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Abstract 

This paper studies a model of a sequential auction where bidders 
are allowed to acquire further information about their valuations of 
the object in the middle of the auction. It is shown that, in any 
equilibrium where the distribution of the final price is atornless, a bid
der's best response has a simple characterization. In particular, the 
optimal information acquisition point is the same, regardless of the 
other bidders' actions. This makes it natural to focus on symmetric, 
undominated equilibria, as in the Vickrey auction. An existence theo
rem for such a class of equilibria is presented. The paper also presents 
some results and numerical simulations that compare this sequential 
auction with the one-shot auction. 8equential auctions typically yield 
more expected revenue for the seller than their one-shot counterparts. 
80 the possibility of mid-auction information acquisition can provide 
an explanation for why sequential procedures are more often adopted. 

1 Introduction 

This paper studies a continuously ascending price independent private values 
auction, with the added richness that bidders are allowed to acquire further 
information about the value of the good in the middle of the auction. The 
information structure allows bidders to have different initial signals of their 
valuation and different privately known costs of acquiring information. The 

*Department of Economics, Stanford University. Still preliminary. I thank Prof. Paul 
Milgrom for suggesting me this research topic. I acknowledge the support of a Melvin and 
Joan Lane Stanford Graduate Fellowship. All errors are mine. 
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framework can also accommodate for the possibility of some bidders already 
knowing their valuation at the outset of the auction or, conversely, not being 
able to acquire information with some probability. 

It turns out that in some aspects the optimal strategy of a bidder in such 
an auction is quite simple. For example, the price at which information is 
acquired does not depend on the expected behavior of the other players. This 
greatly simplifies the characterization, numerical computation, and proving 
the existence of the equilibrium. 

Why is it interesting to study models with mid-auction information acqui
sition? A direct reason is its potential application in complex environments, 
where a bidder participates in many different auctions, such as in simultane
ous ascending auctions or online auctions. In complex environments, gather
ing information and computing valuations for alI goods and combinations of 
goods can be an overwhelming task. It is not unreasonable to imagine that 
bidders approach the problem with just crude estimates of the valuations, 
and as the auctions proceed, they elect to concentrate their computational 
resources in evaluating the most promising alternatives. This paper is a first 
step towards modeling this behavior. 

The current one good mo deI also offers an explanation on why sequential 
auctions seem to be so much more popular than their one-shot counterparts. 
Several explanations have been forwarded for this puzzle. Milgrom and We
ber (1982) have shown that under affiliation a sequential English auction 
generates more revenue than one-shot, sealed-bid rules. An English auction 
may also in practice be superior to a Vickrey auction because it is more 
immune to manipulation by the auctioneer. 

However, affiliated models are hard to generalize to more complex set
tings, such as auctions of multiple goods. In such complex situations one 
issue that becomes important to the bidders is the cost of collecting informa
tion and processing it into bidding strategies. This suggests an alternative 
explanation for why sequential auctions might be useful: they allow bidders 
to revise their decisions in information acquisition in the middle of the auc
tions, and this option might be valuable not only to bidders but to the seller 
as well. 

Engelbrecht-Wiggans (1988) has attempted to formally model this insight 
working with two-stage auctions. However, a two-stage auction is a formally 
difficult object and the existing results have been limited to very restrictive 
functional assumptions. The current model presents a more flexible and 
tractable way to capture this economic intuition. 
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This model may also be helpful in econometric applications. Data in the 
"serious" tail of the bid distribution usually reflect much more accurately 
the valuations of the bidders than the rest of the distribution. Since the 
equilibrium of this mo deI also has this feature, the model may potentially be 
helpful in structural estimation of auctions. 

Given the fundamental role that asymmetric information takes in Con
tract Theory and Mechanism Design, there has been surprisingly little work 
that treats the information acquisition process as endogenous. Some authors 
have studied information acquisition in the context of Baron-Myerson-style 
agency mo deIs (Crémer and Khali11992, Lewis and Sappington 1997, Crémer, 
Khalil, and Rochet 1998b, Crémer, Khalil, and Rochet 1998a). 

Several authors have studied information acquisition in the context of 
auctions. In most cases, the analysis is restricted to ex-ante information 
acquisition, and to particular functional forms of the valuation and signal 
distributions. 1 

Matthews (1984) and Persico (2000) study mo deIs where bidders can 
purchase information out of a continuum of alternative degrees of informa
tiveness. To do so, they resolve in different ways the non-trivial problem of 
ranking distributions in terms of informativeness.2 Due to the simple struc
ture of the information acquisition problem that is imposed in this paper, 
this ranking is immediate here. 

All papers cited in the last two paragraphs study situations where bidders 
are allowed to acquire information before the auction begins. Besides the 
already mentioned work Engelbrecht-Wiggans (1988), Iam not aware of any 
literature on information acquisition in sequential auction procedures. 

The paper is structured as follows: Next section presents the setup that 
is used throughout the paper. The problem of characterizing the best re
sponse of a given bidder is then investigated. Section 4 contains a proof that 
an equilibrium of this game exists. Section 5 compares this equilibrium to 
what would arise in a one-shot game. In section 6 results of some numerical 

lExamples are Milgrom (1981b), Schweizer and von Ungern-Sternberg (1983), Lee 
(1985), Hausch and Li (1993). Guzman and Kolstad (1997) study a setting similar to 
the one assumed here for one-shot procedures; however, these authors elect to characterize 
a rational expectations equilibrium in the spirit of Grossman and Stiglitz (1980), rather 
than use game-theoretical concepts. 

2To do so, Persico (2000) uses the statistical notion of efficacy, due to Lehmann (1988). 
Using efficacy, Athey and Levin (1998) develop a theory that provides comparative static 
results in a variety of models. 
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simulations are presented. 3 

2 The Setup 

I seek to investigate an auction mo deI that is conventional in all aspects, 
except for the mid-auction information acquisition decision. 

All bidders are symmetric and have independent private valuations for the 
good to be auctioned. I represent these valuations by i.i.d. random variables 
VI, ... ,Vn , where n is the commonly known number of bidders. I assume 
that the distribution function of Vi, Fv, is absolutely continuous with support 
[O, v]. 

The auction rules are also conventional: I mo deI a Japanese ascending 
auction, where the price p begins at a low leveI (that I assume for simplicity 
to be O) and increases continuously. Bidders should decide at which price to 
drop out. The auction ends when only one bidder is left, and he or she pays 
the price at which the last of the other bidders dropped out. If alI remaining 
bidders drop out at the same time, the winner is selected at random, with 
equal probability. 

At any point in the auction each bidder can have two possible leveIs of 
information about her own valuation. Each bidder initially has a signal Wi 

about her valuation Vi, but can learn it perfectly and instantaneously at any 
point in the auction at a cost Ci. Both Ci and Wi are known by player i in the 
beginning of the game, but are not observed by anyone eIse. It is common 
knowledge however that alI Wi are i.i.d. Fw, and likewise the Ci are Li.d. Fc. I 
represent the distribution of Vi conditional on Wi by Fv1w , and adopt a similar 
notation for other conditional distribution functions. Except for Wi and Vi, 
all other variables are assumed to be independent. 4 

It is convenient to impose some further assumptions on the distributions 
of Ci, Wi and Vi. I assume that they have bounded intervals as supportSj 
the support of Vi is [O, v] and the one for Ci is [O, e]. The support of Wi can 
be anywhere, but I assume that the supremum of the support of E[vilwil is 
strictly below v. I assume that eis high enough, so that there is always the 

3The paper also contains an appendix that sketches a non-existence result for some 
distributional assumptions. 

4Independence across different bidders is an important simplifying assumption. Inde
pendence between Ci and Wi or Vi is not important, and the analysis would not change 
much without it. 
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possibility that some bidder eIects not to acquire information. Also, I assume 
that the distribution of Cj has an atom at O. Besides anaIyticaI convenience, 
these assumptions allow me to accommodate in the same framework bidders 
that cannot acquire information and bidders that aIready have alI information 
at the outset of the auction. 

Apart from the atom at O, alI distributions are assumed to have densities, 
and those are bounded above and away from zero everywhere in the support. 

I assume that a higher Wi is good news about Vi, in the sense of Milgrom 
(1981a); that is, if W > w', then Fvlw first-order stochastically dominates 
Fv1w l.

5 

During the auction, the only information about the behavior of other 
players that a bidder observes is whether alI have dropped out or not, i.e., 
if the auction has ended or noto So I am ruling out both the possibility of 
observing early drop-out points or information acquisition points. 

I conjecture that the assumption on the unobservability of drop-out points 
does not qualitatively affect the analysis (even though it greatly simplifies 
part of it). Notice that due to the IPV assumption, knowledge of other 
player's drop-out pointjvaluation does not change i's estimate of her own Vi, 

so a linkage effect as in Milgrom and Weber (1982) is not expected to existo 
The second assumption is possibIy not innocuous; direct observation of 

the information acquisition point can in principIe generate additional strate
gic effects that have not been accounted for in the present model. 

3 The individual bidder's problem 

I begin by studying the individual bidder's problem, taking as given the 
behavior of the other bidders. For notational simplicity I drop the subscript 
i in this section and call Vi = V, etc. 

It is convenient to summarize the other bidders' behavior in a reduced 
form fashion. Let the random variable y represent the price at which the last 
of the other bidders drops out. 

Since y is a function of (Ci, W-i, V-i), it is initially independent of the 
bidder's private information on Cj and Wi (and Vi, if she elects to acquire 
information right from start). I will denote this distributions of y by Fy. 
Under the unobservability assumptions made in the end of last section, no 

51 also assume that the slope of E[vlw] is bounded away from zero. 
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information about y is obtained during the auction, except that y is greater 
than the current price. This alIows me to express the update of i's informa
tion about y in a simple way. If bidder i were alIowed to observe the other 
bidders' drop-out points, then the update formula would be more complexo 

The information acquisition process that has been imposed alIows me to 
separate the possible strategies of the bidder in two groups: either she de
cides never to acquire information and drop out at a price fi, or she decides to 
wait until a price fi and acquire information at this point. fi = O represents 
immediate information acquisition, and fi = 00 represents never acquiring 
information (or dropping out of the auction), so alI pure strategies are rep
resented by this parameterization. I consider in turn the optimal strategy 
within each grOUp, and later compare the two to find the overall optimal 
strategy. 

yes 
I Choice of fi I-I Choice of drop-out point I 

no 
Choice of fi 

Figure 1: Schematic representation of a bidder's strategy. 

As will be seen in the equilibrium analysis in the next section, ones needs 
to consider only the optimal response to the cases where Fy is absolutely 
continuous. The appendix deals with the case where Fy contains jumps. 

3.1 If the bidder decides to acquire information 

The task in this section is to find the function fi( w, c, Fy ), defined as the 
optimal information acquisition point for a bidder that observes a signal w 
of her valuation, faces a cost c to acquire information, and expects that the 
other bidders behave in such a way that the highest price at which any oí 
them stays in the auction is distributed according to y. 

Define the function U(p, q) as the expected utility for a bidder that decides 
to acquire information when the price reaches q, conditional on the price oí 
the auction having reached p, that is, the expected (over v and y) profits 
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conditional on w, c and Y 2: p. In a subgame perfect equilibrium fi should be 
chosen as the q that maximizes this function at any given p. 

After acquiring the information v, the bidder's dropping decision is sim
pIe. It is dominant for her to drop out of the auction when p 2: v and stay 
otherwise. Throughout the paper I shall assume that this dominant strategy 
is always followed in this subgame. 

Given that U for the region where p > q can be evaluated. In this region 
the bidder would have dropped and incurred profit O if v ~ p, and otherwise 
would expect to earn E[v - ylv > y > p].6 80 defining 

u(p,v) E[v - ylv, v > y > p] Pr[v > ylv, y > p] 

{ 
JpU(v-y)dFyly~p(Y) ifv>p, 
O if v ~ p, 

then U(p, q) = E[u(p, v)lw]- c, for all p > q. It is convenient to rewrite this 
double integral as 

for alI p > q, since from this expression it is easy to verify that U is difIeren
tiable with respect to p in this region, and its derivative obeys 

a A [A 100 

] apU(p,q)=fYIY~p(p) U(p,q)+c- p (v-p)dFu1w(v) . 

In the region where p < q, the bidder is staying in the auction without 
knowing her v. Let f:l.p be an interval of time sufficiently small, so that still 
p+ f:l.p < q. 8taying in the auction through this period, the bidders is subject 
to one out of two outcomes: she may win the auction alone, if y E (p, p+ f:l.p], 
or the auction may continue, in which case she obtains an expected profit of 
U(p + f:l.p, q). 80 we can write 

1
p+~p 

U(p, q) = p (E[vlw]- y) dFYly~ + (1 - Fyly~p(P + f:l.p)) U(p + f:l.p, q), 

6It is also possible that there is a tie, if y = v, and the bidder must share the prize 
with others. In this case, however, the prize is worth O for her, and we do not need to 
incorporate a term for that. 
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for all p < p + b..p < q. Notice that independence was required to write the 
expec!ation over v inside the integration signo Taking b..p -+ O, we conclude 
that U is continuous with respect to p; rearranging and taking limits again 
we obtain that U is differentiable with respect to p in this region as well, and 
the derivative now obeys 

8 - [- ] 8p U(p, q) = fYIY?p(p) U(p, q) - E[v - plw] . 

At p = q the function U is not necessarily differentiable, since its left
and right-hand derivatives exist but are generally different. It turns out that 
by an application of the Envelope Theorem, the optimal fi is the point where 
U is differentiable with respect to p: 

Proposition 1 Suppose eis not too large,1 i.e., c < v-E[vlw]. The optimal 
fi(w, c, Fy ) is the point where the derivative of U with respect to p evaluated 
at (fi, fi) exists, i. e., at the point fi uniquely determined by 

Proof: We first notice that U is continuous with respect to q; it is constant 
with respect to q in the region where p > q and depends on q only through the 
boundary condition at p = q in the region where p < q. Also, any q > v Ieads 
to negative profits, that may be easily avoided by choosing q = o. 80 the 
selection of the optimal information acquisition point may be circumscribed 
to the compact interval [O, v] and by Weierstrass Theorem an optimum must 
existo 

We proceed by showing that at any interior point if the left- and right
derivatives of U do not coincide, then this point cannot be an optimum. 
8uppose that at q the right-derivative is smaller than the left-derivative. 
Then there exists some E > O such that at p < q - E, U(p, q - E) > U(p, q). 
80 it is suboptimal to wait until q. 

Conversely, suppose now that the right-derivative is larger than the left
derivative. Consider an E > O small enough so that, at alI points between 
q and q + E, this relation still holds. Then U(p, q + E) > U(p, q), for ali p 
between q and q + E, and it would be suboptimal to acquire information at q. 

7 As will be seen in the next section, if c is very large the bidder will elect not to acquire 
information in the first place, and the determination of p is irrelevant. 
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Finally, notice that, at O, c> Joo(O - v) dFvlw, so the argument of the last 
paragraph holds. Likewise, at fi the right-derivative is smaller, so this cannot 
be an optimum either. 80 the optimum must be interior. 

U niqueness of fi comes from the fact that J: (p - v) dFv1w is a strictly 
increasing function of p inside the support of Fv1w , since its derivative is 
0+ J: dFv1w = Fv1w(p) > O. O 

The optimality condition has a sensible economic interpretation: the cost 
of acquiring information, c, must be balanced against the benefit of doing so, 
namely, avoiding the potential loss from buying the good at a price higher 
than the bidder's valuation. 

One remarkable feature about the condition that determines fi is that it 
depends solely on the distribution of vlw; it does not depend on the specified 
distributions for cor w, or on the behavior of the other players. 

An immediate corollary is the following: 

Corollary 1 lf c> O, then it is never optimal to acquire information at the 
start of the auction. 

80 positive information acquisition costs always have an impact on bidder 
behavior, if this bidder plans to acquire information. 

Let's investigate the properties of fi as a function of c and w. This is the 
function obtained once one solves c = J: (p - v) dFv1w for p. fi is an increasing 
function of c (since its derivative with respect to c, by the implicit function 
theorem, is 1/ FVlw(fi(c, w)) 2: O). 

As for w, notice that from the assumption that a higher w is good news 
about v, for a fixed p the term J:(v - p)dFvlw = Jmin{v - p,0}dFv1w is 
increasing in w, since the integrand is a weakly increasing function. 80 with 
a higher w one needs a higher fi to reduce that termo 

We conclude that fi is an increasing function of both c and w, and does 
not depend on the behavior of the other players. 

3.2 If the bidder decides not to acquire information 

This case can be handled in an analogous fashion, defining U(p, r) as the 
expected utility at p of a bidder that will drop out at r. Let fi be the optimal 
droJrout point, given that the bidder does not acquire information. 

U(p, r) = O at the region where p > r, since then the bidder would 
have dropped the auction. Before that, U should obey the same differential 
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equation that U obeys before the information is acquired, since the bidder's 
situation is the same in both instances: 

& • [ • ] &p U(p, r) = !YIY?P(P) U(p, r) - E[v - plw] . 

Also, as before, the chosen p will be such that the Ú is differentiable 
at (P,P). 80 we have O = ~U(P,P) = !YIY?p(P) [O - E[v - Plw]]' or simply 
P = E[vlw]. This is expected: this is simply the dominant strategy for a 
player that could not acquire information in the first place, staying in the 
auction until her expected valuation is reached. 

3.3 The overall optimal response 

In order to obtain the optimal response, one compares the payoff of the bidder 
under each of the two alternatives discussed above. 8ince before both p and p 
the functions U and Ú follow the same differential equation, this comparison 
can be made at any point p ~ min{p,p}. 

A convenient comparison point is p = O, since at this point it is easy 
to directly obtain expressions for Ú and U: they are simply the (uncondi
tional) expected payoffs for a bidder at the outset of the auction under each 
alternative. 

A bidder that elects not to acquire information and drops at P = E[vlw] 
wins if y < P, and gets v - y, and looses (and gains O) otherwise. 80 she has 
an expected payoff of 

while a bidder that plans to acquire information at p wins the auction if 
y < por if p < y < v, and incurs cost c if y > p. Her payoff is then 

U(O,p) = 115 1OO

(v - y)dFvlwdFy 

+ loo 100 

(v - y) dFvlw dFy - c(l - Fy(p)). 

The information acquisition decision will depend on comparing these two 
quantities for each (c, w)-type. 
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3.3.1 Information acquisition as an option trade 

It is convenient to rewrite the information acquisition decision in the following 
fashion: 

U(O,p) - U(O,P) i OO 

(p - y)dFy + i oo [l Y 

(y - v) dFv1w - c] dFy 

-J max{y - p, O}dFy 

+ J max {l Y

(Y - v) dFv1w - c, O} dFy 

J r(t, c, w)dFy(t), 

where r(t, c, w) = max{J; Fv1w(s)ds - c, O} - max{t - p, O}. 
So the decision of acquiring information looks like the decision of trading 

options on the underlying asset y; J rdFy is the expected profit from selling a 
call option on y at strike price p and buying a call option on J~ Fv1w(s)ds - c 
at strike price p. Figure 2 shows the shape of this r function. It is an 
asymmetric spread, that pays if y is dose to p, has negative value if y is 
too high, and O if y is too low. This suggests that information acquisition 
depends negatively on the variance of y with respect to vlw. 

3.3.2 Comparative statics on the information acquisition decision 

In the (c, w)-space, there will be a region A where condition U(O, p) > U(O,P) 
is satisfied. In order to investigate the properties of the region A, we need 
comparative statics results about the effect of c and w on U and U, and, to 
do so, again we invoke the Envelope Theorem. 

Observe that U(O, p) is the value function of a problem with c and w as 
parameters, and where pis chosen to maximize U(O, q), with respect to q. The 
Envelope Theorem8 then yields that lcU(O,p(c, w)) = -(1- Fy(fi(c, w)) < O, 
and of course lcU(O,p) = O. We condude that A shrinks as c increases.9 

8Notice that the conditions for the Envelope Theorem are satisfied: Uo is differentiable 
with respect to c and this derivative is continuous; and the solution <jJ(c, w) is unique 
(Milgrom 1999, Corollary 2). 

9Formally, if c < Cf, (c', w) E A ~ (c, w) E A. 
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Figure 2: Graph of the r function (solid line) and the ro function (dotted 
line), for the case where vlw f"V U[0.25, 0.75] and c = 0.01. 
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To assess the effect of w we again invoke the Envelope Theorem to dis
regard the effect through fi or fi, and use the assumption that higher w's are 
good news. 

Both v -y and max{ v-v, O} are increasing functions of v; so the integrals 
with respect to vlw that appear in both expressions increase with w. We 
conclude that 0(0, fi) and U(O, fi) both increase with w. 

In the case where fi < fi, the sign of effect will depend on the comparison 
of the effect of w on two integrals of v - y: J]5oo Jy

oo (v - y)dFv1wdFy versus 

t Jooo(v - y)dFvlwdFy. The impact of a larger w on both terms is positive. 
If the effect on the latter expression is larger than on the former, A shrinks 
with w, and vice-versa. 

One does not need to investigate the other case, where fi > fi, because of 
the following result: 

Proposition 2 For any type that strictly prefers to acquire information, fi < 
fi· 

Proof: The strategy of the proof is to establish that if fi ~ fi, then U(O, fi) -
U(O,fi) ~ O. We start by noticing that, using equation 1, U(O, fi) - U(O,p) = 
J: Jo

oo 
(v - y) dFv1w dFy + J]5oo Jy

oo 
(v - y) dFv1w dFy + J]5oo Jt (v - fi) dFvlw dFy. 

If fi > fi = E[vlw]' the first term is non-positive. 80 it remains to show 
that the third negative term dominates the second. For any y > fi, of course 
J;(Y - fi) dFv1w ~ ° and J;(v - fi) dFv1w ~ o. 80 Jyoo(v - y) dFv1w + fo(v-

fi) dFvlw ~ Jy
oo 

(v - fi) dFvlw + Jt (v - fi) dFv1w ~ Jo
oo 

( v - fi) dFv1w = fi - fi ~ o. 
80 the second and third terms are the integral of a non-positive integrando 
O 

We collect the conclusions about a bidder's best response in the following 

Proposition 3 Suppose that the other bidders act in such a way that the 
highest drop-out point among them is an absolutely continuous random vari
able with distribution Fy. Then the best response to it by a bidder with type 
(c, w) is as follows: lf J r(t, c, w)dFy > O, stay in the auction until the price 
reaches fi; then acquire information, drop out if v ~ fi and othenuise drop 
out when the price reaches v. lf J r(t, c, w)dFy < 0, do not acquire infor
mation and drop out at fi. Here fi = E[vlw]' fi the unique solution to c = 
Jt(fi-v)dFv1w, and r(t, c, w) = max{J; Fv1w(s)ds-c, O}-max{t-E[vlw]' O}. 
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yes 

no Ip = E[vlw] I 
Figure 3: 8chematic representation of an optimal strategy. 

4 Equilibrium 

From Proposition 3, we know that the distribution of the drop-out point of 
a bidder that folIows the strategy described there is a mixture of max{p, v} 
and p. 80 the distribution of Yi and, Iikewise, y, inherits the smoothness 
properties imposed on the distributions of c, v and w. 

To obtain an existence resuIt, it remains to verify that there exists a 
distribution Fy such that a best response to it generates itseIf. This is done 
in the next subsection. 

4.1 Existence 

Let F be the set of alI absolutely continuous distributions over [O, ti] and A 
the colIection of alI measurabIe subsets of types (c, w). 

Define two appIications between these spaces. T: A -+ F gives the 
distribution of Yi that would arise if a bidder was acquiring information if 
her type was in A; i.e., 

T(A)(x) Pr[A] Pr[max{p, v} ~ xlA] + (1 - Pr[A]) Pr[p ~ xIAC
] 

- r Pr[max{p, v} ~ xlc, w]dFc,w + r Pr[p ~ xlc, w]dFc,w lA lAc 
Notice that T(A) E F, since it is a mixture of absolutely continuous distri
butions. Let F be the closure of F under the sup norm. lO 

Define R : F -+ A as folIows: 

R(F) = { (c, w) I J r(t, c, w)dFn-l(t) ~ O } , 
----------------~~--

10 F \ F contains continuous distribution functions with a singular parto 
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where r(t, c, w) = max{J~ Fvlw(s)ds - c, O} - max{t - E[vlw]' O}. For an 
absolutely continuous distribution, this application selects the best response 
A to it. Notice that, since any distribution function is of finite variation 
and r is continuous with respect to y, the integral J rdFn-l is well de
fined (Natanson 1961, Ch. 8, §6, Thm. 1), and for a sequence Fk -+ F, 
1imk-+oo J rdFr- 1 = J rdFn- 1

, by Helly's Second Theorem (Natanson 1961, 
Ch. 8, §7, Thm. 3). 

Using this notation, the last object that we need to find to obtain a 
symmetric equilibrium is a distribution F* E :F such that the information 
acquisition decisions consistent with it generate it; that is, we need to find a 
fixed point 

F* = T(R(F*)). 

I will prove existence of an equilibrium applying the Schauder Fixed Point 
Theorem. To do so, I begin with some definitions from Topology. 

A set is relatively compact if it is a subset of a compact set. A continuous 
application is a compact map if its image is relatively compacto I recall the 
following important result: 

Theorem 1 (Ascoli-Arzelà) Let X be a compact metric space. lf S C 
C(X) is equicontinuous and bounded, then S is relatively compact. 

It is convenient at this point to impose bounds in the densities of w, C 

and v: 

Assumption 1 (Density Bounds) Assume the distributions of w and v 
are absolutely continuous; the distribution of c is absolutely continuous, ex
cept possibly for an atom 7r at O; and there are positive constants Mc, Mw, 
Mv, and m such that fw ~ Mw, fv ~ Mv, a: (E[vlw]) 2: 11m, and fc(t) ~ 
Mc,Vt > O. 

From the Ascoli-Arzelà Theorem, we obtain that 

Proposition 4 T(A) is relatively compacto 

Proof: Take X = [O, v] and S = T(A) in the Ascoli-Arzelà Theorem state
ment. Since all distributions are bounded in the sup norm, it only remains 
to verify equicontinuity. 
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Take E> O. Let 5 < E/[(n-1)(Me+Mv+Mw/m)]. Let F be a distribution 
in T(A). 

So, for any x E [O, ti], one can write O :::; F(x + 5) - F(x) = Pr[Yl E 

[x, x + 5]] :::; Pr[v E [x, x + 5]] + Pr[p E [x, x + 5]] + Pr[p E [x, x + 5]]. 
We next observe that, using the Jacobian rule and the definition of p, 

we have that fp(s) = J FVlw(s)fe Uos 
Fv1w(t)dt) fw(w)dw. Since fe :::; Me and 

Fv1w :::; 1, we obtain fp :::; Me. Also, fp = (~(E[vlw])rl fw :::; Mw/m. It 
then follows that, for sufliciently small 5, 

As for the case where x = O, notice that v ~ p(O, w) = O. So the atom 
in the p distribution is irrelevant, since we can write O :::; F(5) - F(O) :::; 
Pr[v E [x, x + 5]] + Pr[p E [x, x + 5]] < (Mv + Mw/m)5 < E. So T(A) is 
equicontinuous. O 

We now need to investigate continuity of the T o R operator. 

Proposition 5 lf F E :F is such that Pr{J rdFn-l} is zero, then T o R is 
continuous at F. 

Proof: 
Take Ft -t F uniformly. Then, by Helly's Second Theorem, J rdF';'-l -t 

J rdFn-l. We can write 

To R(F)(x) = 

J n{p~x} + n{frdFn-l~O}(Pr[max{p, v} :::; xlc, w] - n{p~x})dF{c,w}! 

where nO denotes the indicator function. Applying Cauchy-Schwarz and the 
fact that indicator functions are bounded by 1, we obtain that 
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(T o R(Fk)(X) - To R(F)(x))2 = 

(J (lI{frdF;-l~O} -1I{frdFn-l~o})(Pr[max{p, v} ~ xlc, W]-IIÜ'~X})dF(c,W)) 2 

~ J (lI{frdF;-l~O} -1I{frdFn-l~o})2dF(c,w) 

X J (Pr[max{p, V} ~ xlc, W] -IIÜ,~x})2dF(c,w) 

~ J (lI{frdF;-l~O} -1I{frdFn-l~o})2. 

For any point outside {(c, w) I J rdFn-l = O}, lI{frdF;-l~O} converges 
pointwise to lI{frdF;-l~O}' So the limit of the integral of the last expression is 
of a function that is zero almost everywhere. AIso, since the last expression 
does not depend on x, convergence is uniform and continuity is established. 
O 

So existence would be guaranteed, if one could only restrict the analysis 
to distributions where Pr[{ c, w I J rdFn-l}] = O. Unfortunately, this is not 
necessarily true for distributions that concentrate mass in low values: Since 
r = O for sufficiently low values of y (see Figure 2), against these distributions 
a positive mass of types will be indifferent about acquiring or not information 
and proposition 5 cannot be applied. 

It is not hard to impose assumptions that avoid this technical problem. 
For example, suppose that with some positive probability 7l' bidders start the 
game already knowing v. This is the same as assuming that there is an atom 
7l' in the distribution of c at O, since bidders that start knowing v behave in 
exactly the same way as bidders with zero cost. 

This assumption is sufficient for existence; to see that, define, for 7l' > O 
F7r = {(1-7l')F+7l'Fv I F E F}, where Fv is the (unconditional) distribution 
of V. The next propositions show that we can restrict our attention to this 
set. 

Proposition 6 Suppose Pr[c = O] = 7l' > O. Then To R(F) C F7r' 

Proof: Notice that r(y, O, w) 2': O. So, since we are resolving any indifference 
in favor of acquiring information, for any A C R(F), {c = O} C A (meaning 

17 



that all types with c = o are in A). AIso, p(O, w) = O. So for such A, 
separating the types where c = O, we obtain 

T(A)(x) = r IT{p$x}dFe,w + r Pr[max{p, v} :::; xlc, w]dFe,w 
J ACn{e>O} J An{e>O} 

+ r Pr[maxp, v :::; xlc, w]dFe,w 
J{e=o} 

(1 - 7r) [r IT{p$x}dFe1e>o,w + r Pr[max{p, v} :::; xlc, W]dFe1e>o,w] 
J Nn{e>O} J An{e>O} 

+ 7r r Pr[v :::; xlw]dFe,w 
J{e=o} 

(1 - 7r)F(x) + 7r J FVlw(x)dFw 

= (1 - 7r)F(x) + 7rFv(x), 

by the law of iterated expectations. Here F is the distribution defined as the 
term between square brackets. o 

Proposition 7 For 7r > O, T o R is continuous in Frr. 

Proof: From proposition 5, it is enough to verify that the measure of 
{J rdFn-l = O} is zero. From the Envelope Theorem, te J rdFn-l = 1 -
Fn-l(p). But for alI distributions in Frr, and any x < v, F(x) < 1-7rFv(x) < 
1. So J rdFn-l is strictly increasing in c everywhere, and for each w, there 
is at most one c > O such that (c, w) E {J rdFn-l = O}. Furthermore, 
this c can never be zero, because if F is in Frr, there is a positive proba
bility of Yi occurring in any interval in the support [O, v]. So the integral 
J r(t, O, w)dFn-l is positive for these types. O 

Now the fixed point resuIt comes from appIying the following 

Theorem 2 (Schauder Fixed Point Theorem) Let C be a closed, con
vex subset of a normed linear space and let h : C -t C be a compact map. 
Then h has a fixed point. 

Then we can finally state that 

Proposition 8 lf Pr[c = O] = 7r > O, a symmetric equilibrium exists. 
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Proof: After proposition 3, it only remains to show that there exists a fixed 
point to the T o R map in F. 

The set F7r is convex and closed. By propositions 4 and 7, the restriction 
of T o R on F7r is a compact map, and by Proposition 6 its image is in F1r' 
80 8chauder's Theorem applies, and a fixed point F* exists in F7r' But F* 
is in the image of T o R, so it also belongs to F. O 

5 Comparison with the One-shot Auction 

One virtue of the present analysis of the sequential auction is that it easily 
accommodates the case of a one-shot, Vickrey auction. 

In a Vickrey auction, the bidders can act exactly as they would in the 
sequential auction, except that is not feasible anymore to acquire information 
in the middle of the auction. 80 a mo deI of this auction is the same as the 
one studied so far, with the added restriction that fi = O. 

8uppose this restriction is added to the individual bidder's best response 
problem. Define U and O as before. The optimal fi is still E[vlw]' but now 
the "maximization" of O forcefully leads to fi = O. The decision to acquire 
information will still depend on the comparison of two quantities, 0(0, O) 
versus U(O, fi). Again, we can write 0(0, O) - U(O, fi) = J ro(t, c, w)dFJI(t) , 
where ro(t, c, w) = J~ Fvlw(s)ds - c - max{O, y - p}. This payofI difIerence is 
also a combination of two options. Figure 2 shows how ro difIers from r. 

Notice that the derivative of that integral with respect to c is 1, no matter 
what Fy is expected to be. 

Define, as before, Ro : F -+ A as follows: 

Ro(F) = { (c, w) I J ro(t, c, w)dFn-1(t) ~ O } , 

and To : A -+ F as 

To(A)(x) = r Pr[v ::; xlc, w]dFc,w + r Pr[p::; xlc, w]dFc,w. lA lAc 
An equilibrium of the one-shot auction corresponds to a fixed point of 

TooRo. Notice that the properties ofT and R described in propositions 4 and 
5 still hold for To and Ro; but now the set {J rodPn-l = O} is of measure zero 
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for any distribution F E F, because f rodFn-l is always strictly increasing 
in c. lI 

We conclude that 

Proposition 9 An equilibrium ofthe one shot-auction exists (even if7r = O). 

How do the equilibria of the two auctions compare? I have found out that, 
through numerical simulations, the distribution of the bids in the sequential 
auction frequently dominates the one in the one-shot auction. Because of 
that, one typically finds a higher expected revenue for the seller in the se
quential procedure. 

In this section I formally show that, at least when n is large, the expected 
revenue in the sequential auction is indeed higher. The numerical computa
tions presented in the next section show that this ranking can also be true 
for n = 2, so the conclusion of this result can be valid under more general 
conditions. 

As with the case of existence, I obtain the revenue comparison result 
through a series of propositions. I begin with a convenient definition: 

Definition 1 A distribution F dominates C at the upper tail if there exists 
some x < v such that F(x) < C(x) for ali x E (x, v), where vis the supremum 
of the support of F. 

The usefulness of this definition comes from the following proposition: 

Proposition 10 lf F dominates C at the upper tail12 then, for sufficiently 
high n, the expected value of the rth-omer statistic of an i. i.d. sample of size 
n from F is higher than the same expectation for C. 

Proof: We first note that, after a change of variables, we can write this 
expectation as B(n+1-r, r)-l foI F- 1(u)un- r (1-uY- 1du, and likewise for C, 
and where B is the Beta function (Arnold and Balakrishnan 1989, expression 
2.1). 

Therefore the difIerence in expected second-order statistics is proportional 
to foI [F-l(U) - C- 1(u)][un- r (1- uY-l]du. Let's look at the shape of each of 
the factors in square brackets to assess the sign of this expression. 

llSee the proof of proposition 7 for the precise argument of why these ideas are related. 
12 ... and F has a compact support [O, ü]. 

118!.IOH:GA MAHIU Htmi:~Ut: S!MUNS~ 

5UIDACÃD GETUUO VABGU 

20 



From the upper-tail dominance, there is a point x such that F(x) < C(x), 
for all x E (x, v), and F(x) ~ C(x), for x E (O, x). Let ü = F(x); then there 
is some set (ü, 1) such that F-I - C-I> O there. 

Now let's look at the behavior of un - r (1_uy-l. Observe that, for n large 
enough, it is increasing in (O, ü), and ün - r (1_üy-1 ~ O as n ~ 00. So we ean 
bound the negative part ofthe integral, writing IoÜ[F-I( u) - C- I(u)]un - r(1-
uy-Idu ~ ün - r (1_ ÜY-I IoÜ[F-I(U) - C-I(u)]du ~ -vüün - r (1- üy-I ~ O. 
So for large enough n, the differenee beeomes positive. O 

This is an useful result for revenue eomparisons, beeause expected rev
enues in auction mo deis are expeetations over seeond-order statistics, and 
also to efficieney eomparisons, being those related to eomparisons of mo
ments of first-order statistics. 

How the distributions of drop-out points in the sequential and the one
shot auetion compare? 

Proposition 11 For any F E :F, Ro(F) C R(F). 

Proof: By inspeetion, r ~ ro. O 

Proposition 12 For any A E A, T(A) jirst-order stochastically dominates 
To(A). 

Proof: Sinee Pr[max{p, v} :S xlc, w] - Pr[v :S xlc, w] :S O, we obtain 
T(A)(x) - To(A)(x) = IA (Pr[max{p, v} ::; xlc, w] - Pr[v :S xlc, w]) dFc,w :S 
O. O 

Proposition 13 Suppose that the supremum of the supporl of E[vlw] (call 
it ÜJ) is strictly below v. Then for any F, T(R(F)) dominates To(Ro(F)) at 
the upper tail. 

Proof: T(R(F)) - To(Ro(F)) = T(R(F))(x) - To(R(F))(x) + To(R(F)) -
To(Ro(F)) :S To(R(F)) - To(Ro(F)), by proposition 12. 

Substituting formulas we ean write that To(R(F))(x) - To(Ro(F))(x) = 
IR\Ro (Pr[v :S xlc, w] - Pr[p :S xlc, w])dFc,w; for any x E (ÜJ, v), Pr[p ::; 
xlc, w] = 1, so this term is non-positive. 
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To see that the term is strietly negative, look at types with w close to iiJ 

and low (but not zero) c. In the move from the one-shot to the sequential 
auetion, a positive mass of those types switehed their information acquisition 
decision, sinee varies eontinuously with (at least) c. 80 R \ Ro has a positive 
mass for high w-types. This means that Pr[v ::; xlc, w] in a region with 
positive mass, and the inequality is indeed striet. D 

80 we eonclude that, holding the behavior of the opponents fixed, the 
effeet of the ehange in the rules is an upper-tail dominanee for drop-out 
points of an individual bidder. This in turn implies a ranking in expected 
revenue. AlI that remains is to obtain the result in equilibrium eomparisons, 
as well. This is done through the folIowing result from Milgrom and Roberts 
(1994): 

Theorem 3 Let 4>(x, t) = [4>dx, t), 4>H(X, t)] : [0,1] x T ~ [0,1], where T is 
any partially ordered set. Suppose that, for all t E T, 4> is continuous but for 
upward jumps13 in x and that, for all x E [O, 1], 4> L and 4> H are monotone 
nondecreasing in t. Then the set of fixed points of 4> is nondecreasing in t. 

An application of this result to the problem at hand yields: 

Proposition 14 For large enough n, the set expected revenues of all sym
metric equilibria of the sequential auction is higher than the set of expected 
revenues of the one-shot auction equilibria. 

Proof: Take an appropriate closed, eonvex restriction of the domain of T o R 
such that it is eontinuous, like :Frr , and eonsider its image (that belangs in it, 
by proposition 6). Aeeording to proposition 4, the closure of its image, K, is 
eompact, is eonneeted and lies inside :Frr • Any fixed points wilI be in K as 
welI, and we ean safely restrict attention to this set. 

CalI the seeond-order expectation funetional J.L : K ~ [O, 'Ü], J.L(F) = 
B(n - 1,2)-1 foI F-1(u)un - 2(1 - u)du. For every F in K, by the previous 
propositions we know there is a n*(F) so that, for n > n*(F), J.L(T(R(F))) > 
J.L(To(Ro(F))). Take an open balI around F so that this property still halds 
inside it. Doing that for every F, we obtain an open covering of K. But 
K is eompact; so there is a finite subeovering, and a maximal n*, such that 
n > n* makes J.L(T(R(F))) > J.L(To(Ro(F))) for any F E K. 

13Continuity but for upward jumps means that, for any x, limsuPxk)"x rPH(X/c, t) :5 
rPH(X, t) and liminfxk ,,"x rPdXk' t) ~ rPL(X, t). 
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Being K compact and connected, J1.(K) is a compact, connected set as 
well. It has to be a compact interval; call it [a, b]. Define the </J of Theorem 
3 to be </J : [a, b] x {O, I} -+ [a, b], with </J(m, O) = J1. o To o I4J o J1.-1, and 
</J(m, 1) = J1. o T o R o J1.-1. 

Let's first verify that </J(m, t) is a compact interval, as required by Theo
rem 3. Since {m} is closed and J1. is continuous, J1. -1 (m) is a closed set within 
a compact, and therefore is compacto It is also path-connected. 14 Its image 
through the continuous application J1. o T o R is also connected and compacto 
So </J(m, t) is a compact interval in [O, v], since these are the only connected 
sets on the line. 

To verify continuity but for upward jumps, start with a sequence mie /" 
m, and the corresponding sequence </JH(mk, t). Take a subsequence that 
converges to lim sup </JH(mk, t). To each element of it there is a function 
Fk in J1.-1(mk). This sequence of functions belong to a compact set, so it 
has a subsequence that converges to a function F. Being J1. continuous, 
J1.(F) = limJ1.(Fk) = m. So </JH(m, t) ~ limsup</JH(mk, t). The argument for 
the lim inf part is analogous. Applying Theorem 3 leads to the conclusion 
that there are two sets, 10 and 11, such that (i) the expectations of equilibria 
in the one-shot game are in 10 and those in the sequential auction are in 11, 
(ii) inf 10 ~ inf 11 and (iii) sup 10 ~ sup!t. 

This conclusion is not quite sufficient for our purposes because 10 and 11 
may potentially be very large. There are many fixed points of </J that are 
not equilibria: any distribution with the property that J1.(F) = J1.(T(R(F))) 
would "look like" a fixed point from the point of view of </J. 

To fix this important flaw, consider the family {</JkhE{0,1,2, ... } of corre
spondences defined as </Jk(m, t) = {min{b, J1.(Tt(Rt(F)) +k IIF-To (I4J (F)) 11 x 
IIF-T(R(F))II} I J1.(F) = m}. In this way </J0 = </J, and for k > O we add to </J 
k times the distance (in the sup norm) between F and each of the Tt(Rt(F))'s 
(If the result falls outside [a, b], we just truncate). 

Since all involved operations are continuous, alI the arguments done before 
for </J apply again for each </Jk, and we obtain sets lt and lf with properties 
(i), (ii) and (iii) as before. Consider lá = nk lt and li = nk lf. These sets 
also have the same properties, and furthermore cannot contain any point 
that does not correspond to a true equilibrium expected revenue. 

14This is because JJ is "linear" with respect to F-I; to see that, fix F and G in JJ-l(m) 
and for .À E [0,1], let H). be the function such that H-;1 = .ÀF-1 + (1 - .À)G-l. Then 
JJ(H).) = m. 
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To see that, fix m E It, m < b. For each k E {O, 1, 2, ... }, there is a F k 

with m = J.L(Fk) = J.L(Tt(Rt(Fk))) + kllFk 
- To(Ro(Fk))IIIIFk - T(R(Fk))1I . 

This is a sequence in a compact; it has a subsequence converging to a distribu
tion F and, by continuity, m = J.L(F) = J.L(Tt(Rt(F)))+IIF-To(Ro(F))IIIIF
T(R(F))lllimk. The corresponding set of indices is exploding; so this equa
tion can only be satisfied if IIF - To(Ro(F))11 = O or IIF - T(R(F))II = O. If 
IIF-Tt(Rt(F))1I = O, then F is indeed a fixed point. If IIF-Tr(J~r{F))1I = 0, 
for r =1= t only, then we have J.L(Tt{Rt{F))) = J.L(F) = J.L(Tr{Rt{F))), and this 
contradicts proposition 13. O 

6 Examples 

This section discusses the computation for some choices of distributions for 
c, w and v. The motivation for this exercise is twofold: first, it shows how 
an equilibrium can be computed.15 Second, it establishes some quantita
tive meaning to the comparative statics finding that the sequential auction 
revenue-dominates the one-shot procedure. 

As mentioned before, for alI examples simulated this revenue ranking 
holds for any number of bidders between 2 and 10. Numerical results also 
suggest that it might be true that in fact the distribution of drop-out points 
in the sequential auction in fact first-order stochastically dominates the one 
in the one-shot auction. 

I begin by discussing the computational method. 

6.1 Computational Method 

To compute the equilibrium, I iterate until a fixed point is found, but instead 
of working with the F space, I work on the A space; that is, I seek to find a 
set A* of (c, w)-types such that A* = R o T(A*). 

All expectations are calculated through a quasi-Monte Carlo method. 
More specifically, 3 Weyl sequences with K elements have been drawn. 16 

15In particular, equilibria exist and are easy to compute also in conditions not covered 
by the existence theorem. 

16The number of draws utilized so far has ranged from 3000 to 9000. This is admittedly 
quite small, and I plan to report in a later version results from a much larger sample. 
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Two of these sequences have been used to construct samples of (c, w)-types, 
and the corresponding p and p have been computed. 17 

Given a candidate set At, the algorithm computes the distribution of Yi 
(the individual bidder drop-out point) that would arise if only types in At 
acquired information. For each type, it is then computed what is the best 
information acquisition decision against the highest order-statistic of y, and 
this leads to a new At+1. The method then iterates until convergence.18 

An advantage of this rather crude procedure is that the representation of 
A is left free; I have tried before parameterizations for the border of A, 19 but 
polynomials or splines did not seem to fit this function well. 

A disadvantage is that of course the method need not necessarily converge. 
My experience so far is that the distance Pr(At \ At+1 U At+1 \ At) goes down 
quite fast in the first couple of iterations, so the initial guess does not seem 
to be much important. 80 "almost" convergence is easy to achieve in most 
cases. Literal convergence, that is, to drive the distance of At and At+l to 
literally zero, sometimes is somewhat harder. 80 some loops may exist, but 
the sets that loop seem to be dose to each other for the cases that have been 
studied so far. 

6.2 Numerical Results 

Here results for the case with w ~ U[O, 1] and c ~ U[O, 0.05] are considered. 
I analyze three alternatives for the distribution of vlw, for n between 2 and 
10. 

The three alternatives for the distribution of vlw were U[O, 2w], U[w, w+l] 
and U[w, 1]. The reason for these choices was to look at distributions where 
the variance increases, stays constant, and decreases with w. This is of 
interest because according to the discussion of section 3.3.1, the impact of 
w through variance is a potentially important determinant of information 
acquisition.20 

17The last sequeoce is used to obtain a sample of vlw where oeeded. 
18Notice that by focusing 00 symmetric equilibria and Yi rather than directly computing 

a sample Y = max{Yl, ... ,Yn-l}, ooe cao avoid the curse of dimensiooality: lo the present 
algorithm the oumber of q-MC draws does oot depeod 00 n. 

19Recall that, as loog as 1 - Fy(jJ) > 0, this border is the graph of a functioo c(w) in 
the (w, c)-plane. 

2°Notice that these distributiooal assumptions violate several of the cooditions imposed 
in the theoretical parto This illustrates the fact that those assumptions were made for 
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Besides computing equilibria for these 24 cases, I have also computed the 
equilibria of the corresponding one-shot auction in each case. This allowed 
me to calculate the expected revenue for the seller in each case. 

Table 1 presents the computed expected revenue of the seller under each 
circumstance. In order to provide a benchmark, the first column shows what 
would be the revenue if information was costless to all bidders (Le., if every 
bidder would drop out at V).21 The second and third columns show the 
expected revenue in the one shot and the sequential auctions. Finally, the 
last column shows the percentage difference of revenue (in terms of the one
shot auction). 

In percentage terms, the increased revenue of a sequential procedure 
ranges from O to 6% - arguably, an economically significant figure. In 
almost alI cases the gain is positive. A negative gain has been computed in 
the last specification for large values of n. It is not clear whether this is in 
fact true or it is due to the imprecision of the computation for high values of 
n. 

It is interesting to note that as n grows large, the gain becomes small, 
both in absolute and percentage terms. This observation, coupled with the 
asymptotic comparison result, suggests that the expected revenue is generally 
higher with the sequential procedure. 

Table 2 shows the ex-ante expected payoff of an individual bidder under 
each rule for alI settings, Le., the expected profit average over all (c, w)
types. In most cases the expected payoff under the sequential procedure is 
lower than in the one-shot auction. 80 sequential auctions seem to benefit 
the seller partially at the expense of the bidders. 

Figures 4, 5 and 6 exhibit how the sets of types that acquire information 
(top panels) and the distributions of the individual drop-out points (bottom 
panels) are under each alternative. For convenience, only equilibria with 
n = 2 are depicted. Equilibria with more bidders have smaller information 
acquisition regions, but the the shape of these regions and of the drop-out 

convenience, and are not necessary for existence or revenue rankings. 
21 A counterintuitive finding is that 50metimes the sequential auction is more profitable 

than if information was for free. This can only occur however for n = 2. The logic is 
the following: suppose c is extremely high, 50 that nobody effectively buys information. 
In this case the revenue is the expected value of the second order statistic of a sample of 
E[vlwi]' rather than of Vi. With many bidders, the latter is larger than the former, but not 
when the number ofbidders is 2: in this case, E[min{E[vlwl]' E[vlw2]}] > E[min{Vlt112}]. 
(I thank Paul Milgrom for pointing me that.) 
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vlw rv: n I if info was free one-shot sequential % gain 

U[0,2w] 2 0.2600 0.2697 0.2872 6.48% 
3 0.4419 0.4376 0.4520 3.29% 
4 0.5758 0.5614 0.5703 1.57% 
5 0.6795 0.6554 0.6607 0.82% 
6 0.7628 0.7310 0.7332 0.30% 
7 0.8317 0.7925 0.7939 0.17% 
8 0.8899 0.8450 0.8456 0.07% 
9 0.9399 0.8882 0.8888 0.07% 
10 0.9836 0.9261 0.9262 0.01% 

U[w,w+ 1] 2 0.7659 0.7877 0.8012 1.71% 
3 1.0002 0.9856 0.9951 0.96% 
4 1.1278 1.0928 1.1037 1.00% 
5 1.2128 1.1673 1.1790 1.01% 
6 1.2756 1.2241 1.2324 0.68% 
7 1.3247 1.2669 1.2752 0.66% 
8 1.3648 1.3028 1.3105 0.59% 
9 1.3983 1.3337 1.3389 0.39% 
10 1.4270 1.3594 1.3635 0.30% 

U[w,l] 2 0.6287 0.6454 0.6537 1.28% 
3 0.7793 0.7639 0.7653 0.17% 
4 0.8463 0.8131 0.8136 0.06% 
5 0.8837 0.8438 0.8441 0.03% 
6 0.9074 0.8658 0.8661 0.03% 
7 0.9235 0.8821 0.8821 -0.00% 
8 0.9352 0.8951 0.8952 0.01% 
9 0.9439 0.9052 0.9053 0.01% 
10 0.9508 0.9135 0.9134 -0.00% 

Table 1: Expected revenue for the seller. 
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vlw r-v: n I one-shot sequential percentage gain 

U[0,2w] 2 0.2180 0.2129 -2.35% 
3 0.1340 0.1304 -2.72% 
4 0.0927 0.0909 -1.96% 
5 0.0691 0.0682 -1.36% 
6 0.0539 0.0536 -0.59% 
7 0.0435 0.0434 -0.40% 
8 0.0360 0.0359 -0.19% 
9 0.0305 0.0305 -0.21% 
10 0.0263 0.0263 -0.04% 

U[w,w + 1] 2 0.2014 0.1986 -1.37% 
3 0.1014 0.1006 -0.82% 
4 0.0652 0.0639 -2.05% 
5 0.0464 0.0449 -3.21% 
6 0.0349 0.0341 -2.39% 
7 0.0277 0.0269 -3.00% 
8 0.0225 0.0218 -3.22% 
9 0.0186 0.0182 -2.25% 
10 0.0157 0.0154 -1.93% 

U[w,l] 2 0.0998 0.0960 -3.74% 
3 0.0400 0.0396 -0.89% 
4 0.0233 0.0232 -0.38% 
5 0.0155 0.0155 -0.25% 
6 0.0111 0.0110 -0.35% 
7 0.0083 0.0083 0.12% 
8 0.0064 0.0064 -0.01% 
9 0.0052 0.0052 -0.13% 
10 0.0043 0.0043 0.13% 

Table 2: Ex-ante expected payoff for each bidder. 
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distributions are qualitatively similar. 
The lower panels show that typically the distribution of drop-out points 

in the sequential auction almost dominates the one for the one-shot auction.22 

The impact of the sequential rule can occur either at lower, intermediate or 
upper quantiles. 

As top panels show, the information acquisition regions are indeed mono
tonic in c, but not necessarily so in w. A more optimistic signal about the 
good's valuation can make the bidder more (as in the first specification) or 
less (as in the second one) eager to acquire information, depending on how 
this news affect the dispersion of her valuation vis-à-vis the auction price. 

A A ppendix: N on-existence in the degener
ate case 

This appendix shows that, if the set of types is degenerate, an equilibrium 
may not existo 

Consider the best response to a distribution of y that is mixed, Le., has 
an absolutely continuous component and a finite set of atoms. Define (; and 
p as before. I contend that, as long as an atom of y does not occur at p, this 
is still the optimal information acquisition point. 

The reason for that is that atoms at p =I P do not fundamentally affect 
the derivation of the differential equation characterization done before, once 
derivatives are appropriately replaced by discrete jumps. 

Take an interval [p, p + dp). If no atom of y falIs in this interval for small 
enough dp, the derivation done before is unchanged. There may however be 
an atom at p. We can always take dp small enough so that there are no 
atoms in (p, p + dp). In this case, it is still possible to write, say, 

l
rH-dP 

U(p, q) = P (E[v] - t)dFyly~p(t) 

+ [1 - (Fyly~p(P + dp) - Fyly~(P))]U(p + dp, q) 

for p + dp < q. The only problem is that Fyly~p(P + dp) -+ Fyly~(P+) > 
Fyly~(P). 80 U is discontinuous at this point; but the discontinuity point 

22The "almost" is due to the fact that there is usually a region where the comparison 
is slightly reverse. It is not clear at this point whether this is a feature of the problem or 
just due to numerical errors. 
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Figure 4: Iníormation acquisition sets and drop-out point distributions when 
vlw rv U[0,2w]. Top panel: Shape oí the equilibrium Ro (squares) and R 
(dots) sets. Bottom panel: Distribution íunction oí the bidder's drop-out 
point at the sequential (solid line) and one-shot (dotted line) auctions. AlI 
graphs assume n = 2, w rv U[O, 1], and c rv U[O, 0.05]. 
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has the same "size" as its derivative would have otherwise, in the following 
sense: the jump b.U(p, q) = 1imdp--+o U(p + dp, q) - U(p, q) obeys 

A Pr[y = p] A 

b.U(p, q) = Pr[y ~ p] [U(p, q) - (E[v]- p)], 

while if we didn't have an atom we would write 

Ô A fy(p) A 

ôp U(p, q) = 1 _ Fy(p) [U(p, q) - (E[v] - p)]. 

The same observation applies to the case where p > q. 
So the discontinuities in the distribution of y are immaterial in the choice 

of p (and, likewise p) as long as the probability of a tie between this bidder 
and others is still O. That will be the case if atoms occur before p, since the 
bidder will not exit at this point, or after p, since the probability of a tie is 
the probability of v falling in a measure O set. 

What happens however if there is an atom at exactly p? If the bidder 
follows the strategy described in Proposition 3 (which is the only sensible 
candidate for a best response by what we have seen so far) she plans to drop 
out with strictly positive probability at p, in the event she finds out that 
v < p. If there is a positive probability of the last of the others dropping 
out at the same time, a tie occurs with positive probability. Furthermore, 
the valuation for the good will be smaller than its price if she wins the 
auction under these circumstances. So the expected profit of adopting this 
strategy includes a negative term that could be avoided if she acquired the 
information slightly before p. The information acquisition decision problem 
becomes discontinuous and does not have a solution. 

We conclude that, if the distribution of types is degenerate in such a way 
that p has an atom, then an equilibrium may not existo 
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