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CHAPTER 1
INTRODUCTION

This paper deals with the microwave induced
heating in thin multiple conductive coatings. An under-
standing of this phenomenon is needed so an optimum
coating may be designed for the thermographic detection
of surface currents. This process uses a thermographic
camera to detect temperature variations on an object's
surface. These temperature variations are caused by
joule heating (IZR) due to surface currents. Thus, it
is possible to relate surface currents tc surface
temperature variations. Once this is done the thermo-
graphic system can measure surface currents on an entire
object very quickly and relatively easily. However,
there is still a significant limitation to this type of
measurement system. The limitation is that we measure
a single scalar quantity (temperature) at each point on
the surface; hence, we only obtain the magnitude of the
total surface current at that point and have no phase or
direction information.

Nonetheless, current amplitude information alone

is a valuable piece of information. For example, in the




study of Electromagnetic Pulse (EMP) phenomena we might
want to know where the greatest current density ampli-
tudes are located on an aircraft to aid in the proper
placement of cable bundles. Or possibly in radar cross
section studies, we might want to know where the greatest
current densities exist before a design or numerical
solution is attempted. And lastly, measured surface
current amplitude information would be extremely

valuable in the verification of numerous numerical
techniques designed to provide amplitude, phase, and
direction information. This thesis which relates coating
temperature to incident microwave power levels is
organized in the following manner.

The second chapter begins with a discussion of
electromagnetics in general. It considers the phasor
form of Maxwell's equations in a conductive medium and
then reviews their simultaneous solution. The result
yields the type form the wave must take as it propagates
in the medium and discusses some of its characteristics.
Particular areas of discussion include attenuation in a
medium and the complex form of Snell's law.

The third chapter deals exclusively with the
solution of a single boundary electromagnetic problenm.

The boundary is a semi-infinite plane located at the




2=0 interface between air and a conductive medium. The
solution is completed for various incident angles and
for polarizations both parallel and perpendicular to the
plane of incidence. The single boundary problem provides
two useful insights to our overall prohlem. First, it
is done in a general manner so the same overall approach
is used in the solution to the N-layer system later in
chapter four. Second, the results may be used to provide
information concerning the theoretical infrared emissiv-
ity of the coatings that are to be placed on the various
object surfaces. The rate and direction of infrared
emission are both directly propor;ional to this emissiv-~
ity factor. Therefore, our detection effectiveness is
very dependent on surface emissivity. Various plots are
presented which illustrate the reflectivity and emissivity
for materials with conductivities of 0 to 5x10’ mhos/m.
Chapter four presents a detailed solution for
the N-layer electromagnetic interaction problem. The
problem considers both parallel and perpendicular
polarizations at a particular incident angle. Each layer
is considered to have a particular electrical conductiv-
ity. The solution is developed in terms of an expanded
matrix in a manner similar to that used in chapter
three. A computer program is included in appendix D

that will do the solution for up to a 10 layer system
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and display the results with a Hewlett-Packard 9845B
mini-computer. Included is an example of the plot
obtained for a three layer system with the layers having
conductivities of .5, 1.0, and 1.5 mhos/m respectively.
Of note in this development is that there are no
approximations used other than assuming semi-infinite
slab dimensions.

In the next chapter we tie the electromagnetic
interaction to the thermodynamics of the problem. Thus,
for a given layer configuration we relate surface temper-
ature to a given microwave input power. Initially in
the development, a simplified model is presented that
allows us to estimate the transient response of the
system. Then somewhat later the steady state thermal
characteristics of the system are analyzed. 1In this
analysis we assume there are no heat losses from other
than the z=0 interface; that is, we assume one of the
layers below the conductive coating to be a perfect
insulator. At the z=0 interface we consider both infra-
red and convective heat losses. The steady state
solution to the heat equation yields a transcendental
equation that must be solved numerically. A computer
program is written that does this solution and plots
surface temperature versus electrical conductivity and

coating thickness on a three dimensional plot. Plots




are illustrated for typical two and three layer systems.

As in any theoretical development, we must have
experimental verification before the results may be used
with any confidence. Chapter six provides experimental
verification of the computer results for various layer
configurations., The three primary sources of error in
the experiments resulted from the lack of semi-infinite
planes to irradiate with microwaves; thus, samples much
smaller than a wavelength were used to avoid resonance
problems. Also, the problem of assuming zero heat
conduction losses from the 2=z interface was partially
solved by placing the samples on a styrofoam substrate.
Finally, the third major source of error resulted from
the convective heat transfer coefficient used which

itself was an empirical value. See for example Holman's

book, Heat Transfer. Nonetheless, predicted surface

temperatures were very close to the measured values.
Chapter seven is a mostly qualitative
discussion of the relationship of our one-dimensional
model to the more complicated two or even three-
dimensional "real world" experiments. In particular,
the two areas discussed involve the validity of using
a small finite shape in the experimental verification
of Chapter VI and the question of "nearest neighbor"
significance in the actual measurement of surface

currents on electrically large targets. Theoretical
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as well as experimental results are presented that help
establish the validity and usefulness of our one-
dimensional model as applied toward the "real world"
situation,

In Chapter VIII recommendations and conclusions
are made in regards to what to use as an optimum coating
in the thermographic detection of microwave induced
surface currents. Basically, there are two situations
that must be considered. The first considers geometry
only. If we are interested only in the geometrical
aspects of a problem such as studying the currents on an
entire aircraft, the simpler approach is to build a
model of foam and then coat it with a thick (two skin
depths) layer of material with a conductivity of from
300 to 750 mhos/m. Hence, the currents we measure are
the currents in the coating itself; we simulate a
highly conductive object with one of lesser conductivity.
The other, and more difficult, situation is one in
which the material an object is made matters and cannot
be approximated. This situation would occur if several
different materials were used in the construction of a
particular shape (For example, there might be
ferromagnetic materials, copper, aluminum, and composites
all located on the underside of an aircraft of space-
craft.). Here we would like to determine how these

different materials behave together. Therefore, we



place our coating directly on the object itself. By
appropriate design of the coating, we can detect the
current distribution under our coating.

Various coating options are described in the
final chapter as well as their advantages and disadvan-
tages, The various appendices contain the experimental
arrangements for measuring such material characteristics
as electrical conductivity and permittivity. Also
included are all the major computer programs used in any
of the numerical analysis with the 9845B computer. This

computer uses a Hewlett-Packard enhanced BASIC language

that would be easily modified for use on a computer
using either Fortran or Pascal.

Overall then, this paper begins by presenting
the development of a one-dimensional model for the
electromagnetic interaction with a system of N layers
with differing electrical characteristics. We then
use this model in a thermodynamic analysis to arrive
at the steady state surface temperature of the system
of layers. Thus, we arrive at a model which predicts
the equilibrium surface temperature of a system of N
discrete layers in the presence of electromagnetic
radiation. This model is verified experimentally and
its applicability to two-dimensional targets is
discussed. Finally, recommendations are made in regards

to particular coating design.




CHAPTER II

GENERAL ELECTROMAGNETIC ANALYSIS

In electromagnetic analysis we will study the

simple one boundary problem and then progress to multiple

boundaries. Throughout this analysis we will assume a
time devendence for E and H of the form e It e will
first calculate the form the field must take by looking
at the solution of Maxwell's equations in a coniuctive
medium.

In a charge free conductor and with the assumed

time dependence, Maxwell's equations may be written as

follows:
> . > ) >
VX E= juu H (1)
> > -
VxH= (0- jue) E (2)
> >
vV -E=0 (3)
> >
vV .H=0 (4)

Solving equations (1) through (4) simultaneously10 we

can arrive at the vector wave equation

2E+82E=0 (5)
where
82 ig defined by

g2 szus + j wuo (6)




A wave equation may also be developed for ﬁ; however,
its value is readily available through equation (1).
Solving, we have

+ >
h=-Jvxe (N

wy
The solution of (5) is well known11 and may be

written as
2 p BT - wr) (8)
o}

>
where B is the wave vector. Thus,

E =\/w2ue + jwuo n (9)
with n being in the direction of wave propagation.
Since B is complex, its real and imaginary comnonents
may be found by letting 8= a + jy where a and y are de-
fined to be real. Making the above substitution and
equating real and imaginary parts, we arrive at two
simultaneous equations given by

a2 - 72 = wzue (10)

20y = wuo (11)
Solving (10) and (11) by substitution we find expres-

sions for o and vy given by

= e / o
o w /= 1 + 1 + (me) (12)

vy=of8 Jo1+ J1+ (&2 (13)

For the case of good conductors (%E)>> 1; thus, we have

a =y = 1 where § is the characteristic skin depth of

the medium in question. It is given by

.2
s /-2 (14)




10
~Juwt
From this point on we will omit the e time
dependence, since it will occur in all of our terms, and
proceed with the more familiar phasor notation. Thus we

will write for the elgctric field

-+ > A8,
E = E eﬂ r (15)

This is a shorthand notation and it is to be understood
that the e~lot ¢ always present even though it is not
written,

Lastly, it is advantageous to develop the complex
Snell's law. Consider the single interface below

separating two conductive materials.

oy ‘Y
€ 92
M1 €2
u
2
8 )
3 —X
[¢]

EM
Wave

Figure 1: Plane Wave Interaction with a Single Interface

We know the wave phase must be the same on each side of
the boundary at any given point on the boundary; other-
wise, the wave would "tear'" and dispersion would occur.
This phase requirement may be satisfied by having 12

-> -5 - ->

By .1 E By . T (16)

T




11
Again referring to the drawing, we have
8, (coss X + sing y)-F = B, (cos¢ X + sine y)- T (17)
Since r = Yy ; defines the interface, the result is
81 sing = By sin¢ (18)
Thus, sin¢ 1is in general complex and is given by
. Bl i - %1+ Y1 _.

Sln¢ - B—Z— SlIlO = a?_jﬁ Slne (19)
We may also write the expression for cos¢ by recogniz-
ing that for any complex z, sin2 zZ + cos2 z =1 13; thus,

2 2 .

@y - vy} * I 2ay vy |
cos¢d = 1 - 1 1 11 51n26

I S 2a

We can look at Snell's Law in the case of an
air/good conductor interface. If the fedium on the
left is air, Sl reduces to %% , where » is the free
space wavelength. In the good conductor we have

1
r} n —_—a .
a= v= L ; then we have sins = (3-) (&, % 3v; )sine (21)

With algebraic manipulation this reduces to

i =1 f20 -3 i (22)
sing N P (1 j) sine

In the good conductor limit we have therefore,

sin¢=0 (23)
which implies ¢ = 0
Hence, regardless of the incident angle 6, the wave will
propagate approximately normal to the surface after

entering medium 2.
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CHAPTER IIIX
SINGLE BOUNDARY ANALYSIS

With the basic equations developed, we can now
do the actual field calculation. We will begin with the
single boundary which will provide two important pieces
of information. First, it will provide needed insight
for the solution of the more complex multi-layer problem,
and second, it will provide a method of calculating theo-
retical infrared spectral emissivities. This information
will be very valuable in the thermodynamic analysis of
the multi-layer problem later in the development.

We begin by considering the diagram below in
which we have an incident electromagnetic wave from the

left. Parallel incidence is illustrated.

Ai

a1

m T Q
[/}
=

Figure Z: Plane Wave Interface on a Single Boundary

m“mw-.. .Sk -
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From the previous development we know that

H.E o 2
= +/1+4
. m/_z_‘,g\/l A &) -
= ofB2f2 [-1 + 1 +/92 \2
v =S / -(,,—55) (25)

Bo=a + J v sosg{; (26)
sin¢ = 80(3%117) sin
a”+y (27)
cos9o =\/1_32 Sinze(al*;z;j 2av)
o (a2+Y2)2 (28)

We will need the real and imaginary parts of cos¢
later so it is advantageous to calculate them now. We
begin by letting cos¢ = x + j y where x and y are de-

fined to be real. Thus,

cosZ¢ = x% - YZ + j 2xy (29)

Equating real and imaginary parts, we obtain

two simultaneous equations:

. 2 2 2
2 _ 42 = 1 _ o2sin“s (a“-v9)
X y 1 Bs > =7 (30)
(a® + v°)
Xy = Bz sinzq %Y 31
o] (az..,?)—z ( )

Solving (30) and (31) by substitution, yields the
following

x = \/P+ VP2 + @2 (32)
y-/—P+ VP2 + @2 (33)
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where
po L. g2 sin%e (a2-y%)
2 T 2(a2 + 422 (34)
. L2 sinze a y
Q=8 2 242
(a® + y*) (35)

In the good conductor limit where (ﬁ%)>> 1 these reduce
X 1//1 + 1 1+ 3 (B, & sine)4
77 7 (8, (36)
1 .
y=/7+%/1+%(sossme)4 (37)

For example if the incident frequency is 2.5 GHz and

to

o = 10 mhos/m we have cos¢ = 1.00002 + j(.007) which
indicates that ¢ may be considered to be approximately
zero for values of ¢> 10. In some numerical calculations
this could vastly shorten the computer time.

By considering the geometry of the problem, we

may write the wave vectors as follows:

El = g, (sine x + cose z) (38)
EZ = g, (sine x - cose z) (39)
ES = By (sind x + cos¢ z) (40)

Since we are considering an infinite plane, we are

interested only in the z dependence of the fields; thus
we may take T =z z. We have
>

Bye T o= B, z coss (41)

82- ; = -B_ Z COSH (42)
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-

>
83- r = (a + jy) z cos¢ (43)
At this point we divide the problem into two parts since

we must consider parallel and perpendicular polarization

of the E vector separately.

E Parallel
If E is parallel to the plane of incidence we
may write the vector fields with reference to the dia-

gram. We have

E, = E e BoZ COSO (o0g6 x - sine z) (44)
> . -

Hl = EQ El ej Bo z cosd v (45)

wu

> 2 - ~

E, = E, e Bo 2 GOS0 (0s6 x + siné z) (46)
H, =-"0E e 8p2cos® § (47)

2 mz
E3 = E3 ej B2 Z coss (cos¢ ; - sin¢ ;) (48)

H, =B2 ' . (49)
3% ok, B3 el B2 2 0080
To satisfy the boundary conditions at z = 0, we equate
the tdngential field components of E and H there; thus,
we have

E, cose + E, cose = E3 cos¢ (50)

o E, -Pog, = B2 &
wy wy w2

3 (51)
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Since we know the value of Eq, (50) and (51) may be re-

cos O

Bo

arranged and written in matrix form as follows 14
- cos ¢ E£ -E, cos )
x = (52)
B2 Bo

)

Equation (52) may now be solved to yield values of E,

and E3.

Before solving (52) we will derive the solu-

tion for perpendicular incidence and then develop a

common method of solution.

We may

they are given

E Perpendicular

proceed directly to the field equations;

by
El ej BO Z coso ; (53)
BoE e Bo% €090 (_cos 02 + sin@2) (54)
WH

Bo By e Bo 2 0% (coseR + sin6 £)(56)
wu

j By z coso

Ej e (57)

8 . . -
_Z E3e332z COS®(_cos¢ x + sin¢ z)

wuz (58)
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As before, we apply the boundary conditions at the
z = 0 interface which yields

Bl + By = Ey (59)

B _cos6 B,COSH cos
° E, + ° E, = - F COS¢ 5
wy wy wHo

(60)
Again these equations simplify and may be put into

matrix form.

- 7
1 -1 &, ] - [-
x = (61)
Bo cos 8 B2 cos E, Bo cos ©
| ¥ ¥2 I I

Analytic Solution

Equations (52) and (61) may be solved directly
with little difficulty; however, since we are develop-
ing a general technique for a multi-layer system, it
is worthwhile to do the solution numerically. The
technique is relatively straight forward in that the
coefficient matrices are loaded into a computer along
with the constant vector. For example, if we have the

matrix equation Ax = B, we would load the auxiliary

matrix
ajy - ay, by
LAy
301 -2 a1 b o

into the computer. It would be an N x N + 1 dimensional
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matrix. We then do a Gauss~-Jordan row reduction to put
the A portion into identity format. The B column will
now correspond to the solution vector of x. This is
relatively easy to program unless A happens to be com-
plex. In this case the complex equation Ax = B may be
expanded into its real and imaginary parts to yield a
matrix equation of only real terms which may be handled
in a straight forward manner. For example if the set

of equations,

211 ¥ * 31 X T 0y (63)

]
o

351 X3 * a5y X, = by (64)

is complex, we may in complex notation write a complex
matrix equation as
211 213 [*1] P
x = (65)

a a

21 222) [*2] [P2
Likewise we may write (63) and (64) in an expanded
format in terms of its real and imaginary parts. If

we let R and I designate Real and Imaginary respec-

-——

tively, we have

(Ra, +jTa ;) (Rx, +§Ix ) + (Ra ,+jIa,,) (Rx,+jIx,) =
Rbl + ijl (66)




(Ra,, +jIa,, ) (Rx; +3IX;) + (Ra,,+jlay,) (Rx,+jIx,)

Rb, + jIb, (67)

Equating real and imaginary parts in (66) and (67) we

have

Ra), Rx, - Ia;; Ix, + Ra;, Rx, - Ia,, Ix, = Rb, (68)
Ia;y Rx, + Ra,, Ix; + Ia,, Rx, + Ra,, Ix, = Ib, (69)
Ra,, Rx, - Ila,; Ix; + Ra,, Rx, - Ia,, Ix, = Rb, (70)
Ia,, Rx; + Ra,; Ix; + Ia,, Rx, + Ra,, Ix, = Ib, (71)

or in matrix format we have a matrix of real terms only

written as follows 15:
P ] - r - o
Ra,, ~-Iay, : Raj,  -Iag,) |Rxy RbJ
Ia11 Ra11 : Ia12 Ra12 le Ib1
-------------- x = (72)
1
- ' -
Ra21 Ia21 | Ra22 Ia22 sz sz
[
Ea21 Ra21 | Ia22 Ra22 LIx% .Ib%

Thus, to numerically solve a 2 x 2 complex matrix a
computer must reduce a 4 x 4 matrix, and in general to
solve an N x N complex matrix we must generate a 2N x
2N real matrix.

There are some advantages to this approach in
that after the reduction is complete we have all our
variables written in real and imaginary format. Also,
the expanded matrix is easy to generate if one parti-

tions the original complex matrix and then notes that
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each complex element goes into a 2 x 2 matrix that is

nearly semetric except for one sign.

Numeric Solution

The numeric solution takes the material char-
acteristics (Uz,uz, 62) and then constructs the expanded
auxiliary matrix, Para (I,J) and Perp (I,J) correspond-
ing to the Parallel or Perpendicular solutions respec-
tively. The program then does a Gauss-Jordan elimination
for each of these as it iterates through 1° increments
from 0 to 90°. For each iteration a reflectivity
coefficient is calculated and stored. After the routine
is complete the reflectivity coefficients are plotted
as a function of ¢ for both parallel and perpendicular
polarizations on the same plot. Additionally a plot of
spectral emissivity (absorbance) is calculated. For
the emissivity, X is set equal to 3 um and is calculated
as € = (1 - Reflectivity). The result is then plotted
as € versus 6, The program written for a Hewlett-
Packard 9845B computer is listed in appendix C. Figures
3 through 10 are the microwave reflectance and emissiv-
ity plots for a dielectric and a conductor with conduc-

tivities of 0, 3, 500, and 5x107 mhos/meter respectively.
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CHAPTER IV

ELECTROMAGNETIC N-LAYER ANALYSIS

We now consider the problem of N-layers with air

on each side. See the diagram below.

Figure 11: N-Layer Electromagnetic Interaction
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Since we have N separate layers, defines the

E2n+1
electric field of the wave traveling to the right in

material n and EZn+2 defines the wave traveling to the
left. As in the single boundary case, we may write the

field components in each layer as follows:

E Parallel

ﬁl = ElejsoZ Coseo (coseo X - sineo 2) (73)

B i -
ﬁl = U% EleJBoZ cose, y (74)

- -jB . 2z cos® > . 2

ﬁz E,e 770 0 (coseo X + 51neoz) (75)
> [ _ s N
H, = 'J% E,e 18,2 cosh y (76)
z jB 2 C0s9H : : > 77
E3 = E3e 1 1 (cose1 x - sme1 z) (77)

B ; -
Hy = = Egelf1? €050 5 (78)

wul
E, = Ege 7P1% “O%°1 (cose; x + sine 2) (79)
> By -jB,z cose, ¢
H4.= - m—ﬁ—i E4e 1 1 (80)
> ' P 8 ~ . ~
Erner = E2n+l eI Pn? €O%%n (cose x - sing z) (81)
> 8 . N

= n jB8_ 2z cosH
Hons1 wuy Ejnep €0 ny (82}
E, 2 = Eanas e-JBpZ cOse, (cosé _x + sineni) (83)
8 .
> _ n -j8_z cosb_ -
Hzn*z = - _‘*’Tr: Ezn+2 e J n ny (84)
% jg 2 cose - . A
E2n+3 = Ezﬁ+3 e" "o o (coseox - sin® z) (85)
- Bo 1 2] v
. Co j8 z cos y

Hanes = Tu Fanes® ° (86)




E Perpendicular

> 3 e ~
E, 7 EleJBoZ €0s% y
> 8 ;
_ "o jB z cos® _ A . A
Hl = ou Ele o] o ( coseox + 51neoz)
EZ = Eze'JBoZ Coseo )‘"
> B s z e N -
HZ = E% Eze 18, cos®, (cose x + sin® z)
B, = E,elB17 €501y
> B 3
= -1 jB.z cos?H - . A
Hy = BT Ege’ "1 1 (-cos8, X + sin®, z)
-»> . n
E4 = E4e-J612 Cosel y
-> B .
= "1 -jB,z cost A . A
H, oy E4e 1 1 (cose; x + sing, z2)
| _ 'é Z cos®_ ~
E2n+1 B E2n+1 e’ ny
- Bn B.Z COS® - . -
Honel = Eon+l elbp n (-cose X + sine, z)
> = E -jB,z cose_
Eanse2 = F2nsz €70 ny
B -1 - . -
Hynsz = ovo Eznez © 38n? €00 (cose, x + sine, 2)
e - B,z cosoy
Eon+e3 = Eznes © y
> 8o ig _z cose@ - . -
Hynes = ou E2n+3 el Bo o (-coseo X + sing z)
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(87)

(88)

(89)

(90)
(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)
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Apvolication of the tangential boundary conditions

at the interface yields

E. cos6 + E_ cos8 = E
o o
B

B
0 _ 1
- E = ES - .

"1

j cos®
Ez cosdy elB12) 591 4

coso

E. Cc0so, eJBZZI 2 +

5

E cos?9

8 .
1 erlzl 1 -E
34 4
1

B .

E. _2 e33221 cose, _ g

5 v, 6 ¥

ja_z_ cose
e "
Ezn+1 cosen n'n

jB z_ cosé
E2n+3 coseo e’"on

Bn

E2n+1 ;;

8 .
0 g Z_ COSg
EZn+3 ' elBo%n n

; cose
edBn%n ©°

= Eane2 u

the following:

E Parallel

3 cose1 + E4 c0561
&y

E, -——
4 L5

-j8 cose
E4 cose1 €

E6 cosg, e'jszzl cosez

B .
‘1 e-JBlzl cose1 -
"1

2

B2 e-jBZZ1 cose2

*jB A

n + E2n+2 cosen e nn

o

8 3
“noetIBpzy
n

141 1 =

cos
en -

cosd®_ _
n_

(101)

(102)

(103)

(104)

(105)

(106)
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E Perpendicular
z =0
+ E =
E) * Ep = Eg + Ey (107)
B 8
0cosé 0cos® lcose lcos®
"El -_— o + E _— (o] ‘E3 Ll_i_ 1 + E ul 1 (108)
z = z;:
E, eJB 21€0S0, E, e JB 2z c088,
. . (109)
ES eJBy2C0S0, | E6 e-JB2,COS8,
B ia 2 8 -3
-E, ﬁ% cose, I8y 1609884 . E, FlCOSe1 e JBy% €088,
1
(110)
B ; B -
'Es ngosez ejszzlcose2 + E iZFOSGZ e Jszzlcose2
2 6 2
z = z.:
Eynel eJB8,2,C0S0 Eyne? e JBRZnC0So, Epnes eJBoZnCOst,
(111)
B : B ;
ncose B_Z COSH ncos -jB_z_coss
“Eon+1 ﬁ; n eJFn®n n + Ey 42 F; n e fn"n n =
8 . (112)
-E2n+3 _0cose erozncoseo

Thus, we have generated N equations with N unknowns for

both parallel and perpendicular incidence. These equa-

tions may easily be consolidated into matrix format; see
Figures 12 and 13. Figure 14 is an example plot of a

three layer system with layer conductivities of .5, 1, and
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Figure 14: Three Layer Electromagnetic Response
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1.5 mho/m respectively. See Appendix D for a listing of
the computer program written for a Hewlett-Packard 9845B
computer; it will handle up to 10 layers.

It should be pointed out that this is not the
first time the electromagnetic N-layer problem has been
solved. Hansen 16 develops a procedure in which explicit
equations are derived for the mean-square electric fields
induced by plane electromagnetic radiation in a single
boundary, single layer, and N-layer system. His approach
is to allow for a complex fermittivity in the energy
absorption process rather than using Ohm's law explicitly
in the solution of Maxwell's equations. It is for this
reason and as a result of the desire to present a more
straight forward approach, that the preceding chapter
was developed. Additionally, interested readers may
also refer to Wait 17 for an in-depth discussion of
electromagnetic absorption by stratified media. Most
of Wait's discussion is directed at the electromagnetic
interaction occurring at the surface of a stratified

earth.

I
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CHAPTER V
THERMAL ANALYSIS

The simplest analysis is one that assumes a
steady state situation with no heat losses at the z=z
interface. In practice this is not a bad assumption
since our Nth layer may be made of a low thermal conduc-
tivity material such as one of the many foams available.
Also, it has been demonstrated that for relative.y thin
layers (thickness less than one millimeter) steady
state is reached very quickly (in most cases less than

five minutes for 10 mW/cm2

incident power).

A rough estimate for the transient response of
the system may be made as follows. Consider the semi-
infinite slab insulated at z=L as shown in Figure 15

below.

Q=K(u’“a1r) insulator

pp——

EENNNNNSN

Z=0 Z=
Figure 15: Three Layer Thermal Transient Response

P, = total absorbed power (watt/mz)

Q = total heat loss (Newton cooling)

u = temperature of the layer (K) which is
assumed uniform throughout




If u is assumed constant throughout our thin
layer (this assumes the thermal conductivity, «, is
large or the thickness, L, is small or both for the
layer), we may write the energy equation for the system

as follows:

PaAt K(U-Uair) At + pc Au L (113)

where At time (s)

K = constant (J/s-m2

-K)

o = mass density (Kg/m3)

c = specific heat (J/Kg-K)
Solving for Au/At, we have

Au = 1 Pa - K(U -~ Uai

t pch

e) (114)

Taking the limit as At > 0, we have

du= 1 P -K(U-0U,

gau ) (115)
dt pcL

ir
This is a linear homogenous differential equation which
has a solution given by K
© pcl t

U = Uair + Pa (L - e

)
K (116)

Thus, we may calculate a time constant t given by

pcL
K (117)

For example, a thin layer of water 100 microns thick

has a time constant of approximately 210 sec or about
3.5 minutes which is in agreement with our experimental
observation. Finally, a thin system made up of N layers

N
would yield a heat term given as Au I P3C;04 if the

i=1
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layers are heated at a relatively constant rate (same
u throughout); hence the time constant for the layered

system may be approximated by

N
v = 2z Pi%il (118)
i=1

It is important to point out that the above
development assumed a linear heat loss at the z=0 sur-
face. In fact, this term consists of a convective term
and a radiative (infrared) term which is in no way lin-
ear for large temperature increases (large Pa). However,
the steady state surface temperature may still be calcu-
lated using numerical techniques for this non-linear case.

We begin the steady state solution as before by
writing the energy equation for the system; thus, we

have absorbed power, P_, equal to convective losses,

a

Qcon' pi:slznggared losses, Qir‘ For the two loss terms
we have 77’

Qcon *© h (0,-U,5,)
and

_ 4_.4

Qi = For (Uo Uair)

where

h = convective heat transfer coefficient(watt/mz-x)
0°= steady state surface temperature (X)

4] = ambient air temperature (K)

air
Fe= surface emissivity

Y = Stefan-Boltzman constant(5.67x10-8watt/m2-K4)
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It has been shown that h for a vertical flat plate may

be approximated by 21

8
1.42 (Uo -0_.)

h = air
HG

where H is the plate height and § is a number that
falls in the range .1 <§<.6. The number, 5, is a
function of such things as atmospheric pressure, humid-
ity, etc. Furthermore, Pa is simply the incident power
minus the reflected and transmitted power; therefore,

we may write,
€

o 2 .2 2
B, (BT oo BT - Egnus’)
148 4 4 (119)
l=§3 Uy = Uayy) + Fov (Ug-Uasy)

It is important to note that it is necessary to consider
both convection and infrared radiation in the tempera-
ture range near 20C as indicated in Figures 16 through 18,
This figure illustrates the ratio of Qir/Qcon for a
surface temperature increase of 10C with an ambient air
temperature of 20C. This ratio is nominally between

1 and 2 over this range indicating that both processes

are significant in the energy loss transport and

therefore each must be considered.
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S PLATE HEIGHT= .18 METERS
CONVECTION EXPONENT=.268
AIR TEMPERATURE (C)=20.d0b

RATIO OF INFRARED TO CONVECTION LOSSES

a 10

(Uo-Uair) IN DEGREES CENTIGRADE

, Figure 16: Infrared Versus Convection Comparison




) PLATE HEIGHT= .10 METERS
CONVECTION EXPONENT=.404
AIR TEMPERATURE (C)=20.4d0b

Fe=.2

— Feo=.4

. —— Fe=.8

e Fe=.8
e Fu=1.8

RATIO OF INFRARED TO CONVECTION LOSSES

(Uo-Uair) IN DEGREES CENTIGRRADE

Figure 17: Infrared Versus Convection Comparison
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PLATE HEIGHT= .10 METERS
CONVECTION EXPONENT=.660
AIR TEMPERATURE (C)=e28.db

RATIO OF INFRARED TO CONVECTION LOSSES

(Uo-Uair) IN DEGREES CENTIGRADE

Figure 18: Infrared Versus Convection Comparison
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Even though equation 119 is relatively simple
in appearance, it is important to recognize that Uo is
in fact a function of several variables. These
variables include the layer thicknesses, relative
permittivities, relative permeabilities, electrical
conductivities, surface emissivity, convection
exponent, convection coefficient, sample height,
incident microwave power level, microwave frequency,
and microwave incident angle. Thus, in general U, is
a function of 4N+7 variables where N is the number of
layers considered. Even for the case of N=1, we see
that Uo must be considered in 11 space in order to
analyze all the variables and their interaction at
once. Clearly, we can visually represent 3 space but
not 11; therefore, in order to graphically display the
interactions of the more dynamic variables--the ones
over which we have direct control--we fix the values of
such things as incident angle, power level, convection
exponent, etc., and allow only coating thickness and
coating electrical conductivity to vary which then
yield our equilibrium surface temperature, Us-
Topologically then, by allowing only two of the
variables to vary we are in effect looking only at a

22 As was indicated

particular plane in 4N+7 space.
earlier, this is sufficient for our analysis since we

are observing the more easily manipulated variables in
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the actual design of a particular coating.

Equation 119 is readily solved numérically
using a Newton algorithm. This equation is solved for
the N-layer system and is represented on a three
dimensional plot. The axis variables are layer number
1's electrical conductivity, layer number 1's thickness,
and differential surface temperature increase. Figures
19 to 22 are representative plots of a typical 2 layer
system at various incident angles and polarizations.

Later in the experimental verification in
Chapter VI, it will be important to realize that a
given coating will be considered as a function of
incident power level only. The coating and all its
particular characteristics are already fixed; they
cannot be varied without constructing an entirely new
coating configuration, Thus, we will calculate
equilibrium temperature as a function of incident
power level using equation 119 and then compare these
values to the actual measured values. Topologically
then, we will be considering single lines in 4N+7

space.
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CHAPTER VI
EXPERIMENTAL VERIFICATION

The coupling of the electromagnetic solution with
the thermodynamic solution for a system of N layers
yields a theoretically valuable tool for predicting the
surface temperatures of a layered system. However,
before this development can be used with any certainty,
we must experimentally verify the accuracy of the
predicted results. The overall verification was a three
step process. We first measured the convective heat
transfer exponent, &, and then‘examined five different
conductive samples as they were exposed to various
microwave power levels ranging from 10 to 40 mW/cmz.
Irradiation frequency was fixed at 2.54 GHz. An
appropriate convective heat transfer coefficient was then
chosen that would allow the best possible fit between
experimental and theoretical data.

The convective heat transfer exponent was
measured in the following manner. A constant power was
generated within a thin conductive coating (aquadaq) by
keeping a constant direct current voltage applied accross
the sample. This sample was insulated with two inches of

styrofoam insulation on the sides and back so that we
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could closely approximate our model which assumed no
conductive heat losses. The sample was allowed to

reach steady state conditions before the surface
temperature was measured. Surface temperature measure-
ments were made with an infrared camera capable of
measuring temperature variations to within one tenth
degree Centigrade. We then calculated an absorbed power

density given by

P, = VI/A (123)
where

V = applied voltage across sample (volts)

I = current through the sample (amperes)

A = area of the sample (meters squared)

This absorbed power must be dissipated via surface
convection and infrared radiation; therefore, as in the
development in Chapter 5, we equated the power gains to

the power losses which resulted in

1.42 1+6 4 4
VI/A = = (Ug-Ugip) *FY (U -Ugiy) (124)
Surface emissivities have been measured by other
researcher523’24and are thus known quantities. If we

assume the convective coefficient (1.42) remains relatively
constant, the only variable remaining is the convective
exponent which may be calculated. Its value is given by

1 [ 1 VI 4_ .4
. ~—— 1n Y- Fev(Ug-Ug;yp)
8 1n(Uo galr) E.42(U°-Uair) e *-o a1r)] (125)
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Figure 23 illustrates the general layout of the

experiment.

Insulation
- Sample : Infrared
Camera
A
Computer

1|

L.@.

Figure 23: Schematic of Convective Exponent Experiment

Test equipment used in the experiment consisted

of the following:

Nomenclature Identification

Power Supply Regulated D.C. Power Supply
0-50 VvDC, 0-1.5A
Kepco Manufacturing Co.
Flushing, New York

Ammeter Digital Multimeter
Model 3466A
Hewlett-Packard Mfg. Co.
Colorado Springs, CO
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Voltmeter Digital Multimeter
Model 3466A
Hewlett-Packard Mfg. Co.
Colorado Springs, CO
Infrared Camera Thermovision Model 680
AGA Manufacturing Co.
Secaucus, New Jersey
The sample measured consisted of a 10 cm square
of conductive coating 59 microns in thickness and mounted
vertically. Room temperature was maintained at 20.5¢+.1 C
throughout the experiment. Five different direct current
power levels were observed to determine the linearity of
the convection exponent with temperature. Figure 24
illustrates the experimental results in which the average
value of the convective exponent was determined to be

0.53. Having a value for the convection exponent, we

then verified the N-layer electromagnetic interaction.
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There are two major shortfalls of the N-layer

model which have a drastic impact on the verification.
The first of these is the semi-infinite plane assumption.
We obviously cannot construct a semi-infinite layered
system in the laboratory and irradiate it uniformly
with a plane electromagnetic wave; therefore, the
approach is to use a very small (much less than a wave-
length) multilayered sample. By avoiding resonant shapes
and sizes the sample will experience a relatively uniform
electric field across the surface and the observed
surface temperature will approximate that observed on a
semi-infinite sheet.

Secondly, from the thermodynamics point of view,
we assumed the conductive coating would be placed on a
perfect insulator and thus no thermal conduction would
occur. Obviously, perfect thermal insulators do not
exist either; hence, we have another source of error. To
minimize the thermal conduction losses, samples were
placed on styrofoam blocks with a minimum of two inches
of insulation on all but the front surface. Styrofoam
proved to be well suited for this purpose since it is an
excellent insulator and has a measured electrical
permittivity of approximately 1.1 (10 GHz). Electric-
ally, therefore, the foam was virtually invisible while
thermally it provided the desired insulation. The

samples consisted of 1, 2, and 3 layer configurations all

Rost M.

RT3

th




cut to be 1.5 cm square. In addition to the equipment

already listed, the following instruments were also

used:
Nomenclature Identification
Microwave Generator Microwave Generator
2.45 GHz, 0-200 Watt
Kiva Instrument Co.
Rockville, Maryland
Power Meter Radiation Hazard Meter

(RAHAM), Model 481
General Microwave
Farmingdale, New York

Figure 25 illustrates the physical arrangement of the

experiment.
Insulator
Corner Reflector
onopole
& Sample Infrared
e [ ]
Camera

(Not to Scale) Computer

Figure 25: Schematic of N-Layer Verification
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The procedure itself was relatively straight
forward. The microwave power meter was used to measure
the free field power level of the 2.45 GHz radiation.
After the power was adjusted to the proper value the
layered sample was placed at the point where the power
was measured. The samples were then allowed to reach
thermal equilibrium prior to measuring their surface
temperatures with the infrared camera. In most cases
thermal equilibrium was reached in less than 10 minutes;
however, the samples were irradiated at least 20 minutes
each. Each sample was exposed to power levels of 10, 15,
20, 30, and 40 mw/cmz. The measured temperature for each
is plotted versus input power in figures 26 to 30.
Calculated values are also plotted on the same graph for
comparison purposes. The single greatest variation
occurred for the two layer aquadaq/plexiglas combination.
In this case the average deviation from theoretical
values was about 33 percent. The other four samples
yielded much better results of typically less than 20
percent variation. To obtain the theoretical values
shown we had to use a convective coefficient of 15 rather
than the 1.42 used in the theoretical discussion in
Chapter V thus indicating that convection is much more

significant than originally assumed.
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(HAPTER VII
APPLICATION OF MODEL TO TWO-DIMENSIONAL TARGETS

As was pointed out earlier in the initial development
of our coating model, a possible limitation to its use results
from the one-dimensional analysis itself. This chapter discusses
the problem of applying the one-dimensionl coating model to the
more ''real world" two-dimensional problem. In particuvlar, the
experimental verification itself uses an electrically small two-
dimensional square sample to approximate the current present in
the semi-infinite one-dimesional case. Also, the question of
"nearest neighbor" influence is important when considering elec-
trically large samples. That is, when we observe a temperature
at a point on the surface of a coated shape, how well does that
relate to the currents present directly under it? Clearly, the
currents in the neighborhood of this point must contribute some-
thing to the coating temperature but the question is, 'how signif-
icant is their influence?" In order to qualitatively address
each of these situations, we will first consider the electri-
cally small sample as applied to the verification experiment
and later discuss the "nearest neighbor' considerations in
regards to electrically large models.

As was indicated earlier in Chapter VI, the verification

process for the semi-infinite one-dimensional model is a difficult
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one. Physically, we were constrained in size by an anechoic
chamber with a maximm usable width of approximately one meter.
In the far field we had an area of approximately 20 x 15 cm in
which the microwave power density was relatively uniform. Elec-
trically we could achieve a power density of 20 lﬂW/cm2 in the
above area at a frequency of 2,45 Giz. The radiation pattern was
formed by use of a quarter wave monopole in conjunction with a
parabolic reflector over an alumimum ground plane. See figures

31, 32, and 33 below.

Figure 31: Photograph of Monopole and Parabolic Reflector
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Figure 32: Actual Quarter Wave Monopole

Figure 33: Anechoic Chamber With Electrically Small Target and
Infrared Camera in Foreground
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The verification problem is such that it could proceed
in either of two ways. The first was to construct several elec-
trically very large samples that by nature of their size would
approximate the semi-infinite condition of our model. There are
several problems associated with this approach. Large coated
targets are considerably difficult to construct since they must
have completely uniform conductive coatings over their surfaces.
The problem is even more difficult with two or three composite
layers. The largest problem, however, results from the nature of
the anechoic chamber itself. That is, if we placed a large
target completely across the chamber, nearly all of the incident
microwave field would be back scattered into the parabolic
emitter which in effect would turn our anechoic chamber into
some type of tuned cavity. Thus, we would know nothing about the
fields present at the coating. The back scatter problem could be
reduced or eliminated by removing the parabolic reflector and
substituting anechoic absorbers but then our incident field
strength would have suffered drastically. Therefore, because of
the mechanical and electrical difficulties inherent with the large
model approximation, it appears more desirable to use an elec-
trically small model to approximate the semi-infinite results.

The electrically small sample has several advantages.
First, it is much easier to fabricate and characterize elec-

trically. In fact we can measure the coating thickness directly
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using a good micrometer since the micrometer jaws nearly com-
pletely cover the sample's face. The back scatter problem is
practically nonexistent. Similar to developments elsewhere, if
we consider a sample which is electrically small and assume the
incident field induces a relatively uniform surface current
across the sample faces then we may treat it as a Huygen's source
(We will discuss the uniformity assumption more later.) 25 see

figure 34 below.

Figure 34: A Uniform Current Sheet Radiator
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If we further assume the induced current is not only uniform but
also the same as that induced on an infinite conductor and that

contour charge is negligible, then we have J = Iﬁil . The radia-

tion field is B = -juk 2° (126)
Wh.ere -‘Br
> . Jxdy) d x e’
8 .
Es = - juw 1\( cos¢ cosé (128)
b _ . .
Es =jw Ax sing (129)

Therefore, the approximate magnitude of the backscattered field

on the z axis and polarized in the x direction (8 = 0, ¢ = 0)

would be A
E; dy dx
Eslo = v G (130)

Assuming that this field is redirected by the parabolic reflector

with some gain G, the redirected field strength at the target

would be
mGE:-L dy dx

The percentage of re-reflected to incident power at the target

face would be

lEtIZ ) [‘-"—9-8%23%]2 X 100 (132)
E |

l

For
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2n x 2.45 x 10° Hz

€
#

dy = dx = .015 m
G = 20
r=13m
c=3x10% mws
we have it:z L 5x107° 3 (133)
1

In other words, our small sample size interferes with the incident
field only a small amount. One obvious advantage of

this is that we can measure and characterize the microwave fields
within the anechoic chamber with no targets present and then be
sure that this characterization changes very little with the
addition of a small object.

Two other considerations that must be addressed before
the small sample may be used with confidence concern the surface
current uniformity and magnitude on such targets. Considerable
insight is provided to both of these questions in an article by
Wilton, et al, in which a method of moment solution is considered
for various size flat conducting plates. See figures 35 and
36 below for a profile of surface currents on a 1.0) and

0.15x square plate26.
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The important aspects to note are the magnitude of J as the plate
size decreases and also the more uniform current distribution

as the plate size reduces. In an experiment to observe these
effects more graphically, 1.01, 0.5), and 0.25) square plates
were irradiated with normally incident microwaves at a power

level of 20 chmz. See figures 37 to 45.

Figure 37: Photograph of 1.0\ Square Plate
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Figure 38:

Figure 39:

Infrared Photograph of a 1.0) Square Plate

Thermal Profile Across the Center of a 1.0x

Square Plate
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Pigure 40:

Figure 41:

Actual Photograph of a 0.5\ Square Plate

Infrared Photograph of a 0.5\ Square Plate
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Figure 42:

Thermal Profile Across the Center of a 0.5x

Square Plate

Figure 43:

Actual Photograph of a 0.25) Square Plate




Figure 44:

Figure 45:

Infrared Photograph of a 0.25) Square Plate

Thermal Pr«file Across the Center of a 0.25)
Square Plate
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The lighter areas correspond to greater surface currents.

A single temperature profile was taken across the middle of each
target to allow comparison with the method of moments results by
Wilton. Notice the great similarity between the 1.01 experi-
mental plate and theoretical results. To consider the question
of wniformity more graphically, Figure 46 is a plot of a .15)
square plate in which the shading depicts those areas in which
the surface current varied less than 20% from that which would

be observed on an infinite conducting sheet. This information

is graphically taken from the plot of Wilton, Figure 36.

.15

104 1 Eincident
/,»Shading: 3=3w + 20%

.05

-00x 4 o . 05X 10X .15)

Figure 46: Current Uniformity on a .15) Plate
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Therefore, by observing the temperature at the center of our

small sample, we are reasonably assured that our results are \
similar to what would be observed on a semi-infinite plate.
In the experimental verification small square samples were
used which facilitated the above discussion; however, this is not
an absolute requirement. Andrejewski 7 has computed the surface
current at the center of a disc as a function of c where
c = 2x(§) with "a" being the radius of a sample disc. See figure
a7 %8 for a plot of his results.

(]
(a) Iuminated
\ Side
o /
Ini*F /
2
! A\ Shadow Side
[+] 1 A | A L
° 4 Py 6 ) 10

Figure 47: Current at the Center of a Disc as a Function of ¢




-

80

As in the case of the small square, notice that as c gets small
the field at the center of the disc approaches the semi-infinite
plane value ( |fi|=1 ). In fact for a disc 1.5 cm in diameter the
predicted surface current value at the center is within 10% of the
value experienced by a semi-infinite conducting sheet. Therefore,
it seems reasonable that we may use small discs as well as squares
in the verification process with no loss in validity. For a more
complete discussion of theoretical solutions of the disc one may
refer to any of several good references. 28,29,30
All the discussion to this point has been limited to
the small samples used in the verification process. We have
developed a model and have shown that it is valid in regards to
whether or not a particular coating configuration will heat
properly when exposed to microwave radiation. One final question
which is relevant when considering electrically large samples
is the question of ''nearest neighbor'' influence. That is, how
well can our coating model predict surface currents below it?
Recall that in general our coating will be displaced
from the surface of the object we are observing. Although, this
displacement is necessary in order to observe heating, it is |
an overall detriment to the resolving power of the coating.
We may begin to understand this problem more if we recognize
that in order for a particular current element to interact with
the coating, that current elerient must emit an electromagnetic

wave which in turn must trave. to the coating. See Figure 48,
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Neighbor Contribution

I'\-/ Desired Current Measurement
.........‘/}/...SURFACECURRENT

(Out of Page)
INSULATING LAYER

Measurement Point
(Infrared Radiation)

Figure 48: Cross Section of a Conductive Coating Displaced Away
From Conductor Surface

The question then is how far away from the measurement point
can this neighbor contribution be? We may receive some insight
to the problem by considering the typical waveguide solution 3
to two semi-infinite planes separated by a distance "a". See

figure 49 below.

e

v



82

X=a

=0

Figure 49: Parallel Waveguide Sheets




Assuming wave propagation in the z direction and a TE mode, the

solution is given as

Ey = C; sin C“—; x) e V2 (134)
m=1,2,3, ... (135)
T=/AM2 -2 e (136)

We see that y will either be pure imaginary or real depending
on the argument under the radical. If y is real, the wave will
attenuate exponentially which is what we desire in order to
reduce the nearest neighbor effect. We may solve for a minimum
value of a in which this will occur. Forcing the argument to be
greater than zero and solving for a, we find that attenuation

will occur as long as

a < M (137)

Zer ur

If we assume the simplest propagation mode (m = 1) and a foam
insulating layer (e r W T 1), then we have lateral attenuation
as long as the insula‘or is less than %-thick. Obviously the
attenuation will bc stronger as the layer gets thinner. The
distance at which an attenuated wave has reduced to a value 2
of its initial value is given by

2 = 1 (138)

VBT - e

83
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In the regime where we must operate in order to have significant
lateral attenuation and thus little nearest neighbor influence,

we have

('L;—)Z >> wzue (139)
Therefore,
2z = 2 (140)

In other words, we would not expect to see significant nearest
neighbor influence at distances much over a/v for the worse case
of m=1.

An experiment was conducted in order to further understand
the significance of the nearest neighbor problems. A large
alumimm conductor was covered with a layer of foam 5.1 mm in
thickness. The foam was subsequently coated with an aquadaq
coating approximately 15 microns in thickness and electrical
conductivity of approximately 315 mhos/m. As the large target
was irradiated, 1.5 cm diameter holes were placed in the alumimm
at closer and closer intervals. The holes behind the coating
were observed as hot spots. A point was finally reached at which
time the two spots had begun to merge. At this point the centers
of the holes were 2.0 cm apart. See figures 50 to 61 for

thermovision photographs and thermal profiles of the results.
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Figure 50:

Photograph of Electrically Large Plate in Place i

the Anechoic Chamber

Figure 51:

Photograph of the Single 1.5 cm Hole in the

Aluminum Plate
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Figure 52: Photograph of the Double Hole Configuration

Figure 53: Infrared Photograph of Artificially Heated Double Hole

Configuration for Size Comparison with Microwave Results




Pigure 54: Infrared Photograph of Single Hole Heating Pattern

Resulting from Microwave Radiation (1° C Scale)

Figure 55: Horizontal Thermal Profile of Single Hole Heating
Pattern (1° C Scale)
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Figure 56: Same as Figure 54 Pxcept 2° C Scale

Pigure 57: Same as Figure 55 Except 2° ¢ scale




Figure 58: Infrared Results of Double Hole Microwave Heating
Pattern (1° C Scale)

Figure 59: Horizontal Thermal Profile of Double Hole Heating
(1° C Scale)
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Pigure 60: Same as Figure 58 Except 2° C Scale

Figure 61: Same as Pigure 59 Except 2° C Scale
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A z calculated for the simplest (m=1) mode in this
configuration is approximately .2 cm. Note that we may still
observe separation oi the two holes on the thermovision photo-
graphs and at that point the actual metal separating the holes
was .5 cm. It is of note also, that the particular infrared
camera/object separation distance for this experiment only provided
a .17 cm camera resolution.

As a final note, it should be obvious that electrically
large, finite dimensional, targets exhibit large variations in
surface current density (See figures 35,38, and 39 for examples.).
It is possible to gain some insight into how these variations
relate to the one-dimensional model by considering the following.
Suppose that we have a two-dimensional problem in which there are
surface current variations in the x direction of a substrate as

a result of its finite size. See Figure 62.
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“ Clearly, if the substrate were infinite in the x-y plane,
the value of J would be a constant given by lﬁil . Fowever, as a
result of its finite size in the x direction and the imposition
of boundary conditions, we actually have a current distribution
varying spatially in the x direction and supposed to be that
illustrated in Figure 62. In this example only, the surface
current is confined to the range Od<3Hi.

We know that the total electric field in the coating
will be the vector sum of the incident field plus the scattered
field from the current element beneath the measurement point, P.
The question of nearest neighbor contribution to the field at P
has already been discussed. It was shown that most of the
scattered field at P resulted from current distributions within a
circular radius of approximately a/v., Therefore, if a is small,
we may assume the radiating source to be located directly behind
P. We have

Ec = ﬁi + ES (141)
where B is the field in the coating, E, is the incident field,
and ﬁs is the scattered field. We may define a fourth field, Em,
as the scattered field from an infinite substrate and E P as a
perturbing field that when combined with E_ would yield the

actual scattered field from the finite size substrate. Thus,

E -E ¢+ ﬁp (142)
Substituting equation 142 into equation 141 we have,
E =B «E + Ep (143)

Recalling the development in Chapter V, we may write an expression
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for the deposited power density in the coating, Q.» as follows:

Q=3 B =df & (144)
Taking the dot product of E_ with itself, we have

Q = of Ef + EZ + rs; L2 B+ BR BB ) ()
Rearranging, we have

Q = of B2 + B2+ 2B, B+ ( B; v 2 B8R ) (146)

Clearly, by considering temperature regimes in which no
changes of state occur for our coating and by remembering the
conservation of energy, we may infer that the temperature of the
coating is a continuous, increasing function of QC; that is,

AT = £(Q_,H) (147)
where H consists of several thermodynamic variables such as
surface emissivity, sample height, orientation, roughness, etc..
The important point, however, is that for each increment we
increase Qs AT will also increase. If we consider a simple
case in which the power loss, Q;, may be expressed in terms of
Newton's law of cooling, we have

Q, = g(H)aT (148)
where g(H) is some function of the thermodynamic variables
listed above; for a given coating/substrate configuration
it is assumed that g(H) will be relatively constant independent
of temperature. For example, infrared emissivity is a function
of coating electrical condu tivity; electrical conductivity
was measured vers.. os0° .¢ temperature for an aquadaq coating
in Appendix A and found to vary less- than 0.3% over the temperature
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ranges of interest. It can be shown that the emissivity would
vary even less than the conductivity; thus, it is assumed to be
constant. We may now write the conservation of energy equation
for the coating/substrate system in dynamic equilibrium; we have
Q, = Q. (z=-a)t (149)
vwhere t is the coating thickness. In equation 149 we have
assumed that the coating in this example is so thin that the power
deposition is uniform throughout and is only a function of the
coating separation from the substrate, Substituting equation
148 into equation 149, we find
AT = Et(m' Q. (z=-a) (150)
This is the sought after result; the differential surface
temperature is directly proportional to the deposited power
density. The importance of this arises from the composition
of Q.. The first part of equation 146, ( E; + E- + 28, ),
is what we might call the first order terms which result from
a purely one-dimensional analysis of the problem ( The coating/
substrate combination is infinite in the x-y plane.). The
remainder of equation 146, ( E; + 2B - (£;+8, ), may be
interpreted as the higher order contributions resulting from
the imposed boundary conditions in a finite case. Thus, the
differential temperatures we observe on our coating surface
may be thought of as the sum of temperatures we would observe
on an infinite configuration plus any changes that would occur
as a result of observing a finite size; that is,

AT = AT+ ATp (151)
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In equation 151 bear in mind that ATp may have a negative value
since only AT is required to be greater than zero by the law

of conservation of energy. ATp is the term that results from the
interference of our perturbing field, Ep , with the total field
that would be present in the case of an infinite coating/substrate
configuration, ( ﬁfﬁw). Also, AT typically is not directly
proportional to the absorbed power density but rather approximates
a square law to a large degree. This non-linearity is no problem
since the infrared data is generally entered directly into a
computer and may, therefore, be corrected for in a relalively
straight forward manner.

The importance of all this is that in analyzing the
current distribution on a finite plate via the coating
temperature distribution we may wish to consider only the non-
steady state term, ATP. That is, in the process of completing an
infrared measurement we may wish to scale the results by some
additive constant in order to correlate the infrared results
with a single probe measurement on a particular surface and
thereby "calibrate' the infrared results for all other points
on that surface.

Since we have shown earlier that small samples may be
used to approximate the one dimensional infinite plane, it
seems reasonable then to assume that we can use small samples
to measure AT  directly. A series of flat plate experiments were
performed in which this was done. First, a small 1.5 cm square
was irradiated with microwaves at a frequency of 2.45 GHz and a
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power of 25 mw,’cmz. This is the same sized sample used in the
verification experiments. Therefore, by measuring the equilibrium
temperatures on the surface of the small sample we have obtained
AT _ for that particular coating configuration. Next, a 1.02
square plate was irrédiated in order to illustrate the process.
An infrared photograph was made along with a single thermal
profile. ATP may be obtained by subtracting AT_ from the total
temperature measured by the thermovision. AT_ was drawn on the
profile photograph to illustrate the magnitude involved. Figures
63 to 68 were made from a coating of 15 microns of aquadaq

(315 mhos/m) placed on 5.1 mm of foam insulator. Figures 69
through 74 were made using an aquadaq coating 15 microns thick
and placed on 10.2 mm of foam insulation. Additionally, Figures
69 through 74 included a copper substrate whereas the earlier

photographs contained no substrate.
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Figure 63: Thermovision Photograph of 1.5 cm Square Sample
(No Substrate)

Figure 64: Thermal Profile (Horizontal) through the Centey of
the 1,5 am Square Sample (2,45 GHz at 25 mw/cm”)
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Pigure 65: Thermovision Photograph of 1.0 Square Plate (Horizontal
@iﬁte §1ne indicates area where thermal profile was
taken.

Figure 66: Thermal Profile from 1.0 Square Plate with AT
Plotted
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Figure 67: Thermovision Photograph of 0.5\ Square Plate (Horizontal
white ;.me indicates area where thermal profile was
taken,

Figure 68: Thermal Profile from 0.5\ Square Plate with AT_
Plotted
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Figure 69: Thermovision Photograph of 1.5 cm Square Sample
(Copper Substrate)

B 70: Thermal Profile (fbrizontal) through the Centex of
gure the 1.5 em Squ:re Sample (2.45 GHz at 25 w/a:i)
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Figure 71: Thermovision Photograph of 1.0A Square Plate with
a Copper Substrate

AT,

Figure 72: Thermal Profile Corresponding to White Line in
Pigure 71
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Figure 73: Thermovision Photograph of a 0.5\ Square Plate with
a Copper Substrate

AT

Figure 74: Thermal Profile Corresponding to White Line in
Figure 73
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In passing it should be peinted out that the preceding
results are consistent with the theoretical amalysis typically
employed in the development of holography 36. This is to be
expected since the coating is simply recording the interference
patterns resulting from the combined effects of the incident and
scattered fields from the substrate surface, This would be the
arrangement for a typical Gabor hologram 37. As is the case of an
optical hologram, we have both phase and amplitude information
stored in the thermogram of the surface coating. Clearly, the
points on a thermal profile lying below AT_ indicate that ﬁp
must be out of phase with (ﬁfﬁm) which would yield a negative
value for the dot product in equation 146, It is not as easy
to assess phase information for the AT's above AT _. These areas
may correspond to ﬁp's out of phase with (Efﬁm) but much greater
in magnitude such that ﬁp itself is the primary heating source,
Continued research in this area may finally provide much needed
information in regards to surface current phase. Fast Fourier
Transform (FFT) techniques and optical reduction of the coating
interference patterns into optical wavelengths for subsequent
laser illumination are both techniques that may provide the desired
phase information, 38

This was not an attempt to quantitatively determine
the resolving power of any particular coating. That effort
is better left as a topic for further study on its own merit

in another dissertation, However, it does illustrate that there
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are no far reaching '"nearest neighbor" effects. We observed no
shadows or false apertures as might be expected if there were
some other propagation mode present.A Thus, the end result of
this series of experiments is a qualitative understanding of the
nearest neighbor interaction in electrically large targets plus
an assurance that the one dimensional model may be used with

confidence in the design of a particular coating.
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CHAPTER VIII

RECOMMENDATIONS AND CONCLUSIONS

This paper provides a method of selecting an
optimum coating for use in the thermographic detection of
microwave induced surface currents., Optimum in this sense
implies two things. First, we needed a coating that would
heat to at least 1 degree Centigrade above ambient
temperature to achieve 10 levels of resolution on the
infrared system., This is directed by the accuracy of the
thermographic camera which can resolve temperatures to
within 0.1° C. Secondly, we needed a coating that would
heat to an acceptable level but minimally interfere with
the fields present. This second requirement stems from
the necessity of minimizing the effect any measurement
device would have with the quantity being measured.

In attaining an optimum coating there were other
constraints that we had to adhere to in order to have a
realizable system. First, the coating should not contain
ferrites, non-isotropic, or permeable materials. This
requirement was established to ensure that the coating
itself did not introduce possible intermodulation

distortions resulting from non-linear materials.
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Secondly, it was desired that the coating be easily

fabricated for application to a variety of possible
shapes. And thirdly, it had to be non-toxic to avoid
possible health »nroblems.

From an engineering point of view, there are only
a finite number of variables that may be controlled to
achieve the desired results. The material character-
istics are limited to coating electrical conductivity and
the insulating layer permittivity. Since we do not allow
the use of ferrous materials in either, the relative
permeability is approximately 1. The easiest factor to
control, and the most effective, is the individual 1layer
thickness.

Before explaining the coating development, it is
appropriate to point out the two different uses of the
coatings. The first involves a situation in which only
the shape of a particular object is important in an
electromagnetic interaction problem, To determine the
current distribution in this problem, the simplest and
most effective technique is to construct a model of the
object from a foam material (low thermal mass) and then
coat it with a thick (2-3 skin depths) coating of high
electrical conductivity (300-500 mhos/m) material. Thus,
we simulate a highly conductive object which may be made
of something such as aluminum with one of lesser

1 32

conductivity. Senior, et a have demonstrated
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that the modeling would not be one-to-one for small
conductivities but Sega has demonstrated that for reason-
able conductivities (greater that 300 mhos/m) the compari-
son may be close33. A possible application of such a
scheme might be to determine the current distributions on
an aircraft, ship, or spacecraft to facilitate the proper
placement of antennas or measure radar cross section.
Additionally, this type information might be valuable
when studying the vulnerability of an existing or future
weapon system to the effects of an Electromagnetic Pulse.
The more difficult problem is one which cannot be
modeled because the materials the object is made from are
relevant factors in the particular microwave interaction.
An example is a missile or satellite constructed from
conductive composites, iron alloys, aluminum, etc. Here
the object itself must be irradiated and the resulting
surface currents measured. To measure these currents, a
different type coating arrangement is required. Two
requirements exist; the coating must be thermally isolated
from the surface to allow heating, plus it should be
sufficiently distant from the surface so that the total
(reflected plus incident) electric field is reasonably
large. That is, the electric field must be large enough
so that the heating in the coating will result in a
temperature increase greater than one degree Centigrade.

Neoprene rubber fills several of the requirements for the
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insulating layer. It is a good thermal insulator; it is
non-ferrous; it will easily conform to complex shapes
with the aid of contact cement; and it has a high
relative permittivity (measured to be 31 at 10 GHz).

The high permittivity allows us to place the coating an
electrically long distance from the surface even though
the rubber may be physically thin. The advantage of this
may be seen if one considers the infinite, perfectly
conducting plane. At the surface we have a surface
current magnitude given by 2H,, but the electric field is
zero there; however, at a distance of one quarter wave-
length from the plane the electric field magnitude is
given by 2E,. Thus, if we placed a thin conductive layer
at this distance from our infinite conducting plane, we
would see maximum heating. A large permittivity material
allows us to minimize the actual insulator thickness thus
making it easier to apply. There is a disadvantage, how-
ever, in that the high permittivity insulator has a much
higher reflection coefficient which has the effect of
shielding the surface from the incident microwaves.

To optimize the above situation, that of placing
our conductive coating on an insulating layer, we may use
the following procedure. A computer program, Uthick,
described in Appendix G , generates a square matrix in
which the coating thickness and insulator thickness have

been allowed to vary for the corresponding matrix
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elements. The coating thickness changes linearly along
the rows and the insulator thickness changes linearly
along the columns. After this matrix is generated for a
particular conductivity and insulator configuration, the
results are plotted on a contour plot. The contour pro-
gram, Contor, is located in the appendix also. Each coat-
ing configuration is examined with and without a conductor
behind the insulating layer, thus simulating the situation
of having currents present and not present. Finally, for
comparison purposes a different contour is presented which
indicates the thermrl differences between a coating

scheme with and without the conductor behind the
insulator. Therefore, we can determine at a glance what
the optimum coating configuration would be for a given
situation. For electrical conductivities ranging from

0.1 to 40 mhos/m the appendix on electrical conductivity
describes in detail how a particular conductivity coating
may be made using a carbon and paraffin mixture. Figures
75 to 95 illustrate the various contour plots for
conductivities of 1, 5, and 10 mhos/m with insulators of
styrofoam (permittivity = 1.1) and neoprene (permittivity
= 31). Additionally, a plot of aquadaq (conductivity =
315 mhos/m) on 1/16 inch plexiglas is given. The incident

microwave field was set at 10 mW/cm2 and 2.45 GHz.
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The preceding figures were included to primarily
illustrate the effects of different coating/insulating
layer combinations. Also, they are representative of the
order in which one would use the algorithms included in
the appendix in order to analyze a particular coating
configuration. That is, assuming a certain material is
available and has a measured electrical conductivity,
how does one spatially arrange it for optimum
effectiveness?

First of all, in addition to selectirg a coating
material, we must select a suitable thermal insulator.
The four primary areas of concern in selecting an
insulator are its electrical characteristics which
include permittivity and electrical conductivity (or
loss factor), its thermal conductivity, and its
mechanical applicability. Extensive experimentation
was conducted using Plexiglas, styrene plastic,
styrofoam, urethane foam, neoprene rubber, glass,
phenolic, paraffin wax, paper, etc.. It was found that
the foams (styrofoam and urethane foam) exhibited superior
electrical characteristics over the .other materials.
Their loss factors are very low and both have a
relative permittivity very near 1; thus, the microwaves
hardly know the insulators exist., In addition they are
excellent thermal insulators. Therefore, where

mechanical application is relatively straight forward,
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either of the foams will perform excellently. Urethane
foam is impervious to nearly all chemicals and, therefore,
nearly any coating may be used without reacting with it.
Styrofoam, on the other hand, is a styrene and exhibits
disastrous results when used with nearly any petroleum
based coating. This is especially true with toluene
which is the carrier for the aquadaq coating. It was
found that styrofoam performed very well with paraffin/
carbon coatings or by chemically shielding it from a
petroleum based product. The shield may be a very thin
layer of paraffin wax, stick-on Mylar, or stick-on paper.
For flat surfaces, there is a ¥ inch foam sheet
available at most art supply stores with a paper coating
on each side. It is extremely easy to work with,
inexpensive, and comes in sheets up to 3x4 feet square.
When working on complex surfaces, the neoprene rubber
exhibited the most flexibility from an :pplications
point of view; however, it has a very large relative
permittivity. The permittivity problem may be partially
overcome by using neoprene foam which is commercially
available in thicknesses from 1/16 to 1/2 inch. Even
though the permittivity for neoprene foam was not
measured it should be significantly less than the value
of 31 measured for solid neoprene. This is the same
foam used in diver's wet suits and should also be

relatively inexpensive. It is easily applied to almost
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any grease free surface using a typical rubber contact
cement. It is also impervious to nearly all chemicals.
Having chosen a coating type and insulator, the
final question that must be answered is related to the
thickness of each. Using the algorithm included in the
Appendix, we may generate a set of three contour plots
similar to the ones presented earlier in this chapter.
The first would be only with the coating and insulator
and no substrate present. This will give us an idea of
the differential temperatures that might be observed on
the coating if there were zero surface currents located
on the substrate. Next, we consider the coating/
insulator/substrate combination. The temperatures
illustrated would represent the ATm'that might be
expected. This is the same AT_ discussed in the latter
part of Chapter VII. 1In this case the surface currents
on the substrate are not zero but something between
zero and lﬁil. The third step is to numerically subtract
the above two results and display the difference as a
contour. This is probably the most important step since
it provides the insight required to choose the optimum
thickness for both the coating and insulator. It allows
us to choose thicknesses that will provide the greatest
temperature difference between the case of no substrate

(3=0) and infinite substrate 3>0).
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Illustrative of the above process are two
coating examples that have provided excellent results.
The first is three layers of aquadaq (315 mhos/m),
yielding a total thickness of approximately 15 um,
placed on a 5.1 mm thick sheet of paper covered foam.
This was the scheme used in the resolution experiments
in Chapter VII. The second was a paraffin/carbon
conductive coating used by Sega 39 approximately 1.5 mm
thick (=2.0 mhos/m) and placed on a layer of styrofoam
12.5 mm in thickness. There were some difficulties with
this scheme in that the coating thickness tended to vary
greatly even after machining. This resulted primarily
from foam/paraffin expansion problems; therefore, if the
paraffin/carbon coating is to be used, it should be kept
thin (preferably less than 1 mm).

In summary then, for the case of a coating/
insulator/substrate experiment, attempt to use a foam
as the insulator: preferably styrofoam, urethane, or
last choice, neoprene foam. Use a coating that is easily
applied to a uniform thickness. In this case differential
surface temperature is almost directly proportional to
coating thickness so uniformity is paramount. Typically,
the electrical conductivity will be a fixed value;
however, for a spray any value from 10 to 500 mhos/m
will probably work well (A conductivity between 20 to

100 mhos/m would be optimum.). Execute the above
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mentioned computer program and determine the optimum
thicknesses for the coating and insulator. Apply the
coating/insulator to the substrate and after suitable
curing the experiment should be ready for thermographic
observation in the microwave field.

Most of the preceding discussion has centered
predominantly on the coating/insulator/substrate problem;
however, it should be pointed out again that this is not
the only coating technique. If we are interested only in
the geometrical shape of a particular object, cthe coating
problem is much simplified. The idea, as was mentioned
earlier, is to construct a model of foam and then coat
it with Z to 3 skin depths of conductive coating. In
this case it can be shown that the surface temperature
is independent of coating thickness and only a function
of the surface currents present; thus, the coating
application need not be critical. Clearly, if the
coating has no conductivity (a dielectric) or infinite
conductivity (perfect conductor), there will be no
energy absorption and, thus, no surface temperature
increase. The primary problem then is to determine the
optimum conductivity. Chapter V provided the answer
for us by referring to Figure 19. There it can be seen
for an input power of 10 mW/cmZ and at a frequency of
2.45 GHz that the maximum conductivity we may have,

and still have a suitable temperature increase (1° X),
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is 750 mhos/m. If we need to consider different microwave
parameters, another three dimensional plot may be generated
with the computer program included in the Appendix. In
this coating scheme we must keep in mind that we want the
electrical conductivity as large as possible so that it
will more closely approximate a perfect conductor. If we
absolutely need a conductivity greater than 750 mhos/m,

we must increase our input power correspondingly in order
to observe acceptable heating.

In conclusion we may reiterate some of the
important aspects of this paper. Initially, a theoretical,
one dimensional model is presented which couples the N-
Layer electromagnetic problem with the thermodynamic
problem; hence, we have a model which predicts equilibriur
surface temperatures resulting from electromagnetic
absorption in a system of N layers. This is provided
as an analysis tool for the engineer interested in
investigating different coating schemes. The computer
program which solves this problem is included in the
Appendix. This model is subsequently verified experi-
mentally on particular multi-layered models. The
applicability of the small sample verification process
was discussed next. It was shown that a small sample
may be a valid approximation for the one dimensional
model. It was also shown that nearest neighbor

considerations are minimized for coatings that are
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placed near the substrate surface. As a rough rule of
thumb, it was shown that the coating resolution may be
approximated by the value a/r, where "a" is the insulator
thickness. It was also shown that the differential
temperature observed on the coating of an electrically
large object may be thought of as a steady state term
resulting from the one dimensional solution plus a

higher order term resulting from the finite boundary
conditions present. As a result of this analysis, the
experimental engineer may be allowed to scale his infrared
results by an additive constant in order to ''calibrate"
the thermographic system. In addition to the above, two
particular coating schemes are illustrated that provided
reasonable results; these were the carbon/paraffin/
styrofoam and aquadaq/styrofoam coatings. Lastly,

the Appendix includes information concerning techniques
for measuring electrical permittivity and electrical
conductivity as well as most of the major computer
routines used.

Finally, it is important to reiterate that this
entire development was classical in nature and thus only
allowed for joule heating in the coating. Other
absorption mechanisms, such as rotational coupling, may
prove equally or more effective in coating design in the
future. The thermographic detection of induced surface

currents is only beginning to demonstrate its full
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capability. The benefits of such a scheme should prove
invaluable to the systems design engineer working in the

ever increasing electronic warfare environment,
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APPENDIX A

ELECTRICAL CONDUCTIVITY MEASUREMENTS

The purpose of the electrical conductivity
measurements was to determine the value of the electri-
cal conductivity of the various coatings used in the
infrared current measurement schemes.

The most likely source of inconsistency in the
measurement process resulted from the method used to
attach or input the curreut to the test specimen. The
two point measurement technique used in this testing
is recognized by the American Society of Testing and
Materials (ASTM) as the most precise method for deter-
mining conduct{Vity. However, care must be exercised
to assure that the electrical current passed through
the specimen is uniformly distributed over the entire
cross sectional area of the test specimen.

Tests were conducted using two possible specimen
configurations. The first consisted of a 10cm x 10cm
square of the material placed on a plexiglas substrate

(Fig 96 ).
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Plexiglas

Figure 96: Coating Sample Cross Section
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This arrangement was used predominately for thin coat-

ings that were sprayed on the substrate from aerosol
cans; thicknesses varied from 10-100 microns. The
other configuration which was used with "moldable"
materials such as carbon impregnated paraffin consisted

of solid disks 2.54 cm in diameter and approximately

Jmm thick (Fig 97).

Silver Paint

Silver Paint

I 2.54 cm ﬁnl

Figure 97 : Drawing of a Typical Disc Sample

In both cases a silver metal based lacquer was used to
make final contact with the specimen thus helping in-

sure a uniform electrical contact,
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The current connections for the 10cm square
were attached to each end of the specimen by means of
a copper foil strip embedded in the silver lacquer.
Connections for the disk were made by sandwiching it
between copper plates which were subsequently clamped

in three places with wave guide clamps. See Figures
98 and 99,

Figure 98: Square Sample Electrical Connections
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Figure 99:

Disc Sample with Clamps Attached

The specimens were connected in the electrical

circuit as illustrated in Figure 100,

Digital
Amp

Digital
volt
Meter

Meter

Variable
D.C. Supply

il

— 1

Specimen

Figure 100: Schematic of

Conductivity Measurements
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This test arrangement is the ASTM two-point method.
The following test equipment was used in the test
arrangement:
Nomenclature Identification
Power Supply Regulated D.C. Power Supply
0-50 VDC, 0-1.5A
Kepco Mfg Co, Flushing, NY
Ammeter Digital Multimeter
Hewlett-Packard Model 3466A
Voltmeter Digital Multimeter
Hewlett-Packard Model 3466A
Micrometer Metric Micrometer
Central Scientific Co,
Chicago, IL

The conductivity (0) for each of the samples
was calculated from the following equation:

Oai'—].;
VA

where i = total current through specimens

[
]

length of current travel

V = voltage across sample

A = area through which current fravels

Conductivity versus temperature was also

investigated for the 10cm x 10cm samples with an
aquadaq coating. An AGA Thermovision(c) 680 infrared
camera was used to measure the steady state surface
temperature of the sample for various current inputs.

See Figure 101 for a plot of 0 versus temperatures (u).
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Using the technique outlined, the measured
conductivity for a composite mixture of paraffin/
carbon was measured for various mixing ratios. These
plots simplify the process of designing a particular
conductivity material since the particular mixing
ratios are illustrated. See Figures 102 and 103 for
a linear and log plot of sigma. The solid line is
a plot of an empirical model of sigma as given in

Figure 103.
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Pigure 102: Electrical Conductivity Versus Carbon/Paraffin

Mixing Ratios
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EXPERIMENTAL ELECTRICAL CONDUCTLIVI
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APPENDIX B

ELECTRICAL PERMITTIVITY

Electrical permittivity, ¢, 18 an exceedingly
important variable in the analysis of effects of
microwave absorption in a multi-layered system. It is
typically frequency dependent and therefore the value
used must be measured for each different operating
condition. Fortunately, it does not vary greatly; the
table below lists values taken from the Chemical

Rubber Company's Handbook of Chemistry and Physics,

60th Edition, for some common materials.

Table 1: Relative Permittivity for Various Dielectrics

Sodium Specific

Light 1MHz 100 Mhz Heat
Paraffin 2.0 2-2.5 * *
Glass 2.3-3.6 4.0 * *
Rock Salt 2.3 * * *
Gelatin 2.3 * * *
Quartz 2.3 * * *
Nylon (66) 2.3 3.3 3.2 A
‘Polyethylene 2.3 2.3 2.3 .55
Methylmethacrylate 2.2 2.8 * .35

(Plexiglas)

Polystyrene 2.6 2.5-2.7 2.6 .32
Silicon Rubber * 3.1-3.2 * *
Porcelain * 6-8 * *

*Value not available

it e
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Our permittivities were measured in the labora-
tory at a frequency of 10 GHz for styrofoam, window glass,
paraffin, styrene, phenolic, plexiglas, and neoprene.
Figure 104 illustrates the experimental arrangement.

Test equipment used in this measurement scheme included

the following:

Nomenclature Identification
10 GHz Source ED-SET MARK 2
Sargeant-Welch Scientific Co.
Skokie, IL
10 GHz Detector "
Microwave Bench "
SAMPLE

SOURCE

[ K

DETECTOR

Figure 104 : Schematic Arrangement of Permittivity

Measurements
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The procedure was to measure the reflectance
for a given sample at various angles of incidence. E
was polarized perpendicular to the plane of incidence.
Because of limited sample sizes, incident angles were
limited to between 20 and 60 degrees with measurements
taken in 5 degree increments. The measured value
versus angle was then plotted on a graph on which theo-
retical curves of reflectivity versus permittivity
had been drawn for a particular sample thickness and
incident angle. The permittivity is where the measured
reflectance value intersects the particular curve.
Figures 105 to 111 illustrate the plots for styrofoam,
glass, paraffin, styrene, phenolic, Plexiglas, and
neoprene respectively. (Only 10 degree increments

are plotted for illustration purposes.)
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Figure 105:

Permittivity Plot for Styrofoam at 10 GHz
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Figure 108: Permittivity Plot for Styrene at 10 GHz
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No attempt was made to measure permittivities
for any materials other than good dielectrics. Since
Ohm's law was included explicitly in the solution of
Maxwell's equations, it is not necessary to assume a
complex permittivity for conductive materials; thus,
the free space value is acceptable.

Table 2 lists the measured values of rela-
tive permittivity for the materials considered. The
averaging procedure consisted of calculating an
average value and a standard deviation for the nine
incident angles. Then any measured permittivity out-
side the range *+ one standard deviation from the average
was rejected and a new average and standard deviation
calculated. These are the values that appear in Table

2 below.

Table 2: Measured Relative Permittivity at 10 GHz

Material Average Relative Permittivity (10 GHz)
Styrofoam 1.11 (One data point)
Window Glass 14.2 (St. Dev. = 1.3)
Paraffin 2.55 (St. Dev. = .14)
Styrene 4,28 (St. Dev. = .08)
Phenolic 5.32 (St. Dev. = .33)
Plexiglas 4.07 (St. Dev. = .24)
Neoprene 31.1 (St. Dev. = .83)
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APPENDIX C

COMPUTER PROGRAM

The name of this program is "One-B". It is
written for use on a Hewlett-Packard 9845B minicomputer.
It calculates reflectivity, transmissivity, and absorp-
tivity for a single interface. It will also calculate
infrared emissivity for 5.3 microns wavelength. Input
variables are medium two electrical conductivity, index
of refraction, and magnetic permeability (relative) as

well as the incident frequency in gigahertz.
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APPENDIX D

COMPUTER PROGRAM

The name of this program is "Basic'. It
calculates the reflectivity, transmissivity, and
absorptivity for an N-layer electromagnetic interaction
problem. The input parameters are the number of layers
(not to exceed 10), the incident frequency in gigahertz,
the incident power in mW/cmz, and the individual layer
conductivities, permittivities, permeability, and

thickness.
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APPENDIX E

COMPUTER PROGRAM

The name of this program is "SIGNIF". It
calculates the ratio of heat lost through infrared
radiation to that lost by way of heat convection on
a vertical flat surface. The input variables are
air temperature (C), the convection exponent, and

plate height (m).
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APPENDIX F

COMPUTER PROGRAM

The name of this program is "Uo-3D". It
calculates the equilibrium surface temperature for a
system of N layers in the presence of electromagnetic
radiation. It plots the temperature as a function of
the first layer thickness and conductivity on a three
dimensional plot. The input variables are the number
of layers, the incident power, the incident frequency,
the ambient air temperature, the convection exponent,
the surface emissivity, the vertical flat plate height,
the incident angle, and the smallest electrical
conductivity for the first layer. Additionally, the
inputs for the various other layers are the permittivity,

conductivity, permeability, and thickness.
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APPENDIX G

COMPUTER PROGRAM

The name of this program is "Uthick". It
calculates the surface temperature of a system of N
layers as a function of the thickness of any two of
the layers. The result is plotted on contour plot
of constant temperatures. The input variables are the
number of layers, which layers to vary the thickness
of, the incident power, the incident frequency, the
incident angle, the ambient air temperature, the plate
height, surface emissivity, the convective exponent,
and the layer characteristics of conductivity,

permittivity, permeability, and thickness.

O L
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APPENDIX H

COMPUTER PROGRAM

The name of this program is "CONTOR". It
will plot and smooth contour lines for an arbitrary
matrix of values. It will do linear smoothing, circular
or parabolic smoothing. The matrix data is read from
a data file named "X-Data'". Plot labeling is accomplished
manually when the flashing cursor appears on the 9845
CRT. The only inputs are the number of rows and

columns of the input matrix.
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APPENDIX I

COMPUTER PROGRAM

The name of this program is "EPSLON". It
calculates the per cent of reflected to incident power
and plots it versus relative permittivity for the layer.
The input variables are the number of layers, the maximum
permittivity to be considered, the incident frequency,

the incident angle, and the measured reflectivity.
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