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Abstract--- This paper describes the implementation 
of microwave tomography for industrial process 
applications. Microwave tomography for industrial 
process imaging has different requirements from that 
for medical imaging. In addition to spatial resolution, 
high temporal resolution or real-time imaging is also 
important for high speed processes, flows or rapid 
reactions.  Depending on the specific application, both 
quantitative imaging and qualitative imaging may be 
needed. Qualitative imaging would be sufficient to 
display distributions, patterns or shapes, which may be 
adequate for some applications. Quantitative imaging 
would however be more informative, giving images 
with quantitative dielectric contrast or permittivity 
values from which other physical parameters such as 
density, moisture content and phase fraction may be 
derived. With the microwave tomography approach 
described, several example applications in industrial 
processes are demonstrated, and a number of 
experimental imaging results are presented.  

Keyword---microwave tomography, microwave 
imaging, instrumentation, image reconstruction 

I. INTRODUCTION 

OMOGRAPHIC imaging is a technique that 
reconstructs the internal distribution of an object in 
terms of a physical parameter and presents it as an 

image with a grey or color scale for easy visualization. 
Instead of a single point measurement, it offers a unique 
imaging method to the oil, chemical, pharmaceutical and 
food industries to visualize industrial processes without 
invading the pipes and vessels and provide valuable 
information for control and optimization. Since the 
concept of tomographic imaging was put into practice in 
the 1970’s [1, 2], there has been a significant development 
in tomography instruments based on X-ray, -ray, 
magnetic resonance, optical, positron emission, 
ultrasound, electrical resistance, electrical capacitance, 
electromagnetic induction and microwaves [3, 4]. Among 
them, X-ray and magnetic resonance tomographic imaging 
instruments, which are often known as X-ray CT and MRI 
respectively, have been widely used in the medical sector. 
X-ray CT, MRI and optical tomography can all produce 

images of high spatial resolution. But X-ray CT is only 
applicable to the imaging of objects with large density 
contrast. MRI is only useful for imaging objects which 
contain water or hydrogen atoms. Optical tomography is 
applicable only to optically transparent substances or gases 
where optical attenuations are measureable. X-ray, MRI 
and optical instruments are all bulky and have therefore 
not found applications in industrial imaging. Positron 
emission and -ray imaging techniques can also produce 
high resolution images, but both involve the use of 
radiative tracer particles or ionizing radiation. They are 
therefore not welcome in the industrial environment.  

On the other hand, electrical resistance and electrical 
capacitance tomographic techniques, which are often 
referred to as ERT and ECT respectively, have been 
applied to the imaging of industrial processes either in 
vessels or pipelines. ERT and ECT instruments are 
generally portable, but both have their application 
limitations. ERT is based on resistance measurements and 
is only applicable to the imaging of conducting substances. 
ECT is based on capacitance measurement and is only 
applicable to the imaging of non-conducting substances. 
Similarly, electromagnetic induction tomography (MIT) is 
applicable to the imaging of ferrous substances or 
conducting media. The images produced by ERT, ECT 
and MIT are of low spatial resolution. Ultrasound 
tomography is applicable to the imaging of substances 
with good acoustic properties, which usually involves 
liquids or solid-liquid mixtures. The images produced by 
ultrasound tomography are also of low spatial resolution.  

Comparing to the tomographic imaging techniques 
above, microwave tomography is based on the 
measurements of the scattered electromagnetic fields 
produced by an object, and generates images of dielectric 
properties. The development of microwave tomography 
systems could be dated back to the late 1970’s and early 
1980’s [5, 6]. Since then, there have been a significant 
number of papers published in the literature on the subject. 
The achievements, difficulties and challenges in the 
development of microwave tomographic imaging 
techniques, algorithms and systems over three decades to 
2010 have been reviewed in the article by Bolomey and 
Jofre [7]. A total of 84 key publications on the subject 
during the period have been cited in this article. These are 
not to be repeated here. The readers are therefore referred 
to [7] for further information.  

Over the past three decades, most of the microwave 
tomography research has been focused on medical and 
biomedical applications [8-30]. Only a limited number of 
publications have been on microwave tomography for 
non-medical applications [31-41], but these are increasing. 
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Recent advances and new challenges in microwave 
tomographic imaging have been highlighted in [4], 
particularly in the aspect of real-time microwave 
tomography systems for industrial process monitoring 
applications. 

Microwave tomography for industrial imaging has 
different requirements from that for medical imaging. In 
addition to spatial resolution, high temporal resolution or 
real-time imaging is also important for fast changing 
processes such as multiphase flows.  Depending on the 
specific application, quantitative imaging and qualitative 
imaging are both needed. The former may be sufficient in 
many applications for displaying distributions, patterns or 
shapes. The latter would be more informative, giving 
images with quantitative dielectric contrast or permittivity 
values from which other physical parameters such as 
density, moisture content and phase fraction may be 
derived. In this paper, following the description of a 
microwave tomography system including the hardware 
and techniques for solving forward and inverse problems 
in Section II, example applications of the system in 
industrial process monitoring are demonstrated in Section 
III, together with the presentation of some experimental 
imaging results obtained. We aim to demonstrate the 

capability of a microwave tomography system for 
industrial applications mentioned above, but not to 
emphasize a new method or algorithm for image 
reconstruction. 

II. THE MICROWAVE TOMOGRAPHY IMAGING SYSTEM 

The basic principle of microwave tomography is to 
reconstruct the image of an object in terms of dielectric 
properties, such as dielectric constant r or dielectric 
contrast s, from the data of the scattered microwave field 
measured around the object with microwaves incident 
from different angles creating multi-views of the object. 
To realize the microwave tomographic imaging, it requires 
the hardware for multi-view data acquisition and image 
display, and the technique for image reconstruction [4]. 
The hardware for microwave tomography system may 
include the circuits for microwave signal generation and 
detection, antennas for microwave signal transmitting and 
receiving, and a PC. The antennas are usually placed in a 
background medium, which could be a matching medium 
or natural air.  A microwave tomography system 
developed for industrial process imaging is presented 
below.

 

                                                        

Fig.1 Diagram of the microwave tomography system 

 

A. System Setup 

The microwave tomography system setup used in this 
paper is shown in Fig.1. It uses 16 monopole antennas 
arranged in a circular configuration around the object 
being imaged in air. An example setup of the antennas 
around a circular acrylic pipe is shown in the photo 
inserted in Fig.1. A VCO is used for microwave 
generation, and a voltage is applied to set the operating 
frequency to be 1GHz with an output power of 10dBm. A 
different operating frequency may be obtained by varying 
the applied voltage. Amplitude and phase detectors are 
employed for measurements, serving similar functions to a 
vector network analyser [41]. A 2x16 multiplexer is 
implemented for the control of microwave transmission. 
The measurement scheme adopted in the system is to set 
each of the 16 monopole antennas as a transmitting 

antenna in turn and assign the remaining 15 monopole 
antennas as receiving antennas, with each measurement 
taking less than 0.2ms. This creates a set of 240 transmit-
receive combinations with the measured scattered electric 
fields, Et,m

s,meas = Et,m
obj,meas - Et,m

inc,meas, where t=1, 2…T 
and m=1, 2…M with T=16 and M=15, Et,m

obj,meas and 
Et,m

inc,meas are the total electric fields in the presence and 
absence of the object respectively. The system is therefore 
first calibrated with 240 transmit-receive measurements in 
the absence of object. Due to the reciprocity, only one half 
of the 240 transmit-receive combinations are independent. 
These measured scattered electric fields are used as the 
experimental data for image reconstruction.  

The techniques for image reconstruction which involve 
solving both forward and inverse microwave scattering 
problems are described below.   
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B. Technique for Solving the Forward Scattering 
Problem 

The microwave scattering by the object is generally a 
3D scattering problem [42-44]. However, for simplicity, a 
2D approximation is adopted [45, 46]. In the 2D model, 
the object is assumed to have no variation in its relative 
dielectric permittivity r along its axis, and the antennas 
are modeled as line antennas. When the t-th antenna 
radiates, all other antennas are considered to be absent. In 
addition, the object is considered to have a circular cross-
section and its diameter is taken as a priori knowledge. 
The 2D model is a compromise between the accuracy and 
computation time in solving the forward scattering 
problem or a compromise between the image quality and 
temporal resolution in solving the inverse scattering 
problem, which are both important for industrial process 
imaging.  

In the 2D-model, the scattered electric field at any point 
r on the cross-section of the object, i.e. Ω, located on the 
same cross-sectional plane as the antenna due to the 
presence of the object can be expressed as [42, 47]: 
 

        ''' 02
2
0 drkGrErskrE Dt

s
t 




                          (1) 

where the subscript t indicates the radiation from the t-th 
antenna, r’ is a point on Ω,  s(r’) = r(r’)-1 is the dielectric 
contrast at r’,  G2D (k0) = (j/4) H0

(2)( k0) is the 2D 
Green’s function with =|r-r’|, and Et (r’) is the total 
electric field at r’. The total electric field at any point r, 
including r’ and measurement points rm, is given by, 

 
     rErErE s

t
inc
tt      (2) 

 
where Et

inc(r) is the incident electric field in the absence of 
the object.  In the 2D-model, Et

inc(r) takes the form: 
 

  )( 0
)2(

0 rkHArE t
inc
t      (3) 

 
where At is a constant and related to the current on the t-th 
line antenna. In bridging the factorial difference between 
the theoretical model and experiment, At is chosen so that 
Et

inc(rm) = Et,m
inc,meas with t=1,2…T and m=1,2…M. 

For a numerical solution, the cross-section of the object 
is divided into N=4197 cells. The n-th or n’-th cell, where 
n refers to the cell as a field point and n’ as a source point, 
has an area of an equivalent radius of an’ [45] and 
dielectric contrast sn’. In applying the Method of Moments 
to the discretised domain, Eqn. (1) above for the radiation 
from the t-th antenna is transformed to a matrix solution, 

 

tnntmntnntmnt
s
m EsdiagZEsZE ])][([][][][][ ''''''   

      (4) 
where [Em

s]t is a Mx1 vector formed of the scattered 
electric fields at receiving positions, [En’]t  is an Nx1 
vector formed of the total electric fields at the discretised 
cells with n’=1,2…N, [diag(sn’)] is a diagonal matrix of 
NxN formed of the dielectric contrasts at n’=1, 2…N, and 
Zmn’ is given by, 
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With the consideration of [En] t = [En’] t, the disretisation of 
Eqn.(2) leads to 
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where [En

inc]t  is an Nx1 vector formed of the incident 
electric fields at discretised cells, i.e. Et

inc(rn), with 
n=1,2…N, [I] is an NxN unit matrix, the elements of [Znn’] 
are given by [45], 
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 (7)   

Hence,  
 

t
inc
nnnntn EsdiagZIE ][)])(][[]([][ 1

'''
   (8) 

and  
 

t
inc
nnnnntmnt

s
m EsdiagZIsdiagZE ][)])(][[])]([([][][ 1

''''
   

      (9) 
Assuming the distribution of dielectric contrast sn’ is 

known, the calculated scattered electric field at the 
position of the m-th receiving antenna for the t-th  
transmitting antenna would be Et,m

s which  corresponds to  
the measured data Et,m

s,meas with t=1,2…T and m=1,2…M.  
A study of a dielectric object with a uniform r changing 

from 2 up to 90 shows that the numerical solution would 
be accurate only if the diameter of the discretised cells, i.e. 
2an’, is less than one tenth of the wavelength in the 
dielectric object () [48], indicating that the number of 
cells should be at least 100 per  x  area. It should be 
noted that an accurate forward solution is very important 
in an iterative method for solving inverse problems, 
particularly in high contrast cases. 

 
C. Technique for Solving the Inverse Scattering Problem 

To-date there have been a good number of algorithms 
developed for tomographic image reconstruction including 
both Born-based methods and iterative methods [8, 42, 49-
61]. Iterative image reconstruction algorithms based on 
Gauss-Newton method [52], Newton-Kantorovich method 
[50, 51], quasi-Newton method [53], Conjugate gradient 
method [60, 61] and sequential quadratic programming 
method [55] have all been applied in microwave 
tomography. These methods would have different 
complexity, give different rates of convenience in the 
iterative process, produce images of different qualities, 
and have different levels of sensitivity to the quality of 
data. Some comparisons between the methods have been 
made in [54, 55]. For practical applications, a compromise 
between the factors may need to be made. In the 
following, an improved Newton-Kantorovich is described. 
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The method is chosen for simplicity and effectiveness. 
Other methods mentioned above may also be used. 
 
C.1 Conventional Newton-Kantorovich Method 

With the consideration of a small increment in the 
dielectric contrast distribution [s]=[sn’] in the 
conventional Newton-Kantorovich approach [50, 51],  the  
differentiations of Eqn.(4) and Eqn.(6) lead to two 
incremental equations respectively,  

 

tnntmnt
s
m EsZE )]([][][ '''     (10) 

 
and 
 

tnnnntn EsZE )](][[][ '''     (11) 

 
Eliminating [(s n’En’)]t  gives, 

 

tnnntmnt
s
m EZZE ][][][][ 1

''      (12) 

 
As [Zmn’]t and [Znn’]t depend on the geometrical structure 
of the system setup, Eqn.(12)  indicates that any difference 
in the calculated scattered electric field from its measured 
value is directly linked to the error in the calculated 
electric field inside the object. Eqn.(12)  could be 
rearranged to, 

 

t
s
mtmnnntn EZZE ][]][[][ 1

''      (13) 

 
Equation (13) shows that amount of correction required in 
the internal electric field in order to meet the difference 
between the calculated and measured electric fields. With 
the approximation of 

 

tnnntntnn EsdiagsEdiagEs ])][([]][)([)]([ ''''''   (14) 
 

in the conventional Newton-Kantorovich method [50, 51], 
it can be shown that 
 

][][][ 'ntt
s
m sDE      (15) 

 
where 

 

tnnnntmnt EdiagZsdiagIZD )]([]))][([]([][][ '
1

'''
  (16) 

 
with [I] being the unit matrix. Eqn.(15) shows the relation 
between the variation of the dielectric contrast and that of 
the scattered electric field, or the resulted difference in the 
scattered electric field from the error in the dielectric 
contrast for each transmitting antenna t=1,2…T. 

Assuming [sk]=[sn’]k is the approximate solution of s at 
the iterative step k, where k=0,1,2…K, an increment 
[sk]=[sn’]k  would need to be added to form a new 
approximate solution of s at step k+1, i.e. 

 
][][][ 1 kkk sss      (17) 

 

The increment [sk] at the k-th iteration can be found from 
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with [D(sk)]t  given in Eqn.(16), i.e. 
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      (21) 
and [Et,m

s (sk)] given in Eqn.(9), i.e. 
 

t
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nknnktmnk

s
mt EsdiagZIsdiagZsE ][)])(][[])]([([][)]([ 1

'',
  

      (22) 
Equation (18) is generally ill-posed. It may be solved 
using various methods including singular value 
decomposition and Lavenberg-Marquardt (LM) method 
[62]. The application of LM method [62, 51, 52] with 
Tikhonov regularization [63] leads to the solution, 

 

k
s

kk EsGs ])][,([][       (23) 

 
with 

 
)]([])[)]()][(([)],([ *1*

kkkk sDIsDsDsG    

      (24) 
where [D*(sk)] is the conjugate transpose of [D(sk)] and  
is the regularization parameter. A typical value of =10-4 
is adopted.  
 
C.2 Improved Newton-Kantorovich Method 

In the Newton-Kantorovich method above, [D(sk)]t in 
Eqn.(21)  involves the computation of  [En’(sk)]t using 
Eqn.(8) which is then re-arranged to form [diag(En’(sk))]t. 
However, the difference between the calculated and 
measured scattered electric fields in Eqn.(13) indicates 
that a better approximation to the calculated scattered 
electric field would be, 
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'
'        
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s
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'''    (25) 

 
Hence, the accuracy of [D(sk)]t and the speed of 
reconstruction could be improved by replacing it with 
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      (26) 
The improved Newton-Kantorovich method gives an 
alternative equation for [sk] as,  
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The application of LM method [62] with Tikhonov 
regularization [63] again leads to the solution, 
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      (29) 
where [D1

*(sk)] is the conjugate transpose of [D1(sk)].  The 
improved Newton-Kantorovich method is an iterative 
approach. The relative dielectric permittivity of the 
background medium is chosen as the initial guess. The 
iterative process is set to terminate when 
 

%1||||/|||| 2,2  meass
k

s EEErr
 .                      (30) 

The improved Newton-Kantorovich method is suitable for 
both low and high contrast cases. However, the rate of 
convergence becomes slower as the contrast increases. 
The iterative process may also become divergent when the 
data contains high noise.  In this case, the iterative process 
may be terminated after a small, but fixed number of 
iterations. Such enforcement would generally lead to 
qualitative imaging reconstruction only. Its improvement 
over the conventional Newton-Kantorovich method can be 
seen from the theoretical study shown in Fig.2 for the 
image reconstruction of a typical dielectric object with a 
diameter of 10cm and uniform r=2. Qualitative 
reconstruction may be made in several iterations, which 
may be sufficient for some applications. 

 
Fig.2 Err parameter of the reconstruction of a 10cm diameter object with 

r=2 against the iteration number 

III.  EXAMPLES OF INDUSTRIAL PROCESS IMAGING  

In this section, some potential applications of 
microwave tomography for industrial process imaging are 
illustrated. This is demonstrated experimentally using 
several practical imaging examples. As the substances 

involved have low conductivity or dielectric losses, the 
dielectric contrast and relative permittivity are dominated 
by real parts. Hence, only real value images are presented.  
As a result of 2D approximation, the images obtained 
represent the average dielectric properties in the axial 
direction in the case that there is an axial variation. 
 
A. Imaging of Granule Substance in Different Flow 
Patterns 

One application of the microwave tomography system is 
the imaging of solid or granule flows in a pipeline. 
Pneumatically conveyed solid or granule flows often occur 
in food, chemical, pharmaceutical industries and also in 
coal-fired power plants. Figure 3 shows the imaging of 
granules in three typical flow patterns. The granule 
substance is statically placed in a circular plastic pipe of 
15cm in diameter. It is made of dry corn granules of sizes 
between 500μm and 2000μm and water by means of 
weighing and mixing to obtain required moisture of 
mw=15% in weight. The dielectric constant of dry corn 
granules has a typical value of 1.8 [64], while the 
dielectric constant of the wet corn granule substance 
depends on its moisture which may be estimated using 
mixing formulas with r,water=80 [65, 66]. Dielectric 
properties of grains and agricultural products may also be 
found in the work by Nelson et al. [67-69]. 

The first flow pattern has a flat boundary between the 
granule substance and air as shown in Fig.3(a). The 
granule substance in red occupies one half of the pipe 
cross-section with a 350 tilt angle, and air occupies the 
remaining area.  The reconstructed image of the 
corresponding flow pattern in terms of the normalized 
dielectric contrast s/s(mw=15%) is shown in Fig.3(b) 
where s(mw=15%) is the dielectric contrast of the 
formulated granule substance with a moisture content of 
mw=15%. By choosing the normalized dielectric contrast 
function to plot, the variation of the dielectric property is 
mapped to the range between zero and unity. In Fig.3(b), 
the reconstructed area of granule substance is represented 
and shown in red with a normalized dielectric contrast of 
unity, and the area of air in blue with a normalized 
dielectric contrast of zero. The tilt angle can be clearly 
seen from the reconstructed image. The second flow 
pattern has the granule substance (red) distributed at the 
centre of the pipe and surrounded by air (blue), as shown 
in Fig.3(c). Its corresponding reconstructed image in terms 
of s/s(mw=15%) is shown in Fig.3(d). The concentration of 
the granule substance towards the centre of the pipe can be 
seen from the image, but the centre of the granule 
concentration is slightly off the centre of the pipe.  This 
deviation from the model reflects the actual position of the 
granules in the experiment. The third flow pattern has a 
large air bubble column (blue) embedded in the granule 
substance which occupies a majority of the pipe cross-
section, as shown in Fig.3(e). The reconstructed image of 
the flow pattern in terms of s/s(mw=15%) is shown in 
Fig.3(f). The position and size of the air bubble can be 
seen from the reconstructed image. These examples show 
that qualitative imaging of flow patterns may be made 
using the microwave tomography system. 
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in-between the intermediate state or the mixture of water 
and ice. 

Figure 8(b) is the image of the initial state of ice. Figure 
8(c) shows that the ice starts to melt from the bottom left 
of the ice cross-section.  It then progresses along the left 
side and bottom part of the ice cross-section and also 
towards the right side (Figs. 8(d)). The amount of ice 
melting progressively increases, and so is the amount of 
water (Figs. 8(e)-(h)) which naturally flows towards the 

bottom of the pipe. The amount of ice floating on the top 
part of the pipe cross-section progressively reduces (Figs. 
8(i)-(k)). Figure 8(i) shows that only a small piece of ice 
remains at the stage of imaging, which floats on the top of 
the pipe cross-section. In Fig. 8(k) it shows that the ice has 
melted almost completely, and water occupies a major 
area of the pipe cross-section above the bottom with ice-
water mixture on the remaining area. Figure 8(l) shows 
that the ice melts completely after 12 hours. 
 

 
 

Fig. 7 Imaging of powder flow in a horizontal pipe 
 

 
(a) 

 
(b)  (c)  (d)  

(e)  (f)  (g)  (h)   

(i)  (j)  (k)  (l)   
 

Fig. 8 Imaging of state change of ice (a) into water and selected images in sequence from (b) to (l) 
 
 

IV. DISCUSSION AND CONCLUSIONS 

Over the past three decades, there has been a significant 
development in microwave tomographic imaging 
techniques, algorithms and systems for medical scanning 
and industrial process monitoring applications. In this 
paper, we focus ourselves on the investigation of the latter. 

For medical imaging, to achieve high image quality or 
spatial resolution is the ultimate aim.  The reconstruction 
time is of secondary importance. However, for industrial 
process imaging, high image quality and high temporal 
resolution are equally important, particularly for 
applications involving high speed processes, flows or 
rapid reactions, even though a compromise between them 
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may sometimes need to be made. Although the 
reconstructed images may be presented in colors with their 
corresponding quantitative dielectric contrast or 
permittivity values, qualitative images showing the 
distributions, patterns or shapes may be sufficient in many 
applications. Quantitative images would of course be more 
informative, from which other physical parameters such as 
density, moisture content and phase fraction may be 
further derived.  

As a result of the development in microwave electronics 
in recent years, a microwave tomography system could be 
designed to be portable and produce high quality images in 
real time for process monitoring applications in oil, 
chemical, pharmaceutical and food industries. Example 
applications of the microwave tomography system for the 
imaging of granule substances, powder flow and state 
change of ice to water have demonstrated the potential of 
technology for these applications. As with other imaging 
modalities, it is envisaged that microwave tomography as 
a technique or a system will increasingly find its way into 
processing, manufacturing, packaging and other industrial 
sectors in the years to come to improve product quality, 
efficiency and productivity, coupled with the new 
developments in the Internet of Things, Industry 4.0 in 
Europe, and Made-in-China 2025 Initiative in China. 
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