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MICROWAVE REFLECTOMETRY FOR ICRF COUPLING STUDIES ON TFTR

J. B. Wilgen, G. R. Hanson', T. S. Bigelow, D. B. Batchelor, I. Collazo?,
D. J. Hoffman, M. Murakami, D. A. Rasmussen, and D. C. Stallings
Oak Ridge National Laboratory, Oak Ridge, TN 37831-8072

S. Raftopoulos and J. R. Wilson
Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, NJ 08543

ABSTRACT

A dual-frequency differential-phase reflectometer has been developed for use in
ICRF power coupling studies on TFTR. This system has been optimized for
measurements of the electron density profile in the edge-gradient region, where density
fluctuations are large. Initial proof-of-principle measurements demonstrate that this is an
effective way to measure the electron density profile in the plasma-edge region. A new
reflectometer launcher is presently being installed on the center axis of the bay-K ICRF
antenna on TFTR, along with the associated waveguide transmission line. This will allow
direct measurement of the edge-density profile within the high-power-density
environment of the ICRF antenna where density profile modification might be expected.

INTRODUCTION

The coupling of ICRF power to the plasma is sensitive to details of the density
profile in the plasma edge region, and the high power density ICRF environment can
potentially alter the edge-density profile, at least locally in the immediate vicinity of the
ICRF antenna. Theoretical ICRF antenna coupling calculations show that density profile
changes immediately in front of the ICRF antenna can result in changes in the antenna
loading by a factor of 2 to 3. Similar loading changes have been observed
experimentally during ICRF heating. Reflectometer measurements of the edge-density
profile can be used to correlate changes in antenna loading with shifts of the fast wave
cutoff density. Consequently, there is significant interest in obtaining detailed
measurements of the shape of the edge-density profile, and it is particularly important
that the measurement be performed in the ICRF antenna environment.

DUAL-FREQUENCY DIFFERENTIAL-PHASE REFLECTOMETER

A dual-frequency differential-phase reflectometer has been developed for use in
ICRF power coupling studies on TFTR!. This system has been optimized for
measurements of the electron density profile in the edge-gradient region where density
fluctuations are large. A differential-phase measurement was chosen ‘because the
multiplicity of fringes is thereby greatly reduced, and phase fluctuations arising from
density fluctuations in the plasma are also significantly reduced. Both of these attributes
are essential for reliable phase-tracking of multiple-fringe phase data.

A block diagram of the reflectometer as configured for a proof-of-principle
measurement on TFTR is shown in Fig. 1. To provide the capability to measure the edge-
density profile in the range between 1.0 X 1012 and 3.0 X 10!3 ¢m-3 in high field (4.5-
4.9 T) IRCF-heated TFTR plasmas, th: frequency range of 91-117 GHz was chosen,
corresponding to extraordinary mode polarization. Starting with a swept frequency
source at low frequency, (8.0-12.4 GHz), upconversion and frequency multiplication
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(doubler and tripler) are used to provide the frequencies of interest. In this way, the
frequencies of two probing signals are simultaneously swept from 91 to 117 GHz while
maintaining a fixed frequency separation of 250 MHz. This frequency spacing
determines the radial separation of the dual cutoff layers in the plasma, which should be
small in comparison with the radial correlation length of the plasma density fluctuations if
a reduction in the differential-phase fluctuation level is to be effected. Amplitude fading
in the reflected signal amplitude is removed through the use of constant-phase limiting
amplifiers. Heterodyne detection is used to measure the differential phase delay between
the two signals, which can then be used to reconstruct the shape of the density profile.

INITIAL RESULTS ON TFTR

To facilitate testing of this reflectometer in a realistic environment, it was attached
via waveguide switches to share diagnostic access with the existing TFTR fluctuation
reflectometer?, an instrument that was specifically designed to investigate density
fluctuations in the interior of the plasma. This system utilizes corrugated cylindrical
waveguide to launch highly directional gaussian beams that are focused and directed into
the plasma with scannable mirrors.

Differential-phase data obtained with this quasi-optical viewing system are shown
in Figs. 2 and 3. For these measurements, the gaussian beams (transmitting and
receiving) are aimed to intersect at R = 3.3 m, resulting in a saturated amplitude for the
received signal whenever the reflection surface is in the range of 3.1 to 3.5 m, the region
characterized by good overlap of the two beams. When the location of the plasma edge
region, R, + a, is systematically scanned from 3.25 to 3.53 m, the differential-phase data
changes in the expected fashion, as illustrated by the phase data in Fig. 2a. Note in
particular that the differential phase typically shows a variation of only 2 to 4 fringes as
the frequency is swept from 91 to 117 GHz. For most of this data, even the differential
phase exhibits substantial phase fluctuations, with a typical magnitude of 1 radian rms or
larger, but this does not present a serious problem in tracking the average trend in the
phase. Edge-density profiles reconstructed from this data using an algorithm based on an
extension of Doyle's method? are shown in Fig. 2b. Similar data for a selection of shots
with the same plasma size but different density (resulting from variation in NBI power
from 0 to 27.5 MW) are shown in Fig. 3, demonstrating the expected variation in the
differential phase as the density is varied.

The differential phase can be considered as consisting of two contributions, one
associated with the shape of the profile through the local density gradient-dependent
plasma dispersion, and another arising from the location of the plasma edge region. For
the data shown in Fig. 2, shifting the location of the plasma edge by < 30 cm while
maintaining nearly the same profile shape is expected to contribute <'2 fringe to the
total phase shift (i.e., the beat wavelength for 250 MHz frequency spacing is 1.2 ). This
indicates that dispersive effects related to the profile shape represent the largest
contribution to the differential phase. At the present time it is not clear to what extent
these two contributions to the total phase can be separated. Although the reflectometer
provides good information on the shape of the density profile in the edge region, it
appears that the location of the plasma edge can be resolved only through detailed
comparisons with other TFTR diagnostics. :

Data obtained from full-sized (Rp + @ = 3.6 m) ICRF-heated plasmas show a
similar shape for the edge-density profile. Attempts to observe modification of the edge-
density profile during ICRF heating have not revealed any measurable changes,
suggesting that if changes are occurring they are local to the antenna environment.
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Fig. 1. A block diagram of the dual-frequency differential-phase reflectometer
as configured for the proof-of-principle demonstration measurement on TFTR.
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Fig. 2. (a) Measured differential-phase
shift as a function of frequency and (b)
reconstructed edge-density profiles for a
plasma size scan where, for cases A, B, C,
and D, the outer edge of the plasma (R, +
a) is located at 3.25, 3.35, 3.44, and 3.53
m, respectively. Plasma conditions
include B=4.5T (k=67 kA), |, = 1.6 MA,
flg = 3.2-3.6 x 1019 m-3, Pyg, = 22.5 MW,
and Pere = 0.
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Fig. 3. (a) Differential-phase shift and (b)
reconstructed edge-density profiles for a
collection of shots where the density varies
with the neutral beam power. Cases A, B,
C, and D correspond to Pyg = 0, 17.5,
22.5, and 27.5 MW and A, = 1.2, 2.8, 3.2,
and 3.7 x 1019 m-3, respectively. Other
plasma conditions include Ay + @=3.44m,
B =45 T (k = 67kA), = 2.0 MA, and

Pcre= 0.



NEW LAUNCHER AND WAVEGUIDE TRANSMISSION LINE

A new launcher and waveguide transmission line are presently being in-ialled on
TFTR. The bay-K ICRF antenna was designed with a central diagnostic port that provides
access for the reflectometer launchers on the center axis of this two-strap antenna. To
eliminate the effects of spurious reflection on the reflectometer phase measurements, a
pair of oversized WR-90 rectangular waveguides are used for the transmitting and
receiving antennas. The launcher apertures are recessed 3 mm behind the front surface
of the Faraday shield for the ICRF antenna. Stainless steel waveguides are necessary to
limit disruption forces: a single quartz window is used for the vacuum feedthrough.
"Tall-guide" polarization is used to achieve acceptable waveguide cross-coupling (<- 40
db measured) between the closely spaced waveguides at the vacuum window.

Witk uie exception of a downtapered section of WR-10 waveguide immediately
outside the vacuum window, which serves to filter higher-order modes, the remainder of
the waveguide run consists of 26 m of WR-90 waveguide leading to the reflectometer
electronics located in the test cell basement. Transmission losses are reduced more than
50% by using the tall-guide polarization, resulting in an estimated round-trip transmission
loss of 12 db, excluding the window/launcher assembly. For the tall-guide polarization,
miter bend losses are measured to be approximately 0.4 and 0.8 db for the H-plane and
E-plane bends, respectively.

CONCLUSION

Initial proof-of-principle measurements demonstrate that the dual-frequency
differential-phase reflectometer is an effective way to measure the electron density profile
in the plasma edge region where density fluctuations are large. An ICRF-antenna-
mounted launcher and the associated waveguide transmission line are presently being
installed in the bay-K ICRF antenna on TFTR. This will allow direct measurement of the
edge-density profile within the high power density environment of the ICRF antenna,
where density profile modification might be expected.
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