-59]. The transmission line, acting as 

stator (for angular velocity measurements) or as active part of 

the reader (for chipless RFID systems), is a coplanar 

waveguide (CPW) transmission line. S-SRRs are electrically 

small particles that can be excited by the counter magnetic 

field lines generated in the slots of the CPW transmission line 

when such particles are aligned and oriented as depicted in 

Fig. 3(a). For chipless RFID tags, the small electrical size of 

S-SRRs provides a small size for the tag. For angular velocity 

measurements, a large number of pulses (a figure of merit) in 

a certain rotor perimeter can be achieved if the particles 

occupy a small size. For these two reasons, S-SRRs are the 

resonators considered in this paper. Note that in [29,30] 

rectangular shaped SRRs were used for angular velocity 

measurements (the stator was a CPW transmission line, as 

well). With the considered shape factor of the resonant  

 

 
 

Fig. 1. Illustration of the working principle for angular velocity measurements 
based on the amplitude modulation of a harmonic signal produced by rotor 
motion. 

 
Fig. 2. Illustration of the working principle for tag reading in a chipless RFID 
system based on near-field coupling and sequential bit reading. 
 

elements, the distance between adjacent resonant elements 

was very small, and a large number of pulses was achieved.  

For both applications (angular velocity sensors and chipless 

RFID tags), a small distance between adjacent predefined 

resonator positions (either with or without S-SRRs) is very 

convenient. Such small separation favors compact size in 

chipless tags and large number of resonators (and hence 

pulses) in rotors. However, by tiny spacing adjacent 

resonators, inter-resonator coupling and simultaneous 

coupling between the line and several S-SRRs of the chain are 

favored. These effects should be avoided in order to prevent 

the appearance of multiple transmission zeros located at 

positions difficult to predict a priori. The solution to these 

limiting aspects related to small inter-resonator separation is to 

etch an identical S-SRR in the back substrate side of the CPW 

transmission line, but oppositely oriented [see Fig. 3(b)]. 

When the relative position between the S-SRR of the line and 

the S-SRR chain corresponds to a perfectly aligned (vertically) 

pair of S-SRRs (the one of the line with one of the S-SRRs of 

the chain), both vertically aligned S-SRRs can be seen as a 

single resonant element (broad-side coupled S-SRR or BC-S-

SRR). Since the fundamental resonance frequency of the BC-

S-SRR, f0, is smaller than the one of the individual 

(uncoupled) resonators, it follows that by setting the frequency 

of the feeding signal (carrier frequency, fc) of the CPW 

transmission line (necessary for tag reading or for angular 

velocity measurements, as mentioned before) to fc = f0, or 

close to it, then the above cited cross couplings are avoided. 

Such strategy was pointed out in [29] in reference to angular 

velocity measurements based on pairs of SRRs. The cross 

sectional view of the S-SRR chain and the S-SRR-loaded 

CPW, separated by the air gap, can be seen in Fig. 3(c). 
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Fig. 3. Square S-shaped SRR coupled to a CPW transmission line (a) 3D view 

of the broadside coupled S-SRR (BC-S-SRR) (b), and cross sectional view of 

the stator/reader and rotor/tag (c). 

 

   
Fig. 4. Photograph of the fabricated 10-S-SRR chain (a) and top (b) and 
bottom (c) views of the S-SRR-loaded CPW transmission line. Dimensions 

are, in ref. to Fig. 2(a) and Fig. 2(b), (in mm) W = 1.2 and G = 0.48, l1 = 3.8, 

l2 = 2.96, c0 = 0.4, s = 0.2, and Pm = 3.5. CPW transmission line and tag are 

separated by a 0.25 mm air gap. 

 

The considered substrate for the implementation of the S-

SRR chains is the Rogers RO4003C with thickness 

h = 203 m and dielectric constant r = 3.55. Since this 

substrate is very narrow, and hence flexible, it has been 

attached to a rigid substrate FR4 (with thickness h = 1.6 mm 

and dielectric constant r = 4.7). By these means, mechanical 

stability, necessary for tag reading and angular velocity 

measurements, is ensured. The CPW transmission line and the 

S-SRR of the reader/stator have been etched on opposite sides 

of a Rogers RO3010 substrate with thickness h = 635 m and 

dielectric constant r = 10.2. The size of the S-SRRs has been 

optimized in order to obtain a resonance frequency for the 

broadside coupled counterpart (BC-S-SRR) of f0 = 4 GHz. For 

characterization purposes, we have fabricated a linear chain of 

10 S-SRRs [see Fig. 4(a)]. The top and bottom views of the S-

SRR-loaded CPW transmission line can be seen in Figs. 4(b) 

and (c), respectively. Note that a guiding channel has been 

added to the bottom side of the CPW in order to guide, with 

the necessary alignment, the S-SRR chain over the S-SRR of 

the line. We have measured the response of the structure for 

different positions of the S-SRR chain in the vicinity of the 

reference position (corresponding to a perfect alignment 

between the S-SRR of the line and one of the S-SRRs of the 

chain). The results are depicted in Fig. 5. When the tag is not 

situated in the reference position, the attenuation at f0 severely 

 

 
Fig. 5. Measured frequency response of the S-SRR-chain/CPW for different 

relative positions of the S-SRR chain in the vicinity of the reference position. 

 

 
Fig. 6. Measured attenuation as a function of the relative displacement 

between the line and the chain at the indicated frequencies. 

 

decreases. This can be appreciated in Fig. 6, where attenuation 

at different frequencies, as a function of the relative 

displacement between the line and the chain, is also depicted. 

It can be appreciated that for frequencies larger than f0 (i.e., 

fd = 0.25mm and fd = 0.5mm, corresponding to the notch 

frequencies for the indicated relative displacements), two 

attenuation peaks per chain period, rather than one, appear. 

The reason is that for carrier frequencies slightly larger than f0 

there are two equivalent positions (one for positive 

displacement and the other one for negative displacement) 

where the transmission coefficient is a minimum. In practice, 

it is difficult to perfectly set the carrier frequency to fc = f0. 

The reason is that it is not easy to accurately control the air 

gap separation between the line and the S-SRR chain. 

Therefore, a convenient strategy is to set fc above f0, accepting 

that two attenuation peaks (rather than one) per chain S-SRR 

cross above the S-SRR of the line will appear. Through this 

approach, some tolerance in the air gap can be assumed. Note 

that by increasing the air gap distance, the effect is an overall 

shift of the responses to larger frequencies, as illustrated in 

Fig. 7. If the carrier frequency is chosen as fc = f0, and the gap 

increases, it may give rise to reading errors or false angular 

velocity measurements. 

IV. APPLICATIONS 

In this section, specific S-SRR chains with identical S-SRRs 

as those considered in the previous section and etched in the 

same substrate are used for two different applications: chipless 

RFID systems and angular velocity measurements. For 

angular velocity measurements, the chain must be circularly 

shaped along the perimeter of the rotor, and the S-SRRs must 

be located at periodic positions. Since the number of resonant 

elements along the perimeter of the rotor is known, it follows 

that the angular velocity is given by the time distance between  
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Fig. 7. Transmission coefficient, inferred from electromagnetic simulation 

using Keysight Momentum, for different relative displacements between the S-

SRR chain and the CPW, parameterized by the air gap separation.  

 

adjacent peaks in the envelope function (Tm), provided a single 

notch per S-SRR cross, above the S-SRR of the line, results. If 

a pair of notches is visible, typically these two notches are 

very close one each other as compared to the time distance 

between pairs of adjacent notches. Therefore, in this later case 

Tm is the time distance between pairs of adjacent notches 

(corresponding each pair of notches to a different S-SRR cross 

above the S-SRR of the line). By measuring Tm it follows that 

the angular velocity is given [29] 
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where θ is the angular position, t is time, θm is the angular 

period and PPR is equal to the number of resonant elements in 

the rotor. 

The photograph of the experimental setup for angular velocity 

measurements can be seen in Fig. 8. The circulator employed 

to implement the isolator is the ATM ATc4-8. The envelope 

detector uses the Avago HSMS-2860 Schottky diode and the 

N2795A Active probe (which acts as lowpass filter with R = 1 

M and C = 1 pF), connected to an oscilloscope (the Agilent 

MSO-X-3104A) in order to visualize the envelope function. 

The carrier signal is generated by means of the Agilent 

E4438C function generator, whereas the displacement and 

velocity of the rotor is controlled by the STM 23Q-3AN 

stepper motor. The S-SRR loaded line has been re-designed 

and re-fabricated since the guiding system is not necessary 

[see Fig. 9(a) and (b)]. Nevertheless, it is important to 

vertically align the S-SRR of the line (stator) with those of the 

rotor, and this is achieved through stator motion in three 

dimensions, allowable by the experimental setup. Vertical 

motion is necessary to properly adjust the gap distance to the 

required value, i.e., 0.25 mm, or as much close as possible to 

it. 

For chipless RFID tags, given a number of bits (and hence 

resonator positions), the S-SRR chain is typically linear.  

 

 
Fig. 8. Photograph of the experimental setup. 

 

  
 

 
Fig. 9. Photograph of the transmission line reader, including CPW (a) and the 

S-SRR (b), and the fabricated encoders (c). 

 

However, in the proof-of-concept presented here, circularly-

shaped chipless tags are considered. The reason is that by 

considering circular S-SRR chains, the experimental set-up for 

angular velocity measurements can be used for tag reading as 

well. In this paper, four 40-bit circularly-shaped chipless tags 

have been fabricated and located at the four quadrants of the 

rotor [Fig. 9(c)]. By injecting a carrier signal with frequency 

fc = 4 GHz at the input port of the CPW transmission line, it 

has been possible to obtain the envelope function 

corresponding to the different 40-bit encoders. The results are 

depicted in Fig. 10 together with the tag ID codes. The angular 

velocity of the rotor has been set to 3.5 rpm. 

It can be appreciated in Fig. 10 that the ID codes of the four 

40-bit chipless tags are correctly provided by the proposed 

reading system. The different notch depths are due to the fact 

 

-12

-8

-4

0

 

airgap = 0.25 mm

 

|S
21

| (
d

B
)

Frequency (GHz)

airgap = 0.1 mm

-12

-8

-4

0

 

 

3.3 3.6 3.9 4.2 4.5

-12

-8

-4

0

airgap = 0.4 mm

 

 Envelope Detector
Isolator

Schottky diode

Transmission
line

Chipless RFID Tag or sensor

time

V0

. . .

Vi @ f0

Guide system

…

Reader

Code 1 Code 2

Code 3 Code 4

(a) (b) 

(c) 



 6 

Fig. 10. Measured normalized envelope for four 40-bit fabricated chipless tags 

with the indicated ID codes. 

 

 
Fig. 11. Measured normalized envelope for a nominal 3.51 rpm speed. 
 

that it is very difficult in practice to ensure a uniform gap 

separation between the S-SRR of the line and those of the tags 

(the in-house rotor system experiences some precession 

movement). Nevertheless, tag reading has been demonstrated 

and validated. It is worth mentioning that these four 40-bit 

encoders can be also seen as a single 160-bit chipless RFID 

tag with ID code composed by the cascade of the individual 

ID codes. Thus, the number of bits achievable with these 

approach, based on sequential bit reading by means of a 

harmonic signal, is only limited by the area occupied by the 

tag. In the proposed chipless tags, the information capacity per 

area unit is as high as 7 bit/cm
2
. 

For angular velocity measurements, S-SRRs at all the 

predefined, and equidistant, positions must be etched (or 

printed). Note that this is equivalent to a 160-bit encoder with 

all bits set to the logic state ‘1’. By using this rotor, quasi-
instantaneous velocities can be measured, and changes of 

angular velocity within a cycle, manifested through variations 

in the time distance between adjacent notches (or pair of 

notches), can be detected. Indeed, the proposed system is also 

useful for angle measurement, and angle resolution is given by 

the number of resonant elements. For this main reason, and 

also to be able to detect changes in quasi-instantaneous 

angular velocities, it is convenient to enhance the number of 

S-SRR in the rotor as much as possible. However, for constant 

angular velocity measurements, S-SRR chains with small 

number of resonators or with absence of resonant elements at 

certain positions can be used. Indeed, the results given in Fig. 

10 are useful to determine the angular velocity of the stepped  

 
Fig. 12. The four different combinations of SRR pairs (tag) on top of the SRR-

loaded CPW (reader). 

 

motor (which is constant). Specifically, from the time distance 

between adjacent notch pairs for the 40-bit encoder with all 

bits set to ‘1’ (see details in Fig. 11), the angular velocity is 
found to be 3.51 rpm, i.e., in good agreement with the nominal 

value (note that the tolerance values of typical step motors are 

in the vicinity of 1.5%). 

V. DISCUSSION 

In [29,30], the reported angular velocity sensor was 

implemented by means of 300 SRRs etched in the rotor. This 

was achieved by designing the resonant elements with a 

rectangular shape. The electrical size of a single S-SRR is not 

much smaller than the one of the SRR. Therefore, it follows 

that by using square shaped S-SRRs, it is not possible to 

accommodate as many resonant elements in the rotor 

perimeter as in the case of rectangular SRRs (obviously 

assuming that the resonance frequency is also comparable). In 

other words, the number of resonant elements per unit length 

(in the longitudinal direction of the resonator chain) is smaller 

in this work, as compared to [29,30]. In this regard, 

rectangular SRRs are a good option to optimize the number of 

pulses in angular velocity sensors.  

However, SRRs are not the optimum resonant elements for 

chipless RFID tags to be read with SRR-loaded CPW 

transmission lines as those reported in [29,30], and used as 

stators. Each logic state is given by a pair of SRRs, rather than 

one. The reason is that by considering the distance between 

the slots of the CPW as the period of the SRR chain (in order 

to maximize the number of resonant elements), it follows that 

a pair of adjacent SRRs (if they are present in the assigned 

positions) lie on top of the slots of the CPW transmission line 

simultaneously. Consequently, a pair of adjacent predefined 

SRR positions (with presence or absence of resonant 

elements) cannot be considered as independent bits in chipless 

RFID encoders based on the SRR chain structure reported in 

[29,30]. Note that, according to Fig. 12, the four different 

combinations of SRR pairs (tag) on top of the SRR-loaded 

CPW (reader) either provide a single notch (a single SRR 

suffices) or an all-pass response, i.e., two logic states. Taking 

into account that the area occupied by a pair of rectangular 

SRRs in the rotor of [29,30] is 23 mm
2
, and the area of the S-

SRR used in this work is 9.9 mm
2
, it follows that the density 

of information (number of bits per area unit) is more than 

twice in the present work, as compared to [29,30]. 

0.4

0.6

0.8

1.0
  Code 1100110011001100110011001100110011001100  

 

Time (s)

0.4

0.6

0.8

1.0

 Code 1101001101001101001101001101001101001100 
 

 
0.4

0.6

0.8

1.0

 

 Code 1010101010101010101010101010101010101010 

 

1 2 3 4
0.4

0.6

0.8

1.0

 

 Code 1111111111111111111111111111111111111111 

 V
0/V

m
ax

4.0 4.1 4.2 4.3 4.4 4.5
0.4

0.6

0.8

1.0

  

 
Time (s)

V
0/V

m
ax

T
m

SRRN

Stator /Reader

SRR

Tag

CPW

……

SRR

Stator /Reader

SRR

Tag

CPW

……

SRR

SRRN+1SRRN

Stator /Reader

SRR

Tag

CPW

……

SRR

SRRN

Stator /Reader

SRR

Tag

CPW

……

SRR

S
2

1

f

‘0’

S
2

1

f

‘1’ S
2

1

f

‘1’

S
2

1

f

‘1’ 



 7 

VI. CONCLUSIONS 

In conclusion, a novel near-field chipless RFID system 

operating in time domain and based on sequential bit reading 

has been proposed. The tags are a set of identical resonant 

elements (S-SRRs in this work) etched (or printed) on a 

dielectric substrate, and the presence or absence of such 

elements at predefined positions determines the logic state of 

the corresponding bit. Tag reading is carried out by near field 

coupling between a harmonically fed S-SRR-loaded CPW 

transmission line (reader) and the S-SRRs of the tag, which 

must be displaced, at constant velocity, above the CPW, in 

close proximity to it. By this means, the amplitude of the 

feeding signal is modulated, and the ID code is contained in 

the envelope function at the output port of the transmission 

line. Such envelope function can be inferred by means of an 

envelope detector. In the present paper, four circularly-shaped 

40-bit encoders have been proposed, and the ID codes have 

been inferred by means of an experimental setup consisting of 

a stepped motor (providing circular motion to the tags) and the 

necessary electronics (to generate the harmonic carrier signal 

and to detect the envelope function). Interestingly, the same 

experimental set-up can be used for angular velocity 

measurements, where the rotation speed is determined from 

the time distance between adjacent notches in the envelope 

function. In this application, it is convenient to implement the 

S-SRR chain of the rotor with as many resonant elements as 

possible, since it has direct impact on angle resolution and on 

the capability to detect rotation speed variations within a 

cycle. However, in this work, constant angular velocities have 

been considered and the same encoders used as chipless RFID 

tags have been found to be suitable for the determination of 

angular velocities. Chipless RFID tags with unprecedented 

number of bits have been reported. Indeed, the four 40-bit tags 

used for validation of the approach can be seen as a single 

160-bit tag, which is by far the chipless RFID tag with the 

largest number of bits reported so far. The information density 

is also very competitive (7 bit/cm
2
). The proposed chipless 

RFID system can be envisaged for applications such as secure 

paper, where the reading distance can be sacrificed in favor of 

the number of bits. Specifically, corporate documents, ballots, 

exams, certificates, etc., with ID codes difficult to copy are 

some of the potential uses of the proposed chipless tags, 

providing counterfeiting functionality and a unique 

identification code, of great interest for security and 

authentication. In angular velocity sensors, the proposed 

system, based on S-SRRs, is an alternative to the sensors 

reported in [29,30], based on pairs of SRRs. In [30], by 

optimizing the frequency of the feeding signal, 1.200 pulses 

were achieved. Here, rather than optimizing the number of 

pulses, the idea was to demonstrate that the encoders can be 

used for angular velocity measurements. Indeed, for the 

measurement of constant, or average, rotation speeds, the rotor 

with four codes can be used for the determination of the 

rotation direction (clockwise or counterclockwise), provided 

the sequence of codes is not symmetric in some cases. 
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