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Abstract

Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium
signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter
that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as
the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report
that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely
arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are
expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2
reside within a complex and cross-stabilize each other’s protein expression in a cell-type dependent manner. Using in vivo

RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium
handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a
new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.
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Introduction

The ability of mitochondria to transport calcium is thought to

be fundamental for the regulation of cellular bioenergetics [1,2]

and cell death [3,4]. Mitochondrial calcium uptake and buffering

enable these organelles to shape cytosolic calcium transients,

resulting in mitochondrial control over key biological processes,

including neurotransmission and hormone secretion [5,6]. The

primary route of calcium uptake is via a low affinity calcium

‘‘uniporter’’ located in the inner mitochondrial membrane [7,8].

This channel mechanism, defined by its dependence on mito-

chondrial membrane potential, sensitivity to Ru-360 [9] and

activation at micromolar calcium concentrations, was first

characterized in isolated mitochondria in 1961 [7,8]. In subse-

quent decades, the biophysical properties of the mitochondrial

calcium uniporter were extensively characterized [10,11], but its

molecular identity remained elusive.

Recently, we coupled observations from comparative physiology

with integrative genomics to identify two proteins required for

normal mitochondrial calcium handling: MICU1 [12] and MCU

[13]. Based on sequence analysis and functional studies, we

hypothesized that MCU is the channel-forming subunit of the

uniporter, whereas MICU1 fulfilled important criteria for a

regulatory protein. This model has been corroborated by

independent and complementary studies [14,15,16]. Additional

studies point to the central role of MICU1 in calcium-mediated

insulin signaling [15] and provide evidence that MICU1 may set

the calcium threshold for MCU-mediated calcium uptake [16].

For many decades, it has been known that the uniporter exhibits

tissue specific regulatory properties [10,17] whose molecular basis

remains to be elucidated. Interestingly, genome sequence analysis

reveals that the human genome harbors two additional MICU1

homologs, called EFHA1 and EFHA2, neither of which has been

previously studied. Both of these proteins have mitochondrial

targeting sequences and were previously identified with high and

low confidence, respectively, in MitoCarta, our proteomic

characterization of mitochondria from 14 different tissues [18].

Here, we pursue an initial characterization of one of these

proteins, EFHA1, which we now re-name MICU2.
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Materials and Methods

Ethics Statement
All procedures used in animal studies were performed at

Alnylam Pharmaceuticals in strict accordance with local and

national recommendations and have been approved by the

Institutional Animal Care and Use Committee (AAALAC Unit

Number 001345, NIH assurance number A4517-01).

Multiple sequence alignment
Sequences were downloaded from the NCBI protein database.

ClustalW2 was used to perform a multiple sequence alignment and

generate a phylogenetic tree.

RNA expression analysis
Data from a publicly available mouse gene expression atlas were

downloaded (GEO accession number GSE10246) [19] and

summarized using gcRMA normalization [20].

Cell culture
HeLa and HEK293T cells were received from the ATCC.

HeLa cells expressing aequorin targeted to the mitochondrial

matrix (mt-AEQ) were purchased from Aequotech (AT-002-H).

All cells were grown at 37uC and 5% CO2 in Dulbecco’s modified

Eagle medium (DMEM) (Invitrogen 11995) with 10% FBS (Sigma

F6178). HeLa cells expressing mt-AEQ were maintained in

100 mg/ml of geneticin.

Confocal imaging
HeLa cells were co-transfected with plasmids containing

carboxy terminus GFP-tagged MICU2 or Mito-HcRed1 (Clon-

tech 632434). Twenty-four hours after transfection, cells were

washed three times with PBS and imaged using a Leica TCS SP5

confocal microscope.

Quantitative Real-Time PCR
RNA was isolated from HEK293T cells using a Qiagen RNeasy

kit and was reverse-transcribed using SuperScript III following the

manufacturers’ protocols. Quantitative real-time PCR (qPCR) was

performed using Taqman assays targeting MICU1

(Hs00381563_m1), MICU2 (Hs0246104_m1) and b-actin (Ap-

plied Biosystems Human ACTB #4352935E). Experiments were

performed in technical triplicate.

Immunoprecipitation
Mitochondria were isolated from HEK293T cells that stably

express Flag-tagged GFP targeted to mitochondria, MCU-Flag or

FLAG-MICU1. 200 mg of protein were solubilized with 200 ml of

lysis buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 5 mM

EDTA, 0.2% DDM and protease inhibitor tablets (Roche Applied

Science 118361170001)) for 10 minutes at 4uC. Lysates were

cleared by spinning at 16000 g for 10 minutes at 4uC. Cleared

lysates were incubated with anti-Flag M2 affinity gel (Sigma

A2220) in PBS for 2 hours at 4uC. Immunoprecipitates were

washed with 1 ml of lysis buffer 3 times and boiled in 30 ml of

sample buffer. One third of the immunoprecipitate was loaded on

a 12% SDS-PAGE gel for detection of the indicated proteins.

MCU antibody was generated in chicken, MICU1 antibody was

generated in rabbit and MICU2 antibody was purchased from

Abcam (ab101465). Control antibodies ATP5A (MS507), ATP5B

(MS503) and SDHB (MS203) were purchased from MitoSciences.

Synthesis and selection of siRNA duplexes targeting
MICU1 and MICU2
48 and 20 siRNAs were selected for synthesis and screening

based on low predicted off-target potentials and 100% homology

with mouse sequences NM_144822.2 and NM_028643.3, respec-

tively. Single-strand RNAs were produced at Alnylam Pharma-

ceuticals as previously described [21]. Hepa-1c1c7 cells seeded at

15,000 cells per well in 96-well plates were transfected with

siRNAs using Lipofectamine RNAiMAX according to the

manufacturer’s protocols. Each experiment was performed in

technical duplicate. 18–24 h post-transfection, MICU1 and

MICU2 mRNA levels were quantified using a branched-DNA

assay (QuantiGene Reagent System, Panomics) according to the

manufacturer’s protocols. Their mRNA levels were normalized to

GAPDH mRNA.

In vivo silencing of MICU1 and MICU2
C57BL/6 mice (Charles River Laboratories) received either

PBS or siRNA in lipidoid formulations via weekly tail vein

injections as previously described [13,22,23,24]. After overnight

fasting, the animals were euthanized by CO2 inhalation and the

livers were harvested and stored in ice-cold PBS prior to

mitochondria isolation. A piece of liver tissue was snap-frozen in

liquid nitrogen for mRNA analysis.

Mitochondrial Isolation
Mitochondria were isolated from mouse liver as previously

described [25] and resuspended in a buffer containing 220 mM

mannitol, 75 mM sucrose, 10 mM HEPES and 1 mM EDTA

adjusted to pH 7.4 with KOH and supplemented with fresh 0.2%

BSA prior to use. Mitochondria were stored on ice until further

use.

Measurement of mitochondrial respiration, membrane
potential and calcium uptake
Respiration and membrane potential were measured optically

as previously described [25]. Values for respiratory control ratios

(RCR) and ADP:O (P:O) ratios represent the mean +/2 s.d. of

three independent experiments performed on n= 3 mice. Calcium

uptake experiments were performed on a Perkin-Elmer Envision

plate reader and Perkin Elmer LS-50B fluorescence spectrometer

as previously described [13]. Inset reports linear fits between 5 and

10 s from experiments performed on n=3 mice.

RNA interference
To silence MICU1, we used short-hairpin RNA (shRNA)

constructs TRCN0000053370 (59-GCAATGGCGAACTGAG-

CAATA-39, shMICU1a) and TRCN0000053368 (59-GCAGCT-

CAAGAAGCACTTCAA-39, shMICU1b) from the Broad Insti-

tute’s RNAi Consortium (TRC) previously validated in mt-AEQ

HeLa cells. To silence MICU2, we used shRNA constructs

TRCN0000055848 (59-GCCATGCAGATGTTCAGTTTA-39,

shMICU2a) and TRCN0000055850 (GCTGCAGAAGATCA-

TAAGTAA, shMICU2b). As controls, shRNAs targeting GFP,

RFP and LACZ were used. All shRNAs were provided in a

lentiviral vector (pLKO.1) through the TRC. Lentiviral produc-

tion and infection were performed as previously described [26].

Cells were selected 24 hours after infection with 2 mg/ml of

puromycin.

cDNA rescue experiments
A lentiviral vector (pLEX983) for expressing C-terminal V5-

tagged cDNA was obtained from the TRC. Full-length MICU2
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cDNA was synthesized (Blue Heron Biotechnology) and cloned

into pLEX983. Lentivirus was produced using cDNAs encoding

GFP, MICU2 or MICU1 resistant to TRCN0000053370 as

previously described [26]. Virus was used to infect HeLa cells

stably expressing mt-AEQ. Cells were selected 24 hours after

infection with 5 mg/ml of blasticidin.

Measurement of mitochondrial calcium in HeLa cells
expressing mt-AEQ
40,000 cells were seeded in a 96-well plate and incubated

overnight. Mitochondrial calcium was measured following hista-

mine treatment as previously described [27]. Light emission was

measured at 469 nm every 0.1 s using a luminometer (MicroBeta2

LumiJET Microplate Counter PerkinElmer). Luminescence was

normalized to account for cell number.

Blue native PAGE studies
5 mg of mitochondria isolated from mouse liver or HeLa cells

were solubilized in 2% digitonin on ice for 30 minutes. Electro-

phoresis was performed using the Novex NativePAGE Bis-Tris

Gel System from Invitrogen. Western blot analysis was performed

using an MCU antibody generated in chicken. A commercially

available antibody to ATP5A (MitoSciences MS507) was used as a

loading control.

Results

MICU1, MICU2 and MICU3 form a family of paralogous
genes
We previously used comparative genomics to identify MICU1,

a mitochondrial protein essential for mitochondrial calcium

handling in HeLa cells [12]. MICU1 (previously known as

CBARA1 or EFHA3) has a mitochondrial targeting sequence as

well as two evolutionarily conserved EF hands. Sequence analysis

reveals that MICU1 shares approximately 25% sequence identity

with two human genes, EFHA1 and EFHA2, which have not been

studied before. These three proteins are conserved in vertebrates,

whereas only one homolog is present in plants and protozoa.

To elucidate the evolutionary relationship of these three

proteins, we performed a multiple sequence alignment using

homologs from vertebrates, plants and protozoa. This analysis

placed the protozoa and plant homologs as outgroups on a

phylogenetic tree (Fig. 1a), indicating that EFHA1 and EFHA2 are

vertebrate paralogs of MICU1 that likely arose from a gene

duplication event prior to vertebrate evolution. We now re-name

EFHA1 as MICU2 and EFHA2 as MICU3.

Like MICU1, MICU2 and MICU3 have N-terminal targeting

sequences consistent with mitochondrial localization [28]. In our

previous proteomic studies, MICU2 and MICU3 were detected in

mitochondria from various mouse tissues, although their expres-

sion patterns differed significantly [18]. MICU1 was broadly

expressed and detected in 12 out of 14 mouse tissues, whereas

MICU2 was detected in 7 out of 14 tissues with strong expression

in visceral organs. In contrast, MICU3 was found in 6 out of 14

tissues with a strong signature in skeletal muscle and the central

nervous system. Despite being detected in multiple mouse tissues,

MICU3 lacked other evidence of being mitochondrial, scoring just

below the stringent threshold required to be a part of the

MitoCarta collection. This is in contrast to MICU2, which was

Figure 1. MICU2 is paralogous to MICU1 and localizes to
mitochondria. A. MICU1, MICU2 and MICU3 share a common ancestor
and are present in multiple vertebrate species. B. RNA expression
analysis of MICU1, MICU2, MICU3 and MCU across 21 mouse tissues. For
each tissue, the dots represent individual replicate measures and the

bars represent mean values. C. MICU2 has two evolutionarily conserved
EF hands. D. Representative confocal images of HeLa cells cotransfected
with MICU2-GFP and Mito-HcRed1.
doi:10.1371/journal.pone.0055785.g001
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reported in MitoCarta and localized to the mitochondria using

high-content microscopy to visualize its subcellular localization.

Analysis of published microarrays of MICU1-3 across 21

different mouse tissues revealed a similar expression pattern as

predicted by MitoCarta (Fig. 1b). MICU2 was strongly expressed

in visceral organs whereas MICU3 was expressed almost

exclusively in neural tissues and skeletal muscle (Fig. 1b). In the

present study, we focus on MICU2 due to greater expression in

visceral organs in which we can apply in vivo siRNA technology to

achieve silencing.

Sequence comparison of human MICU1 and MICU2 reveals

highly conserved domain architecture (Fig. 1c). Similar to MICU1,

MICU2 has two EF-hands separated by a long stretch of residues

predicted to form a-helices. In previous work, we showed that the

calcium-coordinating residues in the EF-hands of MICU1 are

highly conserved across species [12]. Likewise, MICU2 demon-

strates perfect conservation in the acidic residues that cap the EF-

hands across evolution (Fig. 1c).

MICU2-GFP localizes exclusively to mitochondria
We began by confirming that MICU2-GFP localizes exclusively

to mitochondria with confocal microscopy, which showed that a

carboxy terminus GFP-tagged MICU2 overlapped with mito-

chondrial marker Mito-HcRed1 (Fig. 1d).

MICU1 and MICU2 stabilize each other’s protein
expression
In previous studies, we demonstrated that MICU1 regulates

mitochondrial calcium handling in HeLa cells [12]. Since MICU1

and MICU2 are paralogs with conserved domain architecture, it is

possible that they have redundant roles and are expressed in a

mutually exclusive manner across different cell types. To address

this possibility, we blotted whole cell lysate from HEK293T and

HeLa cells for MICU1 and MICU2, which revealed expression of

both proteins (Fig. 2a, S1, S2a). Interestingly, in the setting of

MICU1 knockdown, there was a significant reduction in MICU2

protein expression in both HEK293T and HeLa cells despite

preserved MICU2 RNA levels (Fig. 2a, S2a). This phenomenon

was observed following treatment with multiple hairpins (shMI-

CU1a and shMICU1b), indicating that this result is a biological

consequence of MICU1 loss rather than an off target effect.

Conversely, overexpression of MICU1 in HEK293T resulted in

higher levels of MICU2 (Fig. 2b). Interestingly, in the setting of

MICU2 knockdown, a reduction of MICU1 was observed in

HeLa cells (Fig. S2a) whereas no effect on MICU1 expression was

observed in HEK293T cells (Fig. 2a). This discrepancy may reflect

additional mechanisms contributing to MICU1 stability in

HEK293T cells. Collectively, these studies demonstrate that

MICU1 and MICU2 are expressed in multiple cell types and

that their protein expression is contingent on one another.

MICU2 associates with the MICU1/MCU complex
In our previous studies, we demonstrated that MICU1 and

MCU physically interact either directly or indirectly [13]. To

determine whether MICU2 physically interacts with these

proteins, we performed immunoprecipitation on cells stably

expressing either MCU-FLAG or GFP-FLAG. Although endog-

enous MICU1 and MICU2 were present in cell lysate from both

cell lines, immunoprecipitation with an anti-FLAG antibody

specifically recovered MICU1 and MICU2 from the MCU-FLAG

cell line (Fig. 2c). It is notable that the heterologous expression of

MCU-FLAG resulted in increased protein expression of both

MICU1 and MICU2 as seen in the whole cell lysate (Fig. 2c),

suggesting that MCU overexpression stabilizes the protein

expression of MICU1 and MICU2. In addition, immunoprecip-

itation performed on cells stably expressing either MICU1-FLAG

or GFP-FLAG demonstrated specific recovery of MICU2 with

MICU1 in the presence of excess calcium or EGTA (Fig. 2d).

Collectively, these results (Fig. 2a–d) strongly support the notion

that MICU1, MICU2 and MCU physically interact to form a

complex.

MICU1 and MICU2 can be silenced in vivo in mouse liver
using siRNA technology
Our sequence analysis, expression analysis and biochemical

data motivated us to pursue studies in which we could directly

assess the contribution of MICU2 to mitochondrial calcium

uptake. To evaluate the impact of MICU2 loss on mitochondrial

calcium uptake, we performed in vivo silencing of MICU2 in mouse

liver using technology developed by Alnylam Pharmaceuticals

[13]. Since a key question was whether MICU1 and MICU2

Figure 2. MICU1 and MICU2 stabilize each other’s expression
and interact with MCU. A. Whole cell lysates from HEK293T cells
stably expressing a control shRNA (shGFP and shLACZ) or a shRNA
targeting MICU1 (shMICU1a and shMICU1b) or MICU2 (shMICU2a) were
analyzed using qPCR and western blot. The relative mRNA is reported
using b-actin as an endogenous control and normalized to shGFP for
each target. Whole cell lysates were blotted with anti-MICU1, anti-
MICU2 and control anti-ATP5A. B. Whole cell lysates from HEK293T cells
stably expressing FLAG-GFP or FLAG-MICU1 were lysed and blotted
with anti-MICU2, anti-FLAG and control anti-ATP5A. C–D. Mitochondria
isolated from HEK293T cells stably expressing MCU-FLAG (C) or FLAG-
MICU1 (D) were solubilized with 0.2% DDM and subjected to anti-FLAG
immunoprecipitation. Immunoprecipitates and lysate were blotted with
anti-FLAG, anti-MICU1, anti-MICU2 and control anti-ATP5B and anti-
SDHB.
doi:10.1371/journal.pone.0055785.g002

MICU2 Regulates Mitochondrial Calcium Handling

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55785



contribute independently to mitochondrial calcium uptake, we

also performed in vivo silencing of MICU1 in isolation and in

combination with MICU2.

We screened siRNA duplexes for both genes using previously

described siRNA design and delivery technology [13]. Duplexes

were transfected at concentrations from 1.25 to 5 nM, and the 3

siRNAs conferring the best knockdown were tested at different

concentrations in the range of 7pM to 5 nM to estimate their EC50

in a mouse liver cell line (Fig. 3a). As a negative control, we used a

siRNA duplex that targets firefly luciferase (siLUC). We performed

a large-scale synthesis of one siRNA duplex and encapsulated it

into a lipid-based formulation optimized for liver-specific delivery.

Although mRNA knockdown was achieved at 24 hours, weekly

tail vein injections of the siRNA duplexes were carried out over a

six-week period to achieve in vivo knockdown of MICU1 and

MICU2 (Fig. 3b). Similar to in vivo silencing of MCU [13], mice

did not exhibit any signs of distress. Their weight was stable, and

the gross appearance of their livers did not differ.

Mitochondrial membrane potential and respiration are
intact following in vivo silencing of MICU1/MICU2 in
mouse liver
We evaluated the impact of silencing MICU1 and MICU2 on

mitochondrial respiration and membrane potential (Ym) to ensure

that silencing did not cause respiratory chain collapse leading to a

secondary defect in calcium uptake. Mitochondria isolated from

control and knockdown livers underwent robust respiratory

transitions as demonstrated by their comparable respiratory

control ratios (RCR) (Fig. 3c, e). In addition, comparable ADP:O

ratios indicate intact ATP-coupled mitochondrial respiration.

Together, these results indicate that silencing MICU1 or MICU2

did not alter baseline mitochondrial respiration or oxidative

phosphorylation. In mitochondria isolated from all treatment

groups, membrane potential was responsive to ADP and fully

depolarized by the uncoupler carbonyl cyanide m-chlorophenyl-

hydrazone (CCCP), indicating that silencing MICU1 or MICU2

did not abolish the mitochondrial membrane potential (Fig. 3d). It

is notable that these findings are similar to what we previously

reported for in vivo silencing of MCU in mouse liver [13].

In vivo silencing of MICU1 and MICU2 in mouse liver
results in altered mitochondrial calcium handling
Next, we analyzed calcium uptake kinetics in mitochondria

isolated from control and knockdown mice. We added a single,

large 50 mM spike of calcium to mitochondria suspended in buffer

containing extramitochondrial Calcium Green-5N (CG5N) and

observed the rate of calcium clearance by measuring CG5N

fluorescence. Mitochondria from siMICU1 and siMICU2 mice

demonstrated moderately impaired calcium uptake kinetics

whereas mitochondria from siMICU1+siMICU2 mice demon-

strated an additive defect (Fig. 4a). This result was also observed

when multiple spikes of calcium were added to mitochondria

(Fig. 4b). Interestingly, knockdown mitochondria were unable to

fully buffer a second pulse of calcium, whereas control mitochon-

dria rapidly buffered the entire pulse (Fig. 4b). Knockdown

mitochondria demonstrated premature release of calcium, sug-

gesting that knockdown mitochondria were sensitized to release

calcium (Fig. 4b). In addition, MCU protein expression was

significantly decreased in knockdown mitochondria (Fig. 4c). The

degree of MCU protein loss correlated with the phenotype

strength, raising the question of whether MCU loss was

responsible for at least part of the observed phenotype. Similar

to the effect of MICU2 knockdown in HeLa cells, loss of MICU2

in mouse liver resulted in decreased expression of MICU1 to about

half of wild-type levels (densitometry not shown). By extending the

phenomenon of cross-stabilization to mouse tissues, this result

strongly suggests that a fundamental role of these paralogs is

stabilizing each other’s protein expression.

In vivo silencing of MICU1 and MICU2 alters MCU
complex size
In previous studies, we demonstrated that MCU is present in a

complex of approximately 480 kDa using blue native polyacryl-

amide gel electrophoresis (BN-PAGE) and western blot (WB)

analysis [13]. To gain insight into how silencing these proteins may

Figure 3. MICU1 and MICU2 can be silenced in vivo in mouse
liver using siRNA technology. A. In vitro dose-response curves of
selected duplexes targeting MICU1 and MICU2. B. Relative expression of
MICU1 and MICU2 mRNA after 6 weekly injections normalized to siLUC
mice. C. Representative oxygen consumption traces measured in
isolated mitochondria from siLUC (top) and siMICU1+2 (bottom) mice.
Arrows denote addition of mitochondria, glutamate and malate (G/M),
ADP and uncoupler (carbonyl cyanide m-chlorophenylhydrazone,
CCCP). Respiratory control ratios (RCR) and ADP:O ratios (P:O) were
calculated from experiments performed on three separate mice per
group. D. Representative mitochondrial membrane potential traces
measured in isolated mitochondria from siLUC (top) and siMICU1+2
(bottom) mice using tetramethyl rhodamine methyl ester (TMRM). E.
Respiratory control ratios (RCR) and ADP:O ratios (P:O) were comparable
among all treatment groups.
doi:10.1371/journal.pone.0055785.g003
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affect the uniporter complex, we solubilized control and knock-

down mitochondria in digitonin and performed BN-PAGE and

western blot analysis, which revealed decreased levels of MCU

complex in knockdown mitochondria (Fig. 4d). In addition,

blotting with anti-MCU revealed a shift in MCU complex size

in knockdown mitochondria relative to siLUC (Fig. 4d). The

percentage of shifted MCU complex was greater in si-MICU1

mitochondria compared to si-MICU2 mitochondria. The basis for

this difference is unclear, but it may reflect less efficient MICU2

knockdown or increased sensitivity of the uniporter complex to

MICU1 loss relative to MICU2 loss. Interestingly, the degree of

shift correlated with the severity of calcium uptake. This result was

also observed in human cell lines stably expressing shMICU1a and

shLZ (Fig. S2b). The shift in the MCU complex size could be

rescued by introducing a cDNA encoding MICU1 that was

resistant to shRNA degradation, suggesting that this shift was

specific to MICU1 knockdown rather than an off-target effect

(data not shown).

Redundant or complementary roles of MICU1 and
MICU2?
An important question is whether MICU1 and MICU2 have

redundant or complementary roles in mitochondrial calcium

uptake. The fact that MICU1 and MICU2 are both expressed in

multiple human cell lines and mouse liver and that simultaneous

silencing results in an additive calcium handling defect suggests

that they contribute independently to mitochondrial calcium

handling. However, the finding that their loss produces similar

defects, including reduced calcium uptake kinetics, premature

calcium release and a shift in the MCU complex size, indicates

that they may have overlapping molecular roles in mitochondrial

calcium handling.

To explore this question, we used a commercially available mt-

AeQ HeLa reporter cell line that reports matrix free calcium. In

this background, we stably expressed a shRNA targeting MICU1,

which resulted in a severely diminished rise in free matrix calcium

following histamine stimulation as we previously reported [12].

Subsequently, we introduced a cDNA encoding either MICU1

(with synonymous mutations at the shRNA sites) or MICU2. As

expected, MICU1 robustly restored the rise in matrix calcium

following histamine stimulation (Fig. S2c). Although expression of

MICU2 rescued the calcium phenotype, it also restored MICU1

protein levels to approximately half of wild-type levels (Fig. S2c, d).

This result precluded a definitive evaluation of whether MICU2

could compensate for MICU1 because it could be explained by

multiple mechanisms, including MICU2 stabilizing low levels of

remaining MICU1 or directly replacing MICU1 as a functional

paralog. In contrast to mitochondria isolated from mouse liver, it is

important to point out that MICU1 knockdown does not result in

decreased MCU expression in cultured HeLa cells (Fig. S2d),

which may reflect cell-type differential regulation.

Discussion

Mitochondrial calcium transport is a highly conserved phe-

nomenon that is linked to a diverse set of cellular processes,

including cellular metabolism [2,5] and programmed cell death

[4,26]. Given the lack of cell-permeant uniporter inhibitors and

the previously unknown molecular identity of the uniporter, the

functional studies to date have been largely correlative. The

discovery of MICU1 and MCU [12,13] opens the door to an

endless set of targeted genetic and biochemical studies that will

enable a detailed molecular understanding of mitochondrial

calcium uptake and the mechanisms that govern its regulation.

MICU1 is a part of a duplicated gene family found in all major

branches of life, including metazoans, plants, protozoa and fungi,

with lineage specific losses [29]. In the current paper, we show that

MICU1, MICU2 and MICU3 are conserved in vertebrates and

that they exhibit distinct patterns of expression (Fig. 1b), suggesting

complementary roles in controlling uniporter physiology. Based on

MitoCarta, MICU2 is a high confidence mitochondrial-localized

protein whereas MICU3 is likely mitochondrial but with lower

confidence [18]. We prioritized MICU2 for functional studies, but

MICU3 likely has a role in mitochondrial calcium handling in a

subset of tissues, notably in the CNS and skeletal muscle, though

this remains to be formally proven. Although we showed in

previous work that loss of MICU1 in HeLa cells results in impaired

mitochondrial calcium handling [12], it was unclear if this

property extended to other cell types. Our current study extends

Figure 4. Silencing MICU1 and MICU2 results in impaired
calcium handling and alters MCU complex size in mouse liver.
A. Calcium uptake in energized liver mitochondria following the
addition of 50 mM CaCl2. Inset reports linear fits of uptake between 5
and 10 s normalized to siLUC uptake. B. Calcium uptake in energized
liver mitochondria following the addition of multiple spikes of 50 mM
CaCl2. C. Mouse liver mitochondria isolated from animals treated with
siLUC, siMICU1, siMICU2 or siMICU1+2 were blotted with anti-MICU1,
anti-MCU and control anti-ATP5A. D. BN-PAGE analysis of mouse liver
mitochondria isolated from animals treated with siLUC, siMICU1,
siMICU2 or siMICU1+2. Protein was transferred to a membrane and
blotted with anti-MCU and control anti-ATP5A.
doi:10.1371/journal.pone.0055785.g004
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this finding to mouse liver, establishing the central role of MICU1

in calcium handling in mammalian mitochondria.

Our biochemical and genetic studies strongly support the notion

that MCU, MICU1 and MICU2 reside within a complex. This

idea is supported by co-IP experiments as well as by the novel

observation of cross-stabilization of these proteins. This was most

evident in HEK293T cells in which we performed the majority of

our biochemical experiments. Silencing MICU1 resulted in loss of

MICU2 protein (Fig. 2c), and forced expression of either MICU1

or MCU led to apparent stabilization of MICU1 and MICU2

protein (Fig. 2b, c). Similar effects are observed in HeLa cells,

where MICU1 protein levels were also sensitive to MICU2

knockdown (Fig. S2a). In mouse liver, we observed that silencing

MICU1 or MICU2 led to a shift in the large molecular weight

MCU complex (Fig. 4d) previously described [13]. Together, these

studies reveal that MICU2 is a genuine member of the uniporter

complex.

At present, the precise molecular function of MICU1, MICU2

and MICU3 remain unclear. In this study, we performed in vivo

silencing of MICU1 and MICU2, which resulted in reduced

mitochondrial calcium clearance in response to large 50 mM

calcium pulses. Given the reconstitution data suggesting that

MCU is the pore-forming subunit of the uniporter, possible roles

for MICU2 could include: (i) Ca2+ sensing and regulation of

MCU, (ii) calcium buffering with a secondary impact on transport

or (iii) assembly and stabilization of MCU. A recent study provides

compelling evidence that MICU1 sets the threshold for mito-

chondrial calcium uptake without affecting the kinetics properties

of the pore [16]. How MICU2 contributes to this mechanism

remains an important outstanding question.

Although our results show that MICU1 and MICU2 play

complementary roles at a physiological level, it remains unclear

whether they have distinct or redundant molecular functions. The

evolutionary conservation of MICU1, MICU2 and MICU3 in

vertebrates, their distinct patterns of expression across organs and

the presence of MICU1 and MICU2 in two different cell types

indicate complementary roles in cellular physiology. However, it is

unclear if they are redundant on a molecular level. We attempted

to complement a strong MICU1 phenotype in HeLa cells that we

previously reported by expressing MICU2 on a MICU1 knock-

down background. Although MICU2 was able to rescue this

phenotype, we found that MICU2 also stabilized the protein

expression of the small amount of MICU1 (Fig. S2d), confounding

the interpretation. Resolving this question will require the use of a

null genetic background in which the activity of one paralog can

be rigorously assessed in the absence of the other paralog.

Our biochemical findings have important implications for the

interpretation of functional studies of the uniporter that employ

genetic silencing or overexpression. The current study demon-

strates that when uniporter protein components are genetically

silenced, this perturbation may impact the protein stability of

companion proteins, and that cross-stabilization may represent a

cell-type specific phenomenon. For example, forced expression of

MCU has been reported to give a gain of function phenotype, yet

we observe that forced expression of MCU also leads to elevated

levels of MICU1 and MICU2 in HEK293T cells (Fig. 2c).

Silencing of MICU1 and MICU2, either alone or in combination,

in mouse liver appears to have an impact on the abundance of

MCU protein levels (Fig. 4c), which likely contributed to decreased

mitochondrial calcium clearance in these assays (Fig. 4a, b). Cross-

stabilization is not unusual in large, protein complexes, including

those of the respiratory chain, where the expression of subunits is

nucleated and stabilized by other partners. Future studies of the

uniporter need to be cognizant of the ability of MCU, MICU1,

and MICU2 to impact each other’s protein expression, as genetic

silencing studies may misattribute a molecular function to the

target protein when indeed the impact may be indirect. In

addition, it will be important to consider other mechanisms,

including those involving MCUR1 [30], LETM1 [31] and NCLX

[32] that may additionally influence mitochondrial calcium

physiology.

It is tempting to speculate that the relative expression of

MICU1, MICU2 and MICU3 differ in a cell and state-specific

manner to regulate mitochondrial calcium handling. Under this

model, multiple paralogs could be constitutively expressed in a

single cell type, but variation in their relative abundance could give

rise to functional differences in mitochondrial calcium handling, as

has been previously documented across tissues [10,17]. If this

model proves to be correct, it may open up the possibility of

therapeutically targeting the uniporter in a tissue specific manner.

Supporting Information

Figure S1 Antibodies for MICU1 and MICU2 do not

cross-react. Whole cell lysates from HEK293T cells stably

expressing a control shRNA (shLZ) or shRNA targeting MICU1

(shMICU1a) or MICU2 (shMICU2a) were blotted with anti-

MICU1, anti-MICU2 and control anti-ATP5A.

(TIF)

Figure S2 Analysis of MICU1, MICU2 and MCU in HeLa

cells. A. Whole cell lysates from HeLa cells stably expressing a

control shRNA (shGFP and shLACZ) or a shRNA targeting

MICU1 (shMICU1a and shMICU1b) or MICU2 (shMICU2a and

shMICU2b) were blotted with anti-MICU1, anti-MICU2 and

control anti-ATP5A. B. BN-PAGE analysis of mitochondria

isolated from HeLa cells stably expressing shGFP or shMICU1a.

Protein was transferred to a membrane and blotted with anti-

MCU and control anti-ATP5A. C. Luminescence measurements

of mitochondrial matrix calcium following histamine stimulation

in HeLa cells stably expressing aequorin targeted to the

mitochondrial matrix (mean 6 s.e.m., n=4). Inset reports statistics

on the maximal luminescence (mean 6 s.d., n = 8, *P,0.001). D.

Western blot analysis of cells stably expressing shGFP and GFP,

shMICU1a and GFP, shMICU1a and MICU1-V5 or shMICU1a
and MICU2-V5.

(TIF)
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