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Abstract

The effect of small scale density fluctuations on the propagation of electro-
magnetic waves in an inhomogeneous magnetized plasma in the presence of a
cutoff is investigated. It is shown that, provided the fluctuation scale length is
greater than the free space wavelength of an incident plane wave, the scattered
field is strongly enhanced from fluctuations near the turning point. Numerical
results for wave propagation in a tokamak plasma demonstrate the feasibility of
reflectometry for the localized measurement of density fluctuations in the range
kipi < 1.
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1. Introduction

The causes of anomalous transport in tokamak plasmas are still unknown.
A popular conjecture, which finds limited support in theory and experiments, is
that the thermal and particle transport is enhanced by the existence of fine scale
turbulence. Indeed, theory predicts a large variety of plasma waves which are
driven unstable by density and temperature gradients, by dissipative effects and
by magnetically trapped particles (Kadomtsev and Pogutse, 1971; Tang, 1978;
Horton, 1984). Experimentally, observations with microwave (Mazzucato, 1976)
and laser (Surko and Slusher, 1976) scattering have revealed the existence of a

small scale turbulence in rough agreement with theoretical predictions.

Present observations show that the level of density fluctuation n increases
as the perpendicular wave number k; decreases, as predicted by the mixing
length criterion 7n/n =~ 1/k, L, [where L,=(dInn/dr)~! is the density scale
length]. This makes the interpretation of experimental data very difficult as most
scattering techniques detect long wavelength fluctuations with only poor spatial
resolution. On the other hand, very long wavelength modes, i.e., modes with
small poloidal and toroidal mode nuinbers, do not show correspondingly large
fluctuation levels. This implies that the turbulence spectrum must turn over at
some value of k; where present observations lack spatial resolution. This is of
considerable importance since turbulent fluctuations with amplitudes below the
mixing length level and wavelengths much longer than the ion Larmor radius
p; could theoretically account for the observed plasma transport in tokamak
(Liewer, 1985; Haas and Thyagaraja, 1986). Clearly the measurement of long

wavelength fluctuations with improved spatial resolution over existing scattering
techniques is needed.

One technique with the potential for providing spatially localized measure-
ments of long wavelength density fluctuations is microwave reflectometry. In
fact, the first experimental evidence for the existence of a fine scale turbulence in

tokamaks was obtained using microwave reflectometry on the adiabatic toroidal
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compressor (ATC) tokamak (Mazzucato, 1975). This method, widely employed
In atmospheric studies, measures the reflection of electromagnetic waves from
the plasma cutoff to obtain the electron density profile in inhomogeneous plas-
mas. The system can be considered a special kind of interferometer where the
phase of the received wave is determined by the refractive index along the wave

trajectory and also by changes in the position of the reflecting layer.

Enhanced scattering from fluctuations at the cutoff in isotropic plasmas
was first addressed by Pitteway (1958) in reference to radio wave propagation
in the ionosphere. In this paper, we address the issue of wave propagation in
anisotropic plasmas and assess the relative capabilities of O-mode and X-mode

reflectometry for the local measurement of density fluctuations in tokamaks.

The paper is organized as follows: the basic equations for the scattered field
in the Born approximation are derived in § 2 for both the ordinary and the
extraordinary mode of propagation. Some numerical examples are presented in

§ 3 which simmlate the case of a large tokamak plasma. Finaily, our conclusions
are presented in § 4.

2. Basic Equations

In this section, we derive the equations for the electromagnetic field scattered
by small density fluctuations in a magnetized plasma.

A plane electromagnetic wave E = Egexpi(wot — ko - r) is launched into
a plasma with a magnetic field B which, in Cartesian orthogonal coordinates
(2',y',2'), is aligned in the v/ direction and is only a function of z’. The plasma

occupies the region =z’ > 0 with the electron dénsity distribution given by
ne =7 (2') + ne(z', 2/, t) , (1)

1.e., where a plane stratified plasma equilibrium is perturbed by weak (|n.| <<
Ml ) irregularities which are uniform along magnetic field lines. While we assunie
that the free space wavelength Ag is comparable to the spatial scale length A of
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plasma fluctuations, we assume the wave frequency wo to be much greater than
the bandwidth of density fluctuations so that the time dependence of Eq. (1) can
be ignored. Finally, we assume ko-B = 0. This geometry reproduces the typical
reflectometer configuration used in the investigation of density fluctuations in
tokamaks (Mazzucato, 1975; Cripwell et al., 1989), the major simplification being
the omission of the magnetic shear in the description of the wave propagation

which is justified by its smallness in this type of magnetic configuration.

Under these assumptions, the electromagnetic field may be separated into
two independent modes of propagation, each described by a scalar differential
equation in the two variables ' and z' (Budden, 1961). The dependent variable
is the ¥’ component of the electric field E for the ordinary wave, and the ¥/
component of the magnetic field H for the extraordinary wave. Using standard
notations and introducing the change of coordinates (z.y, =) = (ko', koy/, koz'),
the equation for E is

VZE+6E=0, (2)
while the equation for H is
vzH—-}VH'VEl+i§iy-VHXV62+€1H=O, (3)
1 2

where i, is the unit vector along the y-axis, and

X (U-X2-Y?2  (U-X)2-Y? |
o=l-p aTgproyyoye 2T T )

D‘r’

with X' = w2/w?, w2 = dmnee?/me. Y = we/w, we = €|B|/mec, U =1 -1/,
and v << w a small effective collision frequency which takes into account weak
wave damping. When v =0, e =0for Y=1and ¢y =eoc =0for X =1+1%".

Using Eq. (1) we may put Eq. (4) in the form

& =&(z) +&lz,2), i=0,1,2 (5)
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where |€;| << 1. We shall assume that dEi(z)/dz»# 0 at z = z., and that the
thickness of the evanescent region behind the cutoff is many free space wave-
lengths such that tunnelling effects may be ignored. Then, we may proceed by
making the Ansatz, to be verified a posteriori, that

E:EO+ZEn7

n>0

where |Eg| ~ O(1) and |E, 50| ~ O(€y"). From the two lowest order terms of Eq.

(2) we obtain for the ordinary mode
V2Eg + &(z)Eo =0, (6)

and

V2E; + &(2)E; = —€o(z,2)Eo(z) . | (7)

Similarly, by assuming for the extraordinary mode

HZI—IO""’ZHn»

n>0
with |Ho| ~ O(1) and |Hnso| ~ O(€]*), we obtain
vzﬂg—;_l-VHO-Vg1+iZ:;-iy.VHoxvfz2+e1H0=o, (8)
1 2

and

V2H; — -g—VHl Ve + i%iy .VH; x V& +&H; =
. ’ - - = (9)
VHo - V2 —iti, - VHg x [vf_ﬁ n 1(59 _ f-l)v%z} & H, .

€1 €2 €2 € \€ €

Let us first consider the case of the ordinary mode with an incident plane
wave which in vacuum takes the form exp[i(wot — apz — Bpz)], with By = (1 —
a?)!/? so as to satisfy the wave equation for free space propagation. Taking
solutions of Eq. (6) in the form

Eo = Eo(z) exp(—iaox) ,
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we obtain
| °Ey | 1. 21Fp =0 10
Tz T [6o(2) — B0 = 0. (10)

Assuming a linear density distribution near the turning point and introducing
the change of variable { = |dé&/dz|'/3(zp — z), with &(z0) = ad, we may write
Eq. (10) as (Ginzburg, 1961)

d?Ey

- TR =0, (11)
Two independent solutions are the Airy functions 4:(¢) and Bi(() with asymp-
totic forms 1 o - ‘
AiQ) ¥ sin(§C3/2 + Z) , )
for ( >> 1, and
40~z e (50 13
Bi(() ~ 5= @ (5(-0°)
for ( << —1. Since
20 =210 (s / Cleol) -, (1)

the asymptotic expansions tend towards the approximation of geometrical optics.

In the vacuum region this gives

Eo(z) = exp(-iBoz) + exp[i(ﬁgz + 21;20(60(‘:') —ad)?d: + g—)] :

This expression forms the basis for reflectometry measurements of the average

density distribution in nonuniform plasmas (Doane et al., 1981).

We now consider perturbations of the type

€o(x, 2) = &o(z) exp(—ipz) ,
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and solutions of Eq. (7) of the form
E, = Ej(z) exp(—ia; z) ,
“where a; = ag + p. The equation for the scattered field is then

d;? + [Eo(2) — o] Er = —Eo(2) Eo(z) , (15)

which may be solved using the method of Variation of Parameters (Jeffreys and
Jeffreys, 1972). Let z = 21 be the point where €g(z1) = of, and functions A(z),
B(z) are two independent solutions of the corresponding homogeneous equation
having asymptotic expansions similar to Egs. (12) and (13) with 2o replaced
by z; and ag replaced by a;. Near the turning point z = z;, these functions
are approximated by the Airy functions, while away from the turning point the
independent solutions are given by the WKB approximations (Heading, 1962).

Alternatively, the solutions of the homogeneous equation may be evaluated nu-
merically.

According to the method of Variation of Parameters, the solution of Eq.
(15) may be cast in the form

El(z)=-/;go(v)-yl—(ﬂgg—z@Eo(v)du—[mgo(v)%lf%g?@fzo(v)dv, (16)

where the functions y;(z) and y2(z) are two independent solutions of the ho-
mogeneous equation, and W is the Wronskian which in this case is a constant.
The functions y; and y, are expressible as linear combinations of A(z) and B(z)
which satisfy the radiation conditions at z = foc. Thus, since Ei(z) — 0 as
z—oc, then yo(z) = A(z), and since E) (z) —exp[i(1 —a?)}/?z] as z — —oc, then

y1(z) = B(z) + iA(z) so the solution of Eq. (15) takes the form

z

Ei(z)=- [4‘5{?) / go(v)[B(v) + 1A4(v)]Eo(v)dv

+ [B(z) ;;;iA(Z)] /;oo go(v)A(v)Eo(v)dv:I .
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In the vacuum region, apart from a constant phase, we obtain

El(z) = /Bi'l exp(iﬁlz) \L'oo Eo(v)Go(v)dv , (18)

-
Go(v) = ~A(v) Eo(v) , ' (19)
where (3; = (1 — o?)'/2, and the functions A(z) and B(z) are normalized to a

unit amplitude in the vacuum region. Equation (17) agrees with the result of
Pitteway (1958) derived using an alternative approach.

The case of the extraordinary mode may be solved using a similar procedure.
Again, given an incident plane wave of the form exp[i(wt —apz —Bpz)] and taking
solutions of Eq. (8) of the form

Hp = Hp(z) exp(~ixpx) ,
we obtain

d?Hy, 1 de dHp _ ‘
EEE o i

€ déo

O%E]fﬁ:o. (20)

The cutoff at z=z., where € = & = 0 and dé; /dz = déz/dz # 0, is a regular

singular point. The behavior of the field near this poirit can be determined using
the Method of Frobenius (Ince, 1956). Since the two solutions of the Indicial

Equation are 0 and 2, in ascending powers of £ = z — z., one solution of Eq. (20)
is

HE) =(1+a+et®+- - (21)
while a second solution may be cast in the form

) =Kfi(§)n€+1+diE+dsf+-- -, (22)

where a substitution into Eq. (20) gives

KZO, d1=—C¥0. (23)



It is interesting to note that in the case of an isotropic (B == 0) plasma, K # (
when ap # 0, resulting in absolute values of the reflection coefficient lower than

unity (Denisov, 1957). This phenomenon disappears for B # 0.

For perturbations of the form

and solutions of Eq. (9) of the form
H) =H (= )exp( —iz) ,

where oy = ag + p, the equation for the scattered field becomes

d2H1 1 d€_1 ClH1 T,_ ‘o 61 d€2
422 ‘EIT+[(61‘Q1) '8 dz ]Hl

~ () Al 2 2

-2 E el (D)5 ZE -2

As in the case for the ordinary mode, the solution of Eq. (24) may be cast in
the form

H(z) = /z yl(v)yQ(z) S(v)dv i loo y1(2)y(v) S(v)dv , (25> |

e W) W (v)

where S(z) is the r.hus. of Eq. (24), and y;(z) and yo(z) are two indeper. dent
solutions of the corresponding homogeneous equation with Wronskian W(z) =

117(0)€;(z). Similarly, in the vacuum region the scattered field is given by

Hi () = 87! exp(i8: 2) Am Mdv , ~ (26)

El (’U)

where 8; = (1 — a?)!/2 and A(z) is the solution of the homogeneous equation

which in the vacuum region is of unit amplitude and in the evanescent region
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converges toward the subdominant WKB solution. The function A(z) may read-
ily be obtained from a numerical integration along the real z-axis with a small
but finite value of v (Freidberg et al., 1972). The integration must proceed from

the evanescent region with initial conditions given by the WKB solution.

Fixial.ly, an integration by parts and use of Eq. (20) transform Eq. (26) into

Hy(2) = B expliphz) A ” & (©)G:(c) + BE)G)]d,  (21)

where ) |
Gi(v) =- = [aoalA(v)Ho(v) +
1 :
1 dH, .. dA
Ga(v) =~ 2 [041-4(1’) ;U(v) + o Hp —-d—S)Z] -

Near the cutoff, where € = & and & = &5, the integrand of Eq. (27) may be

approximated by the form

9

dA(v) dHo(v)]
dv dv

(28)

2 [T o] [15” +entv]

which is of the order of &; since by Eq. (23) the two terms in square brackets are
- of the order of &. Thus Eq. (27) constitutes a well behaved (i.e., non-singular)
solution of Eq. (24) in the vacuum region, z < 0.

The flow of scattered energy across the plasma boundary at z = 0 is

S = 4| [) go(u)co(v)dv|2 | (29)

for the ordinary mode, and

S = _8%1 /)oo [El(v)Gl(v) + Ez(v)Gz(v)] dvf , - (30)

‘2
for the extraordinary mode. We now consider plasma irregularities of the form

gi(z) =gi(z)ei(z) , 1=0,1,2 | (31)
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| expressed as the product of a slowly varying function g;(z) and a rapidly oscillat-
ing function €;(z). By assuming without loss of generality that €;(z) is spatially

bounded and sufficiently smooth, we introduce the Fourier expansion
—~ +w~ .
E(z) = aile) [ @ila) expl—ig2)da (32)

where €;(q) is taken as the Fourier transform of €;(z). By inserting Eq. (32) into
Egs. (18) and (27) we obtain

~+00
Bi(2) =67 exp(ithz) [ Lofa)da
-+oc | - (33)
Lo(q) = A €0(g)go(v)Go(v) exp(—igu)dv ,
for the ordinary wave, and
‘ oo
H(2) =87 exo(ifhs) [ Lala)da
oo (34)

Lo = | (@)1 ()G (1) + E2(q) g2(v) Ga ()] exp(—igu)d

for the extraordinary wave. These expressions indicate that the major contribu-
tion to the scattered field originates from the Fourier components of €;(z) which
match those of the product g;(z)G;(z).

" By inserting Eqgs. (33) and (34) into Eqs. (29) and (30) we obtain
si= 2| [ Litgda| 3
i=ge| [ L] (35)

for the two modes of propagation.

For a random medivrn‘ which satisfies the conditions
< ei(z) >=<e€;(q) >=0,

and



3

where the angle brackets represent ensemble averages, we obtain

<s>=g [ <P da. 3

~ This completes the set of equations describing the scattered field within the Born

approximation.

3. Numerical Examples

In the following, we present some numerical results which illustrate the local-
ization properties of fluctuation measurements using reflectometry in tokamaks.
For the numerical sirmmulation, we assume the electron density profile in our slab
geometry to be similar to the electron density distribution (Fig. 1) on the equa-
torial plane of a typical TF'TR tokamak discharge in the enhanced confinement
regime (Strachan et al., 1987). Similarly, we assume the magnetic field profile
is equal to the equatorial profile of the toroidal magnetic field in TFTR. Under
these conditions, Fig. 2 indicates the variation of wp, wue = [we-+(w?+4w?)1/2]/2,
and wyp = (w2 +w?)!/2, The first is the cutoff frequency for the ordinary mode
and the other two are the upper cutoff and the upper hybrid resonance fre-
quency of the extraordinary mode, respectively. Figure 2 shows that apart from
a narrow region around the plasma boundary, the location of the upper cutoff
for a given frequency is separated from that of the upper resonance by several
free space wavelengths. This makes the upper hybrid resonance inaccessible to

extraordinary waves propagating from the low-field side, as we have assumed in

52

To investigate the localization properties of fluctuations measurements using

microwave reflectometry in tokamaks, we take a density perturbation of the form

Ne = Nexp[—(z — z.)?/A%] cos[2m(z — z.) /A + @] , (37)

corresponding to a Gaussian wave packet with width A and wavelength A. The

scattered field in the vacuum region is obtained by inserting Eq. (37) into Eqs.

12
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(18) and (27). We shall consider two quite distinct cases in order to demonstrate
the wave number dependence of the localization of measurement to the cutoff.
In the first case, we choose A >> A. The normalized electric field E;/E, at
z = 0 is shown in Figs. 3 and 4 fo: the two modes of propagation as a function
of the wave packet center z = z. for 7/fie =1 x 1073, A=2 cm, A = 0.5 cm,
and @ = ag = a; = 0. The wave frequencies are 6 x 101° Hz for the ordinary
mode (Fig. 3) and 1.4 x 10!! Hz for the extraordinary mode (Fig. 4). For these
wave frequencies the two modes of propagation have the same cutoff location,
however, the central location of the plasma wave packet z. which maximizes the
scattered field is quite aifferent in the two cases. In fact, for the extraordinary
mode the scattered field is strongly weighted tcwards density fluctuation near
the cutoff, while for the ordinary mode the scattered field is largest when the
density perturbation is located well away from the cutoff. Since the scattered
field originates from a region where the spatial variation of the lewest order wave
pattern matches that of the density perturbation. the major difference between
the two cases is in the different ratios of A/Ag. For A < Ao, the matching
occurs away from the turning point, while for A 3> Ay matching occurs only near
the turning point. As a rule, the latter case requires that A > 2.5). Thus,
assurmning a power law dependence for plasma fluctuations at high wavenumbers,
the extraordinary mode should dramatically decrease the contribution to the
scattered power from fluctuations away from the cutoff.

In the second case, we choose A < A. The normalized electric field Ey/Eq
at z = 0 is shown in Figs. 5 and 6 as a function of z. for the extraordinary
mode with a frequency of 1.4 x 10! Hz and for A = 2 e, A = 10, and
ap = a; = 0. The results of Fig. 5 were obtained with ¢ = 0 (svmmetric
perturbation) while those of Fig. 6 were obtained with ¢ = —7/2 (antisymmetric
perturbation). In both cases, the value of 7 in Eq. (37) was adjusted such that
max(n,) = 1 x 1073#f,. Although in both cases the scattered field is largest
when the plasma perturbation is near the cutoff, the antisymmetric case (F g.

6) shows greater relative localization near the cutoff than for the symmetric case
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(Fig. 5). This result is readily understood in the geometric optics approxim=tion
where the phase of the scattered field is proportional to a line integral through
the perturbation up to the reflecting layer. Moreover, away from the cutoff, the
phase perturbation of the refiected wave varies like kg 17, while at the cutofi, for
a given displacement of the reflecting layer &7, the phase varies like koér. Thus,
~ the relative contribution to the total phase variation from the cutoff region scales

like k3 so that the extraordinary mode has superior localization properties even
for large siz- plasma fluctuations.

4. Conclusion

In conclusion, we have derived within the Born approximation the equations
for the electromagnetic field scattered by density fluctuations in an inhomoge-
neous magnetized plasma in the presence of a cutoff. Numerical results for both
the ordinary and the extraordinary mode show that the scattered field is strongly
enhanced near the turning point when the spatial scale length of density fluc-
tuations is greater than the free space wavelength of the probing beam. These
results indicate that microwave reflectometry may be used for obtaining local-
ized information on the distribution of fine scale density fluctuations in the range
kip; € 1 in tokamaks, provided k; << ko. The latter condition suggests the

use of *he extraordinary mode since it requires higher wave frequencies than the
ordinary mode.

The results however are qualified by the nature of our approximations, where
a linearized treatment of the scattered field is used. Extension of this analysis
to strong scattering from plasma fluctuation requires an alternative approach,
however the localization of the scattered field to the cutoff for long wavelength
fluctuations is expected to hold in general.
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Figure Captions

. Electron density distribution on the equatorial plane for a TF'TR discharge.

Profile of upper cutoff f,. frequency (solid line), upper hybrid frequency fun
(dot line) and plasma frequency f, (dash line) for a TFTR discharge with the
density profile of Fig. 1 and a magnetic field of 50 kG.

Normalized scattered field E; /Ey (solid line) at z = 0 for the ordinary mode
as a function of the position of a density wave packet which is shown by the
dashed line centered at the cutoff point; n/fie = 1 x 1073, w/2m = 60 GHz,
Qg = = 0. ‘

Same as for Fig. 3 for the extraordinary mode with w/27 = 140 GHz and
ag =ap = 0.

Normalized scattered field E; /Ey (solid line) at z = O for the extraordinary
mode as a function of the position of a symmetric density perturbation which
is shown by the dashed line centered at the cutoff point; n/f. = 1 x 1073,
w/2mr =140 GHz and ag = oy = 0.

Fig. 6 Same as for Fig. 5 for an antisvimmetric density perturbation.
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