Indian Journal of Pharmaceutical Sciences

Scientific Publication of the Indian Pharmaceutical Association

Indexed in Ind MED, EMBASE/Excerpta Medica, International Pharmaceutical Abstracts, Chemical Abstracts.

Volume 70

Number 1

January-February 2008

CONTENTS

REVIEW ARTICLES

REVIEW ARTICLES	
A Decision Tree for Rapid Quality Assurance and Control of	f
Rifampicin-Containing Oral Dosage Forms for Global	
Distribution for Tuberculosis Treatment	
Y. ASHOKRAJ, SHRUTIDEVI AGRAWAL AND R. PANCHAGNULA	1-4
Transdermal Delivery by Iontophoresis	
SWATI RAWAT, SUDHA VENGURLEKAR, B. RAKESH,	
S. JAIN, G. SRIKARTI	5-10
RESEARCH PAPERS	
In vivo Evaluation of Single Dose Tetanus Toxoid Vaccine	
Formulation with Chitosan Microspheres	
R. MANIVANNAN, S. A. DHANARAJ, Y. UDAYA BHASKARA RAO, A. BALASUBRAMANIAM, N. L. GOWRISHANKAR,	
N. JAWAHAR AND S. JUBIE	11-15
Ionic Cross-linked Chitosan Beads for Extended	
Release of Ciprofloxacin: In vitro Characterization	
A. SRINATHA, J. K. PANDIT AND S. SINGH	16-21
Design and Optimization of Diclofenac Sodium	
Controlled Release Solid Dispersions by	
Response Surface Methodology H. N. SHIVAKUMAR, B. G. DESAI AND G. DESHMUKH	22-30
Evaluation of Free Radical Scavenging Activity	22-30
of an Ayurvedic Formulation, <i>Panchvalkala</i>	
SHEETAL ANANDJIWALA, M. S. BAGUL,	
M. PARABIA AND M. RAJANI	31-35
Validation of Different Methods of Preparation of	
Adhatoda vasica Leaf Juice by Quantification of	
Total Alkaloids and Vasicine S. SONI, SHEETAL ANANDJIWALA, G. PATEL AND M. RAJANI	36-42
Formulation and Characterization of Mucoadhesive	00 12
Buccal Films of Glipizide	
MONA SEMALTY, A. SEMALTY AND G. KUMAR	43-48
Synthesis, Antimicrobial and Anti-inflammatory	
Activity of 2,5-Disubstituted-1,3,4-oxadiazoles	
G. NAGALAKSHMI	49-55
Ascorbic Acid Inhibits Development of Tolerance and	
Dependence to Opiates in Mice: Possible Glutamatergic or Dopaminergic Modulation	
S. K. KULKARNI, C. DESHPANDE AND A. DHIR	56-60
Design and In Vitro Characterization of Buccoadhesive	
Drug Delivery System of Insulin	
J. SAHNI, S. RÁJ, F. J. AHMAD AND R. K. KHAR	61-65
Development and Evaluation of a Chloramphenicol	
Hypertonic Ophthalmic Solution A. V. JITHAN, C. KRISHNA MOHAN, AND M. VIMALADEVI	66 70
	66-70
Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique	
D. M. PATEL AND M. M. PATEL	71-76
Furosemide-loaded Alginate Microspheres Prepared by	
Ionic Cross-linking Technique: Morphology and	
Release Characteristics	
M. K. DAS AND P. C. SENAPATI	77-84
SHORT COMMUNICATIONS	

SHORT COMMUNICATIONS

Isolation of Liver Aldehyde Oxidase Containing Fractions from Different Animals and Determination of Kinetic Parameters for Benzaldehyde

R. S. KADAM AND K. R. IYER	85-88
Microwave-Induced Synthesis of Schiff Bases of Aminothiazolyl Bromocoumarins as Antibacterials K. N. VENUGOPALA AND B. S. JAYASHREE	88-91
In vitro Antiviral Activity of some Novel Isatin Derivatives against HCV and SARS-CoV Viruses P. SELVAM, N. MURGESH, M. CHANDRAMOHAN, E. DE CLERCQ, E. KEYAERTS, L. VIJGEN, P. MAES, J. NEYTS AND M. V. RANST	91-94
Physicochemical and Pharmacokinetic Parameters in Drug Selection and Loading for Transdermal Drug Delivery	
N. S. CHANDRASHEKAR AND R. H. SHOBHA RANI HPLC Estimation of berberine in <i>Tinospora cordifolia</i> and <i>Tinospora sinensis</i>	94-96
G. V. SRINIVASAN, K. P. UNNIKRISHNAN, A. B. REMA SHREE AND INDIRA BALACHANDRAN Parenteral Formulation of Zopiclone	96-99
P. V. SWAMY, P. SUSHMA, G. CHIRAG, K. PRASAD, M. YOUNUS ALI AND S. A. RAJU	99-102
Simultaneous Spectrophotometric Determination of Lansoprazole and Domperidone in Capsule Dosage Form A. P. SHERJE, A. V. KASTURE, K. N. GUJAR AND P. G. YEOLE	102-105
Novel 2-Pyrazoline Derivatives as Potential Antibacterial and Antifungal Agents SUVARNA KINI AND A. M. GANDHI	105-108
Spectrophotometric Estimation of Ethamsylate and Mefenamic Acid from a Binary Mixture by Dual Wavelength and Simultaneous Equation Methods	
ANJU GOYAL AND I. SINGHVI	108-111
Novel Colon Targeted Drug Delivery System Using Natural Polymers	
V. RAVI, T. M. PRAMOD KUMAR AND SIDDARAMAIAH Effect of Some Clinically Used Proteolytic Enzymes on Inflammation in Rats	111-113
A. H. M. VISWANATHA SWAMY AND P A. PATIL	114-117
Synthesis and Pharmacological Evaluation of (6-Substituted 4-Oxo-4 <i>H</i> -chromene-3 yl) methyl	
N-substituted Aminoacetates ASMITA GAJBHIYE, V. MALLAREDDY AND G. ACHAIAH	118-120
Development and <i>In Vitro</i> Evaluation of Buccoadhesive Tablets of Metoprolol Tartrate P. D. NAKHAT, A. A. KONDAWAR, L. G. RATHI AND P. G. YEOLE	121-124
RP-HPLC Estimation of Venlafaxine Hydrochloride in Tablet Dosage Forms S. L. BALDANIA, K. K. BHATT, R. S. MEHTA, D. A. SHAH AND	121 121
TEJAL R. GANDHI Simultaneous Estimation of Esomeprazole and	124-128
Domperidone by UV Spectrophotometric Method S. LAKSHMANA PRABU, A. SHIRWAIKAR, ANNIE SHIRWAIKAR, C. DINESH KUMAR, A. JOSEPH AND R. KUMAR	128-131
In Vitro Anthelmintic Activity of Baliospermum montanum Muell. Arg roots R. G. MALI AND R. R. WADEKAR	131-133
REFEREES FOR INDIAN JOURNAL OF PHARMCEUTICAL SCIENCES DURING 2006 & 2007	134-134

Microwave-Induced Synthesis of Schiff Bases of Aminothiazolyl Bromocoumarins as Antibacterials

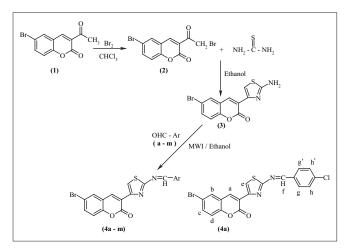
K. N. VENUGOPALA* AND B. S. JAYASHREE1

Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Near Lalbagh Main Gate, Hosur Road, Bangalore - 560 027, ¹Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, MAHE, Manipal - 576 104, India

Venugopala, et al.: Microwave Synthesis of Aminothiazolyl Bromocoumarins

A fast and highly efficient method for the synthesis of some of the schiff bases of aminothiazolylbromocoumarin (4a-m) has been performed by microwave irradiation of 2'-amino-4'-(6-bromo-3-coumarinyl) thiazole (3) and substituted aromatic aldehydes (a-m). Microwave assisted reactions have resulted in better yields of the desired products than when prepared under conventional conditions. The resulting products were evaluated for their qualitative and quantitative antibacterial activity.

Key words: Bromocoumarin, microwave, characterization, antibacterials


The synthesis of coumarins and their derivatives has attracted the attention of organic and medicinal chemists as these are widely used as fragrances,

E-mail: venugopalakn@gmail.com

pharmaceuticals and agrochemicals¹. Benz-2pyrones and its heterocyclic derivatives, in particular schiff bases and carboxamides of 3-thiazolyl substituted coumarins, display important biological properties such as analgesic, anti-inflammatory^{2,3}, anticoagulant⁴, antimicrobial, antiviral⁵ and HIV

^{*}For correspondence

protease inhibitory⁶ activities. Potent antibiotics like novobiocin, coumaromycin and charteusin are coumarin derivatives. Consequently, we were involved in the synthesis and chemistry of schiff bases and carboxamides of aminothiazolyl substituted coumarins. As a continuation of our research in this area, the present work was aimed at the synthesis of schiff bases of 2-amino thiazolyl bromocoumarin by microwave-assisted method. Microwave irradiation has become a very useful tool in organic synthesis and has been explored extensively since the last decade. Microwave irradiation often leads to a remarkable decrease in reaction time, increased yields and easier workup matching with green chemistry protocols. The resulting compounds of Scheme 1 were characterized by ¹H-NMR and mass spectral studies. X-ray study was made on parent compound (3) and the test compounds were subjected to qualitative and

Scheme 1: Synthesis of compounds (4a-m). Where Ar: a = 4-Cl C₆H₄, b = 3,4,5-OCH₃ C₆H₂, c = 2-NO₂ C₆H₄, d = 3-NO₂ C₆H₄, e = 4-OH, 3-OCH₃ C₆H₃, f = 2-OH, 5-Br C₆H₃, g = 4-N(CH₃)₂ C₆H₄, h = 2-CH₃ C₆H₄, i = 2-OH C₆H₄, j = 2-OCH₃ C₆H₄, k = C₆H₅, l = 3,4-OCH₃ C₆H₄, and m = 4-NO₂ C₆H₄.

quantitative antibacterial activity by cup plate method and ELISA technique, respectively.

Melting points were determined in open capillaries and are found uncorrected. IR spectra were recorded on Fourier transform IR spectrophotometer Model Shimadzu 8700 using KBr disc method. ¹H-NMR spectra were recorded on AMX-400 liquid state NMR spectrometer in CDCl, using tetramethylsilane as an internal standard. Mass spectra were recorded on Jeol JMS DX303 Mass spectrometer with Electron Impact Ionization (EII). The purity of the products was determined by thin layer chromatography using several solvent systems of different polarity. The compounds were analyzed for C, H and N and the values were found within $\pm 0.4\%$ of the calculated values. The microwave oven used was conventional kitchen microwave oven. The vield and reaction time of the products are reported in Table 1.

The synthesis of 2'-amino-4'-(6-bromo-3-coumarinyl) thiazole² (3) was achieved by cyclization of 3-bromoacetyl-6-bromocoumarin (2) with thiourea in absolute ethanol medium in the presence of piperidine as catalyst and the resulting compounds (4a-m) were obtained by microwave irradiation of compound (3) and different aromatic aldehydes (a-m) in absolute ethanol with different time intervals. The synthetic route is shown in Scheme 1.

In conventional refluxing method (method A), compound (3) (0.01 mol) and substituted aromatic aldehydes (a-m) (0.01 mol) were taken in absolute alcohol (20 ml) and refluxed for 2 h, cooled and poured into crushed ice. The precipitate obtained was recrystallized using aqueous dimethyl sulfoxide and ethanol.

TABLE 1: COMPARISON OF REACTION TIME AND YIELDS OF THE TEST COMPOUNDS (4a-m)

Comp. No.		Yield (%)	Reaction period (min)			
	Method A (conven)	Method B (conven)	Method C (MORE ^a)	Method A (min)	Method B (min)	Method C (sec)
4a	62	57	88	120	120	105
4b	71	60	89	90	90	66
4c	58	53	73	120	120	110
4d	60	55	77	120	120	110
4e	66	64	82	150	150	108
4f	66	64	83	90	90	70
4g	69	63	89	120	120	100
4h	64	62	80	120	120	103
4i	68	64	87	60	60	65
4j	62	60	89	120	120	100
4k	78	74	91	90	90	68
4l	67	63	85	120	120	113
4m	64	61	81	120	120	106

^alsolated yields

Comp. No.	m.p (°)		Recrystalizing	% Required (found)			IR (cm ⁻¹ v)
	Found ^₅	Required	solvent	С	Н	N	
3	210-212	211	ethanol	44.60(44.61)	2.18(2.16)	8.67(8.66)	1720
4a	254-256	255	aq. DMSO	55.49(55.48)	2.70(2.62)	6.81(6.70)	1735
4b	234-236	234	aq. DMSO	52.71(52.69)	3.42(3.30)	5.59(5.50)	1726
4c	242-244	243	aq. DMSO	50.02(49.96)	2.21(2.10)	9.21(9.20)	1722
4d	254-256	256	aq. DMSO	50.02(49.90)	2.21(2.16)	9.21(9.18)	1733
4e	234-236	235	aq. DMSO	52.53(52.41)	2.87(2.70)	6.13(6.05)	1719
4f	274-276	276	aq. DMSO	45.09(44.93)	1.99(1.82)	5.53(5.50)	1730
4g	180-182	180	aq. DMSO	55.52(55.50)	3.55(3.44)	9.25(9.16)	1728
4h	218-220	218	ag. DMSO	56.48(56.46)	3.08(2.90)	6.59(6.47)	1725
4i	222-224	224	ethanol	53.41(53.30)	2.59(2.52)	6.56(6.49)	1732
4j	148-150	150	ag. DMSO	54.43(54.39)	2.97(2.81)	6.35(6.24)	1731
4k	224-226	225	aq. DMSO	55.49(55.60)	2.70(2.62)	6.81(6.72)	1733
4l	212-214	214	aq. DMSO	53.52(53.41)	3.21(3.11)	5.94(5.85)	1730
4m	264-266	264	ag. DMSO	50.02(49.66)	2.21(2.14)	9.21(9.18)	1735

^all the test compounds were characterized by IR spectral analysis and by comparison of their physical properties with those of the authentic compounds³. ^bMelting points of the compounds are consistent with reported values.

In conventional heating method (method B), compound (3) (0.01 mol) and substituted aromatic aldehydes (a-m) (0.01 mol) were taken in a round bottom flask and heated on an oil bath at 180°, cooled and the melted reaction medium was reprecipitated with aqueous ethanol and recrystallized using dimethyl sulfoxide and ethanol.

As in microwave-induced organic reaction enhancement (MORE, Method C), compound (3) (0.01 mol) and substituted aromatic aldehydes (a-m, 0.01 mol) in ethanol (30 ml) were taken into a 250 ml conical flask and capped with a glass funnel and subjected to microwave irradiation for 65-113 seconds at an interval of every 20 seconds at 260 watts. On completion of the reaction, followed by TLC examination, the mixture was cooled to room temperature and the product was poured into crushed ice. The crude products (4a-m) were purified by recrystallization from ethanol and dimethyl sulfoxide. The characterization data of the synthesized test compounds (4a-m) are tabulated in Table 2.

Compound 4a: IR (KBr, cm⁻¹v) 3042, 1735 (lactone-C = O), 1676, 1606, 1548, 1355, 1231, 835, 769, 744, 558. ¹H-NMR: (400 MHz, CDCl₃) 8.98 (s, 1H, -N = CH-), 8.73 (s, 1H, Hetero Ar-H), 8.42 (s, 1H, Hetero Ar-H), 7.97 (d, 2H, Ar-H), 7.75 (d, 1H, Ar-H), 7.65 (dd, 1H, Ar-H), 7.51 (d, 2H, Ar-H), 7.27 (d, 1H, Ar H). MS: m/z 445 (M⁺ 100), 416 (10), 390 (5), 366 (6), 339 (5), 321 (10), 280 (12), 250 (35), 220 (22), 196 (76), 182 (16), 165 (7), 145 (53), 129 (12), 97 (25), 83 (32), 69 (41), 57 (57), 43 (46).

X-ray powder diffraction pattern was recorded on the

TABLE 3: THE ANTIBACTERIAL ACTIVITY OF THE TEST COMPOUNDS (4a-m)

COMP. No.	Cup plate	method	MIC (F	ıg)
	B. subtilis	E. coli	B. subtilis	E. coli
3	++	++	185.00	197.00
4a	+++	+++	147.00	141.00
4b	+	+	241.00	239.00
4c	++	++	195.00	183.00
4d	++	++	180.00	177.00
4e	+	+	225.00	220.00
4f	+	+	247.00	255.00
4g	+	+	280.00	283.00
4h	+	+	265.00	247.00
4i	++	++	192.00	201.00
4j	+	+	216.00	210.00
4k	+	+	260.00	265.00
4l	++	++	190.00	176.00
4m	++	++	178.00	180.00
Ampicillin	++++	++++	145.00	135.00

+: Less active (0.2-0.5 mm); ++: Moderately active (0.6-1.4 mm); +++: Highly active (1.5-3.0 mm); ++++: Very highly active (over 3.00 mm)

parent compound (3) in STOE powder diffractometer using Debye-Scherrer Geometry (Indian Institute of Science, Bangalore) wave length CuK $\alpha(\lambda = 1.54178$ Å. Cell parameters A = 13.874 (0.006) Å, B = 7.054 (0.002) Å, C = 12.505 (0.007) Å, $\alpha = \beta = \gamma = 90.0^{\circ}$. Crystal system was orthorhombic.

Antibacterial screening of the synthesized compounds was carried out by cup-plate method⁷ using two strains i.e., *Bacillus subtilis* (ATCC 6633) and *Escherichia coli* (ATCC 8739). Ampicillin was used as reference sample and antibacterial activity of the test compounds (4a-m) is presented in Table 3. The minimum inhibitory concentration of the test compounds showing promising activity was determined using 96-well plate (two fold dilution technique) and an ELISA Reader⁸.

Structure of the synthesized schiff bases was supported by IR, ¹H-NMR and Mass spectral studies. In IR spectra, a prominent peak was observed for lactone of coumarins (1), (2), (3) and (4a-m) from 1735-1719 cm⁻¹v. In ¹H-NMR spectra, the signal due to -N=CH- protons appeared as singlet at 8.98, heteroAr-H(d) proton appeared as singlet at 8.73, heteroAr-H(e) proton appeared as doublet at 8.42, Ar-H(g,g') two protons appeared as doublet at 7.97 (J = 8.27cps), Ar-H(c) proton appeared as doublet at 7.75, Ar-H(b) proton appeared as doublet of doublet at 7.65, Ar-H(h,h') proton appeared as doublet of doublet at 7.51 and Ar-H(a) proton appeared as doublet at 7.27. Molecular ion peak was observed at 445 and base peak at 196. These observations supported the formation of the resulting compound (4a). Out of the fourteen compounds subjected for qualitative antibacterial activity, one of the test compounds (4a), was shown to be active greater than that of test compounds such as (4), (4c), (4d), (4i), (4l) and (4m). All the test compounds were subjected for quantitative antibacterial determination and compounds, such as (4a), showed minimum inhibitory concentration at 147 µg and 141 µg against Bacillus subtilis and Escherichia coli, respectively when compared to that of the activity against standard drug ampicillin.

ACKNOWLEDGEMENTS

The authors thank Prof. B. G. Shivananda, Principal, Al-Ameen College of Pharmacy, Bangalore for support and facilities, Prof. T. N. Guru Row, Department of Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore for x-ray powder diffractometer values and Prof. S. Asokan, Department of Instrumentation, Indian Institute of Science, Bangalore for ¹H-NMR and mass spectra.

REFERENCES

- 1. Kennedy RO, Thornes RD. Coumarins: Biology, Applications and mode of action Chichester: Wiley and Sons; 1997. p. 155-7.
- 2. Venugopala KN, Jayashree BS. Synthesis and characterization of carboxamides of 2'-amino-4'-(6-bromo-3-coumarinyl) thiazole for their analgesic and antiinflammatory activity. Indian J Heterocyclic Chem 2003;12:307-10.
- 3. Venugopala KN, Jayashree BS. Synthesis and characterization of schiff bases of aminothiazolyl bromocoumarin for their Analgesic and Antiinflammatory activity. Asian J Chem 2004;16:407-11.
- 4. Min J, Jiaxing H, Weiyi H, Hongwen H. Synthesis of some new 3-coumarinyl coumarin oximes and related cyclization products derived from 3-acetyl coumarin. Indian J Chem 2001;40:1223-5.
- Kashman Y, Kirk R, Gustafson RW, Fuller JH 2nd, McMahon JB, Currens MJ, *et al.* HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, *Calophyllum lanigerum*. J Med Chem 1993;36:1110.
- Bourinbaiar AS. Tan X, Nagorny R. Inhibitory effect of coumarins on HIV-1 replication and cell-mediated or cell-free viral transmission. Acta Virol 1993;37:241-50.
- Kavanagh F. Analytical Microbiology. New York: Academic Press; 1963. p. 125-7.
- Lowdin E, Odenholt-Tornqvist I, Bengtsson S, Cars O. A new method to determine the postantibiotic effect and the effects of subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 1993;37:2200-5.

Accepted 27 January 2008 Revised 23 October 2007 Received 27 March 2006 Indian J. Pharm. Sci., 2008, 70 (1): 88-91