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Abstract

Understanding the mechanism of anomalous transport in magnetically

confined plasmas requires the use of sophisticated diagnostic tools for

the measurement of short-scale turbulent fluctuations. This paper

describes the conceptual design of an experimental technique for the

global visualization of density fluctuations in tokamaks. The proposed

method is based on microwave reflectometry and consists in using a

large diameter probing beam, collecting the reflected waves with a large

aperture antenna, and forming an image of the reflecting plasma layer

onto a 2D array of microwave receivers. Based on results from a series

of numerical simulations, the theoretical feasibility conditions of the

proposed method are discussed.
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microwave imaging reflectometry.
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1. Introduction

The direct impact of plasma confinement on the feasibility of an

economical fusion reactor makes understanding the mechanism of

anomalous transport in magnetically confined plasmas one of the great

challenges of fusion research.

Both theory and experiments suggest that plasma transport in

tokamaks greatly exceeds neoclassical predictions because of short-scale

turbulent fluctuations causing an enhancement in the diffusion of

particles, energy and momentum across the magnetic field lines [1].

However, such an explanation is not completely satisfactory since it is

based neither on a self-consistent theory of plasma turbulence nor on

comprehensive sets of measurements. Indeed, the role played by

turbulence on transport of magnetically confined plasmas is still an

outstanding issue.

Because of the overwhelming difficulty in developing the theory of

plasma turbulence and in performing exhaustive measurements of

turbulent fluctuations, numerical simulations of turbulence are beginning

to play a dominant role in the prediction and interpretation of tokamak

experiments. However, this also is not satisfactory since, given the

enormous complexity of the problem, any simulation of turbulence must

be driven by a direct experimental observation of the turbulent

fluctuations. A case in point is that of classical fluids [2], where many

advances in the theory of hydrodynamic turbulence were stimulated by

the visualization of the turbulent flow with a variety of optical

techniques. Unfortunately, none of these diagnostic methods could be

used for the measurement of fluctuations in low density and high

temperature plasmas, such as those in tokamaks.

This paper describes an experimental technique for the global

visualization of turbulent fluctuations in tokamaks. Its outline is as

follows. Section 2 is a discussion of difficulties and limitations in the

use of microwave reflectometry in tokamaks – the basis of the method
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proposed in this paper. Section 3 contains results from a series of

numerical simulations, and their implications for the use of

reflectometry in tokamaks are discussed in Sec. 4. Section 5 describes

the conceptual design of a possible apparatus for the global visualization

of turbulent fluctuations in tokamaks. Finally, concluding remarks are

given in Sec. 6.

2. Microwave Reflectometry

The method described in this paper is based on microwave

reflectometry [3] – a radar technique for the detection of plasma

fluctuations from the reflection of microwaves by plasma cutoffs.

Because of a high sensitivity to plasma fluctuations, reflectometry has

found extensive use in tokamaks for the detection of turbulence.

However, often the high sensitivity makes very difficult the extraction of

any quantitative information from the measured signals as well.

The interpretation of reflectometry is relatively simple in a 1D

geometry, where a plane stratified plasma permittivity e e e= +0 ( ) ˜( )r r

(with fluctuation component ̃( )e r << 1) is probed by a wave propagating

in the r-direction. Under these conditions, it is easy to show that when

the radial wave number of fluctuations satisfies the equation

k k k Lr < 0 0/( ) /e 1 3 (where L d dr r rce e= =
-( / )0

1  is the scale length of the

plasma permittivity at the cutoff r rc=  and k0  is the free-space wave

number of the probing wave), the fluctuating component of the signal

phase is given by the approximation of geometric optics  [3]
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where L n dn drn r rc
= =/( / )  is the scale length of the electron density n,

M n n r rc
º =( / )¶e ¶  (equal to one for the ordinary mode and to two for

the extraordinary mode), Gf ( )kr  is the power spectrum of ̃f

(considered as a function of rc ) and Gn rk( )  is the power spectrum of

the relative density fluctuation ˜ /n n.

In conclusion, for 1D turbulence the power spectrum of density

fluctuations Gn rk( )  can be obtained from the power spectrum of the

signal phase Gf ( )kr . The latter can be measured by performing radial

correlation measurements using several probing waves with closely

spaced cutoff layers.

FIG. 1. In-phase (I) and quadrature (Q) components of a TFTR
reflectometer signal over a 1 ms window (left), and probability density
distribution of the signal amplitude r = +I Q2 2  (right); open circles
are the Rayleigh distribution (= -2 2r r exp[ ]).

The use of reflectometry becomes considerably more difficult in

plasmas with multi-dimensional turbulent fluctuations. Unfortunately,

this is just the case of interest in magnetically confined plasmas, such as

in tokamaks where turbulent fluctuations vary in both the radial and

poloidal directions. The difficulty stems from the fact that when the

plasma permittivity fluctuates perpendicularly to the direction of

propagation of the probing wave, the spectral components of the

backward field propagate in different directions. This may result in a
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complicated interference pattern on the detector plane, from which it is

very difficult to extract any information on the fluctuations under

investigation. This phenomenon is illustrated in Fig. 1, which shows the

in-phase (I) and quadrature (Q) components of a TFTR reflectometer

signal together with the density distribution of the signal amplitude

r = +I Q2 2  [4]. The large fluctuations in the measured signal are

the result of two dimensional (2D) plasma fluctuation that transforms the

signal components into two independent normal random variables with

zero mean. Consequently, the phase of the measured signal cannot be

used for inferring the properties of plasma fluctuations.

To better understand and quantify this phenomenon, we have

performed a series of numerical simulations of reflectometry in plasmas

with 2D fluctuations [5]. Here we present only the results that are of

interest for the subject of this paper.

3. Numerical Simulations

In a system of orthogonal coordinates (x,r), we assume that a plane

stratified plasma density (n r( )) is perturbed by a field of 2D fluctuations

( ˜( , )n x r ) with spectral distribution

˜( , )

( )
cos( )cos( )

n x r

n r
p r q xpq

q

M

p
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d j
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k k  , (3)

consisting of MxM discrete components with wave numbers p rk  and

q xk  (k r  and k x  are constants), random phases j pq , and amplitudes

d pq r r x xp p k q k 
  

 
2 2 2µ - -exp[ ( / ) ( / ) ]k kD D , (4)

where Dk Mr r= k / 2, Dk Mx x= k / 2. Throughout the paper we will use

the value M=20.

The plasma is confined to the region  r rb<  and the probing wave

is launched in the r-direction from the free-space region r rb> . For

facilitating the comparison with experimental results, the density n r( ) is

taken similar to the electron density distribution on the equatorial plane
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of a typical TFTR discharge. Finally, the probing wave has the

frequency of 75 GHz and the ordinary mode of propagation with the

electric field perpendicular to the x-axis.

The wave amplitude (E x r( , )) is expressed as the sum of 2N+1

independent solutions of the wave equation

E x r c E x rn
n N

N
n( , ) ( , )= å

=- 

 

   
, (5)

with N >>M (to be determined). The functions En are cast in the form

E x r f r eim xn mnm N

N
x( , ) ( )= å
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k , (6)

where f rmn( )  are solutions of a system of 2N+1 ordinary differential

equations
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where e w w
 0 = -1 2( / )p  is the unperturbed plasma permittivity,

w pp e en e m= ( / ) /4 2 1 2
   is the plasma frequency and am xm k= k / 0 .

These equations, that are obtained inserting Eqs. (4) and (6) into the

wave equation and by performing a Fourier expansion in x , can be

solved with the Runge-Kutta method. The coefficients cn  in Eq. (5) are

then determined by imposing that E x r( , ) in free-space has the form

E x r e
ik r

A ei n x k n r
n

n N

N
x x( , ) [ ( ) ]/

=
-

+ + -
å

=-
 

- 

 

 

 0 0k k2 2 2 1 2
, (8)

where the first term on the right hand side is the launched wave, while

the second represents the field of reflected waves in free-space (in the

following referred to as the backward field Eb). In the region r rb< , Eb

represents a virtual field that an observer in free-space could measure by

mapping the plasma region onto an array of detectors with an optical
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system.

Finally, the integer N must be chosen large enough to make the

results significantly unchanged by any increase in its value. This

condition, to be verified a posteriori, allows the closure of the system of

differential equations (7) by setting to zero all terms f m q n( )±  with

| |m q N± > .

Shown in Fig. 2 are the amplitudes | |An  of reflected waves as a

function of k nx x= k  for fluctuations with Dkx =0.5 cm-1 and Dkr =1

cm-1. The three cases differ only in the value of the total density

fluctuation, defined as the volume average sn n n=< >˜ / /2 2 1 2 , which is

equal to 2.5x10-3, 5.0x10-3 and 1.0 x10-2, respectively. These results

show that a rise in the level of plasma fluctuations causes a spectral

broadening of the reflected waves and a decrease in the amplitude (A0 )

of the wave propagating along the direction of specular reflection.

FIG. 2. Spectra of backward waves as a function of kx  for fluctuations
with Dkx =0.5 cm-1, Dkr =1 cm-1, and sn=2.5x10-3 (a), sn=5.0x10-3

(b), sn=1.0x10-2 (c). Calculations were done with N=80.

1
10-3

10-3
1

(a )

(b )

(c )

0 5-4 -3 -2 -1 1 2 3 4-5
10-3

10-2

10-1

10-2

10-1

10-2

10-1

1

|A
   
|

 n
|A

   
|

 n
|A

   
|

 n

k  [cm-1]x



8

For the same three cases of Fig. 2, Fig. 3 shows the modulus

( r =| |Eb ) and the phase deviation (f̃ ) from the mean phase of the

backward field at the plasma boundary (r rb= ). These results show

large fluctuations in r  and therefore that the backward field is far from

being approximated by a plane wave. Shown in Fig. 3 is also the phase

obtained from Eq. (1) neglecting the bending of rays, which in the

following we will indicate with fGO and refer to as the phase of 1D

geometric optic. These results show that f̃  is significantly different

from fGO, and that the discrepancy grows with the level of fluctuations.

FIG. 3. Modulus r  of the backward field (left), and fluctuating phase
f̃  (right) at plasma boundary (r rb= ) for the three cases of Fig. 2.
Dashed line is the phase of 1D geometric optics (fGO).

The large fluctuations in the amplitude of the backward field shown
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the random phase screen model of reflectometry [6], where the primary

effect of plasma fluctuations is a phase modulation of the probing wave

near r rc» , the fluctuations in r must be very small near the cutoff.

FIG. 4. Isometric 3D plot of the field amplitude r( , )x r  for the case (a)
of Fig. 2; the probing wave is launched from the free-space region r>rb.

The isometric 3D plot of r( , )x r , shown in Fig. 4 for one of the cases of

Fig. 2, proves that indeed a region with very small fluctuations exists,

but it is located at a considerable distance from the cutoff.

FIG. 5. Value of sr as a function of r for the three cases of Fig. 2. The
dash line represents the value of sr from the Raileigh distribution.
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As a measure of the fluctuation of r( , )x r , we define the variance

s r rr
2 2( ) ( )r r r=< - < > > , where   < >L r  indicates the average at

constant value of r . Figure 5 shows that the radius rG  of the absolute

minimum of s r  is the same for all the cases of Fig. 2. It is also

interesting to note that for r rG>> , Fig. 5 shows that s r  approaches the

variance given by the Rayleigh distribution of a Gaussian noise,

indicating that as in Fig. 1 the real and the imaginary component of the

backward field become two independent normal random variables with

zero mean.

FIG. 6. Fluctuating phases fG  (solid line) and fGO (dashed line) for
the three cases of Fig. 2.

Shown in Fig. 6 is the value of fGO and the phase deviation from

the mean for the backward field at r rG=  (in the following referred to as

the phase fG ). The excellent agreement between fGO and fG  is

tantamount to a reduction of the problem of 2D fluctuations to that of

1D fluctuations. In both cases, Eq. (2) provides a link between plasma

fluctuations and a measurable phase – the signal phase for 1D
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fluctuations and the phase fG  of the backward field for 2D fluctuations.

The two properties of the plane r rG= , i.e., where s r  has its

absolute minimum and f fG GO» , would make the backward field

appear to an observer in free-space as coming from a virtual location

behind the cutoff. This is the result of the spatial variation of e0  that

causes a bending towards the r-axis in the trajectory of waves with

kx ¹ 0. To quantify this phenomenon, let us consider the geometry of

Fig. 7 where the plasma is divided into N plane slabs with thickness d

and uniform permittivity ei . For a ray with wave number kx , we can

easily derive the difference equation

l l l li i i
i

i
i+

+

- = - +1
1

tan( )

tan( )

q

q
d  , (9)

where Ri  and qi  are the radius and the angle of intersection with the r-

axis of the ray tangent, and l r Ri i i= - .

FIG. 7. Geometry used for deriving Eq. (9).
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where a = ( / )k kx 0
2 . The limit N ® ¥  turns Eq. (10) into the

differential equation
d

dr

l r

r r
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which, apart from terms of order a eL , gives

l r r
r

dr
r

r
b

c

b
( )

( )
= » ò    

 1

e0

. (12)

Since this expression does not depend on kx , all rays starting from the

same point will appear as coming from the radial position

r r r
r

dr
r

r
G b

c

b
= » - ò    

 1

e0( )
. (13)

It is interesting to note that the integral in this equation is the group

delay multiplied by the speed of light.

Figure 8, where s r ( )r  is displayed for three density profiles having

the same cutoff radius, shows that Eq. (13) agrees with the results of the

numerical simulations.

FIG. 8. Value of s r  (right) for three density profiles (left) having
identical cutoffs ( a  is the profile used throughout the paper).
Fluctuations are as in case (a) of Fig. 2. Arrows on the right graph
indicate the value of rG  from Eq. (13).

In deriving Eq. (12) we have neglected terms of order L k kxe ( / )0
2,

which is also the magnitude of the displacement of the wave turning

point from the cutoff radius. Since these terms depend on the value of

kx , their inclusion would make rG  depend on kx  as well. This explains

why the minimum value of s r  increases with sn  (i.e., with Dkx ) as in

Fig. 5, or with Le  as in Fig. 8. As we shall soon see in Sec 4, this sets

150 200 250 300 350

0.5

1.0

n 
 [1

01
4 

cm
-3

 ]

r [cm]

0.0

a 

b  

g 

rc

150 200 250 300 350

r [cm]

0.6

0.5

0.4

0.3

0.2

0.1

0.0

a 

b  

g 

s r



13

the conditions for the applicability of the method proposed in the paper.

FIG. 9. Phase fG  (dash line) and normalized density fluctuation n * at
r=rc+0.8 cm (solid line) for the three cases of Fig. 2.
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difficulty of obtaining the spectrum of turbulent fluctuations from
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discrepancy between fG  and n * is due to the different structure of these

quantities, the former being an integral function of the second. This is

also what produces the different dependence on kr  of their power

spectra (Eq. (2)).

FIG. 10. Phase fG  (dashed line) and normalized density fluctuations
n * (solid line) for r=rc  (a), r=rc+0.8 (b ) and r=rc+1.8 (g  ).
Fluctuations are as in case (b) of Fig. 2 but with Dkr =2 cm-1.
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4. Discussion

The results in the previous section could be summarized by saying

that the field of reflected waves arises near the cutoff from the phase

modulation of the probing wave, with a magnitude given by 1D

geometric optics, i.e., neglecting the effects of fluctuations on ray

trajectories. Because of the distorting effect of the non-uniformity of the

average plasma permittivity (e0 ), the backward field appears to arrive

from a distant point (rG ) behind the cutoff, where it can be approximated

by E i x= exp[ ˜( )]f . Assuming that the phase f̃  is a normal random

variable with mean < >=f̃ 0 , variance s ff
2 2º< >˜  and autocorrelation

g x f f x sf f( ) ˜ ( ) ˜ ( ) /º< + >
  1 2

2x x , for the first two moments of the

backward f ie ld  we obta in  < >= -E exp( / )sf
2 2  and

< >= - -E E
  1 2

2 1* exp[ ( )]s gf f , which are both decreasing functions of

sf . Consequently, in agreement with results in Fig. 2, as the level of

fluctuations increases, the amplitude of the wave propagating along the

direction of specular reflection (i.e., < >E ) decreases, and the spectrum

of reflected waves (i.e., the Fourier transform of < >E E
 1 2

* ) broadens. In

particular, for sf >> 1, taking g x x df ( ) exp[ ( / ) ]= - 2  and expanding to

the second order in x , we obtain < >» -E E
 

 1 2
2* exp[ ( / ) ]s x df . Thus,

away from the cutoff, if Dkx  is the spectral width of fluctuations and

sfDk kx << 0 , the reflected waves are distributed over a range of radial

wave numbers d sfk k kr x» 2 2 2D / 0 . Consequently, at a distance from

r rG=  that is larger than the diffraction distance D kr= 1/d , the

interference of waves will produce (as in Figs. 1 and 3) a complicated

field pattern with large amplitude variations and random phases. This

suggests that the amplitude r of the measured signal must follow the

distribution derived by Rice [7] for a signal containing a sinusoidal

coherent component and a Gaussian noise, which is given by
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where I0  is the modified Bessel function of order zero, s 2 is the

variance of both the real and imaginary parts of the Gaussian noise, and

r0 is the amplitude of the sinusoidal signal. In the case of our numerical

simulation, since we use a probing wave with unit amplitude,

s r2 21 2= -( ) /0  and r sf0
2 2» -exp( ). The Rice distribution becomes a

Rayleigh distribution for sf >> 1, in agreement with the experimental

results of Fig. 1. A statistical analysis of several numerical realizations

of Eb indicates that Eq. (14) is in good agreement with the results of the

numerical simulations [5].

FIG. 11. Fluctuating phases fG  (solid line) and fGO (dashed line) for
sn=2.0x10-2 and other parameters in Fig. (2).
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expressing sf
2 in terms of sn

2 (Eqs. (2)-(4)), this condition can be cast

in the form

s
p

n
n xL k

2
3 2 2 2

1
< /

 
D

 . (15)

For the plasma parameters in Fig. 2 (where Ln =50 cm), Eq. (15) gives

sn <1.7x10-2, which explains why in all three cases of Fig. 6 we

obtained f fG GO» .

Figure 11 shows the effect of doubling the value of sn  (2.0x10-2)

for case (c) of Fig. 6, making the amplitude of fluctuations larger than

the limit imposed by Eq. (15). As expected, this results in a large

discrepancy between fG  and the phase of geometric optics fGO.

FIG. 12. Fluctuating phases fG  (solid line) and fGO (dashed line) for
Dkx =1 cm-1 and other parameters of case (c) in Fig. (6).
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experiments indicate that the amplitude of short-scale density

fluctuations obeys the mixing length criterion sn r nk L  

 
< 1/  [1]. From

this and Eq. (15), we conclude that a condition for the applicability of

geometric optics to reflectometry measurements of 2D plasma

fluctuations in tokamaks is D Dk kr x
 > p 3 4/  (besides the condition

Dk k k Lr < 0 0/( )e 1/3 that is necessary for 1D fluctuations as well).

5. Imaging Reflectometry

The numerical results of the previous sections emphasize the

importance of measuring ̃fG  for obtaining the value of density

fluctuations near the cutoff. In principle, this could be done by collecting

the reflected waves with a wide aperture antenna, and by imaging the

cutoff onto the detector plane (taking the average plasma permittivity

into account). This is the first novelty of the scheme proposed in this

paper. A second novelty is the simultaneous sampling of a large portion

of a magnetic surface, which requires the use of large microwave beams

and 2D arrays of detectors. The latter are technically feasible, as shown

in Ref. [8] which describes a microwave camera with a focal plane array

(4 rows of 64 elements) for the detection of the human body emission at

94 GHz with a resolution of 1 K and a frame rate of 30 Hz. Another

example can be found in Ref. [9] which describes the measurement of

the electron cyclotron emission in the TEXT tokamak using a wide band

20 channel array in the frequency range 90-110 GHz. More recently,

similar measurements have been repeated in the RTP tokamak [10]

using a 16 channel array in the range 100-140 GHz.

Figure 13 illustrates the conceptual design of a microwave imaging

reflectometer for the visualization of turbulence in a tokamak plasma. In

this scheme, as in the numerical simulations, the rays of the probing

wave impinge perpendicularly upon the cutoff surface. This is obtained

by using two cylindrical lenses (L1 and L2 ) with different focal points.

For the case considered in Fig. 13, where the probing wave has a
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frequency of 120 GHz and the X-mode of propagation, the focal point of

L2  is at R=2.3, while that of L1 is obviously at R=0. Since the former

depends on the wave frequency, the position of L2  must be adjustable.

Outside of the plasma, then, the backward wave is reflected by the

semitransparent reflector M and an image of the cutoff is formed by the

spherical lens L3 onto the plane P, where the field is measured with a

2D array of microwave receivers.

FIG. 13. Conceptual design of an imaging reflectometer for a JET-like
tokamak; L1 and L2 are cylindrical lenses, L3 is a spherical lens, M is a
semitransparent mirror, and P is the detector plane.

In Fig. 13, the function of the cylindrical lenses L1 and L2  is to

tailor the wave front of the probing wave to the shape of the cutoff

surface, which allows the mapping of the cutoff onto the detector plane

by the spherical lens L3. Figures 14 and 15 show the result of replacing

L1 and L2  with a single spherical lens and optimizing the ray

trajectories on either the poloidal (Fig. 14) or the toroidal (Fig. 15)
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plane. In both cases, L3 would not be able to create an image of the

reflecting cutoff onto the detector plane. Thus, the use of the cylindrical

lenses L1 and L2  is to combine the poloidal ray trajectories in Fig. 14

with the equatorial trajectories in Fig. 15.

FIG. 14. Ray trajectories (from a ray tracing code) of the probing wave
in the absence of fluctuations when the focal length of L1 in Fig, 13 is
equal to that of L2: dash lines are forward rays and solid lines are
reflected rays on the poloidal (left) and equatorial (right) planes.

By probing the plasma using simultaneously multiple waves with

closely spaced cutoffs, the proposed method could provide the full 3D

structure of fluctuations.

Fig. 15. Same as in Fig. 13 when the focal length of L2 in Fig. 13 is
equal to that of L1.
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Finally, the proposed method can use either the ordinary or the

extraordinary mode of wave propagation, but the latter must be preferred

because of the better spatial resolution that derives from the larger

probing frequency of the extraordinary mode. The spatial resolution is

given by d l» -2( / )( )0 D r rb G , where l p0 0= 2 / k  and D  is the

diameter of the probing beam. For the case of Fig. 13, we get d »1 cm

with D = 50 cm.

6.  Conclusion

In conclusion, the method described in this paper is a first attempt at

developing techniques for the global visualization of turbulent and

coherent structures in tokamak plasmas. Undoubtedly, its practical

implementation presents serious difficulties, such as the need for large

ports and 2D arrays of microwave detectors. Nevertheless, the proposed

technique has the potential for providing new information on the spatial

structure of turbulent fluctuations in tokamaks, that could be useful for

advancing the theory of plasma turbulence or for checking the results of

numerical simulations.
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