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Abstract—A general middle complexity model of electro-
magnetic devices is applied to a cage induction motor. Such
modelling approach has been simplified and adapted in order to
pursue a fair representation of the electrical machine. Particular
attention was given to the rotor cage, proposing a simplified
representation exploiting the symmetry of the cage itself. A
comparative analysis vs the results provided by a finite element
model is also presented for validation purposes aiming to assess
the accuracy of the proposed method.

Index Terms—Inductances, Induction Motor, Numeric-
analytical, Rotor cage, Slotting effects, Winding function

I. INTRODUCTION

Even though Squirrel Cage Induction Motor (SCIM) have

been extensively studied over the years, the design and

analysis of such machine is currently attracting attention due

to the increasing efficiency demand and stricter emission reg-

ulations. An accurate steady state and dynamic performance

prediction of SCIM is a key tool for the design process, pro-

vided that it features fast computation and good accuracy. To

fulfil the requirements of rated mechanical power and starting

capabilities, Finite Element (FE) analysis in time domain

is undoubtedly the most accurate tool to predict the motor

performance. However, the high accuracy of the numerical

approach comes at the cost of high computational effort due

to the induced nature of the rotor currents. Alternatively, the

steady state equivalent mono-phase circuit is a valid approach

to predict the motor performance. For such model, the trade-

off between accuracy and fast computation is in fact presented

in [1]. Increased accuracy is achieved in [2] and [3] when

the dependency of the lumped parameters with respect to

the currents and rotor frequency is investigated by means

of a set of dedicated FE simulations. However, such model

cannot analyse the dynamic behaviour of the machine. In

order to pursuit a circuital representation able to account the

time dependency of the motor behaviour with respect to the

state variables (currents and rotor position), a full circuital

model based on the electro-magneto-mechanical equations is

required. The general approach to model an electro-magnetic

device is extensively explained in literature, [4] and [5]. Un-

der appropriate assumption, the method applies the electro-

magnetic field laws to the geometry of the main airgap of the
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device, considered the region in which the main part of the

electro-magnetic energy is stored and the electro-mechanical

energy conversion occurs. In [4], an accurate summary of the

formulation that aims to describe the main phenomena for a

general electro-magnetic device is presented. Moreover, in

[5], additional constrains were included in the analysis in

order to adapt such treatment for rotary electrical machines.

Although the general framework of such analysis is well

detailed in the metioned papers, further considerations and

assumptions are needed when the SCIM is analysed. For

instance, in [6], [7] a method of modelling SCIMs in transient

conditions is developed. The stator and rotor slotting effects

are neglected in both analyses. Increase accuracy can be

achieved when accounting for the effects of the slot openings

as presented in [8], [9]. In [8], the air gap thickness has

been considered as a sum of two separate air gaps and

approximated with a trapezoidal shape. In [9] the slotting

effect is included in the permeance function as extensively

reported in [10].

This paper deals with the implementation of a numeric-

analytical method applied to SCIM based on a generalized

approach to analyse electro-magnetic devices. The investiga-

tion performed aims to validate the flexibility and accuracy

of the method. A simplified modelling of the slotting effects

is proposed and particular attention is given to the rotor

cage, proposing a compact representation by exploiting the

symmetry of the cage itself as reported in [11] for syn-

chronous generators. Similar approach is applied to the SCIM

under investigation. The results provided by this method,

such as inductances profiles against position and electro-

magnetic torque in specific conditions are validated by means

of a FE model purposely developed. Such comparison proves

the effectiveness of the proposed method, as highlighted in

Section IV.

II. ANALYTICAL MODEL

The lumped parameters equivalent circuit is widely used

to model electro-magnetic devices and electrical machines.

However, achieving an effective representation of the slotting

effects and the rotor cage is still a challenging task. Although

the general framework of the modelling [5] was maintained

in this work, further considerations and assumptions are

made to pursue a better representation of the SCIM.

Hereafter a detailed description of the considered model is

reported, including the related simplifying hypothesis.



• Coaxial and equal length of stator and rotor cores

separated by a narrow airgap.

• Stator and rotor length larger than the external radius of

the stator core.

• Closed shape and straight-parallel active sides of the

windings.

• Negligible magneto motive force drop, hysteresis losses

and eddy current in the stator and rotor yokes.

• Negligible influence of the secondary flux tubes over the

geometrical displacement of the main flux tubes in the

air gap.

• Absence of skin effects in the solid bars of the rotor.

• Minor radial variation of the magnetic field in the airgap.

• High relative permeability and linear behaviour of the

iron core’s material.

A. Cage modelling

The cage structure consists of a group of parallel paths

connected by means of low resistance connections located in

the end region. The whole set of connections composing the

ring of the cage are important to be modelled as enables to

account for the effect of the current distribution in the short

circuit ring of the rotor cage. A complete cage featuring b
bars can be than represented by means of an equivalent planar

topology depicted in Fig. 1, where the inner and outer circles

represent the two end rings.

Fig. 1: Planar representation of the rotor cage with current

loops

As illustrated in [11], each loop is delimited by adjacent bars

and relative front connection and can be considered as an

equivalent phase in short circuit condition. The voltage drop

in each section of the loop needs to be taken into account,

including the inner and outer connections of the planar

representation. The current in each bar is then computed

as the difference of the currents flowing in adjacent loops:

this means that the resistance matrix R related to the cage

assumes the following tridiagonal form:
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where Rs = 2·(RBar+RRing) and Rm = −RBar can be

labelled as self-resistance and mutual resistance, respectively.

According to the assumptions concerning the shape of cores

and distribution of the windings, the axial component of

the magnetic field results negligible and the electromagnetic

problem can be approximate as bi-dimensional. However, the

modelling of an electrical machine equipped with a cage

structure requires further considerations. In fact, applying

the Gauss law to the closed surface obtained by joining

the elementary surfaces delimited by the adjacent bars and

related end ring sections leads to the integral form of the

divergence free equation for the magnetic flux density field

B̂ as expressed in eq. (2).

∇ · B̂ = 0 →

∫

Main

B̂ · n̂ dS +

∫

Caps

B̂ · n̂ dS = 0 (2)

In a 2D scenario, the flux linkage contribution due to the caps

is neglected, so (2) can be written as (3); assuming linear

behaviour of the soft ferromagnetic materials, equation (3)

can be arranged as in (4).

∫

Main

B̂ · n̂dS =
∑

k

ψrk = 1̂T · ψ̂r = 0 (3)

1̄T · [Lrs Lrr]α ·

[

īs
īr

]

= 0 ∀ (̄i, α) (4)

where Lrs is the stator-rotor mutual inductances matrix and

Lrr is the rotor self and mutual inductances matrix. īs
and īr are the stator and rotor currents respectively and α
is the Lagrangian variable describing the mechanical state

of the device. Considering (4), can be concluded that the

matrix of the inductances L(α) is singular. Therefore, a

rotating machine featuring a squirrel cage cannot be treated

completely as a 2D case, meaning that the end ring effects

(resistance and leakage inductance) cannot be neglected.

The end ring effects were then computed analytically. As

a first approximation, the leakage inductance was estimated

using eq. (5) reported in [12].

Lring = µ0 ·
b

m · p2
·
1

3
·

[

(lbar − ls) + υ ·
π ·Dr

2p

]

(5)

where p is the number of pole pairs, b and m are the number

of bars and stator phase respectively, lbar is the length of the

rotor bar, ls is the length of the stator and Dr is the average

diameter of the short-circuit ring. The factor υ is selected

to be υ = 0.18 for p > 1. The resistance was estimated

considering a uniform distribution of the current density in

the frontal connection between adjacent bars. Thus, the DC

resistance was calculated as follows

Rring = ρAl ·
πDring

b · S
(6)

where ρAl is the resistivity of aluminium, Dring is the

average diameter of the ring and S is the cross section of

the ring.



B. General analytical equation

The generic analytical equations defining an electromag-

netic device [5] are summarized hereafter. According with

the hypotheses presented in Section II, the terminal voltage

equation is expressed as follows

v̄(t) = R · ī(t) + M̄(α, ī) ·
∂α(t)

∂t
+ L(α) ·

∂ī(t)

∂t
(7)

where the vector ī consists of the stator and rotor currents

flowing in each equivalent phase, R is the matrix of resis-

tances, L(α) the matrix of inductances which is represented

as function of the sole variable α defined as the relative

position between stator and rotor under the assumption of

linear magnetic behaviour of ferromagnetic materials. The

motional coefficient vector M̄(α, ī) is obtained as reported

in eq. (8)

M̄(α, ī) =

(

∂L(α)

∂α

∣

∣

∣

∣

α̂

)

ī(t) (8)

The matrix of the inductances which account for the main

fluxes defined as (i.e. those crossing the airgap) linked with

the phases is expressed in the following:

L(α) =
l

2π
·

∫ 2π

0

µe(γ, α) · N̄E(γ, α) · N̄E(γ, α)
T
· dγ (9)

In eq.(9), l is the axial length of the motor, µe(γ, α) is the

equivalent permeability defined in eq. (10) as a function of

the rotor position α and the tangential coordinate γ.

µe(γ, α) = µ0 ·
τg(γ, α)

ǫg(γ, α)
(10)

In eq. (10), the function ǫg(γ, α) represents the thickness

of the air gap which account the distance between stator and

rotor as well as the depth of the slot openings: it is expressed

as the sum of partial thickness related to the rotor and stator

as shown in eq. (11).

ǫg(γ, α) = ǫs(γ, α) + ǫr(γ, α) (11)

The function τg(γ, α) of eq. (10) define the profile of the

medium magnetic-equipotential surface [5] in the air gap for

every position α along the geometric tangential coordinate

γ. Furthermore, N̄E(γ, α) is the vector of the equivalent

winding functions of each phase of the machine as reported

in eq. (12).

N̄E(γ,α) = N̄(γ,α)−

∫ 2π

0

µe(γ,α)
∫ 2π

0
µe(γ,α) · dγ

· N̄(γ,α) ·dγ (12)

Finally in (13), the expression of the torque is calculated from

the derivative of the coenergy with respect to the position at

fixed currents, which can be written as a product between

current vector and the motional coefficient vector in the case

of linear magnetic material’s behaviour.

T (α, ī) =
∂CE(α, ī)

∂α

∣

∣

∣

∣

ī=˜̄i

=
1

2
·
˜̄iT · M̄(α, ˜̄i) (13)

C. Case study

The analysis introduced in Section I, II-A and II-B is

implemented to a medium size 3-phase SCIM with a rated

power of 11 kW, 2 pole pairs, distributed single layer stator

winding Y-connected and equipped with a set of 7 bars

per pole on the rotor. The machine has been designed for

applications at constant speed of 1500 [rpm]. In Fig. 2, the FE

reference model developed for the analysis and the solution

mesh are presented.

Fig. 2: FE model with a mesh representation

D. Slotting effects

The slotting effects of the machine under investigation

can be accounted by means of slotting functions ǫs(γ, α)
and ǫr(γ, α) of the stator and the rotor respectively. τg(γ, α)
is selected to achieve a fair representation of the medium

magnetic equipotential surface in the airgap [5]. In Fig. 3, the

functions ǫs(γ, α) and ǫr(γ, α) and their sum are represented

respectively in black, red and blue lines, for a specific rotor

position. Due to the small anisotropy introduced by the slot

openings and having the air gap radius far greater than the

slot openings depths, is reasonable to assume the medium

magnetic-equipotential surface of the air gap as a perfect

cylinder: τg(γ, α) ≈ 2 · π · rg = const.

Fig. 3: Slotting functions vs angular position in pu: black line

ǫs(γ, α), red line ǫr(γ, α) and blue line ǫs(γ, α)+ǫr(γ, α)

However, such simplification could lead to alteration of the

inductances profile. In order to improve the accuracy, τg was



selected as the average between internal stator radius and

external rotor radius as in eq. (14).

τg(γ, α) = 2 · π · (rg + (ǫs(γ, α)− ǫr(γ, α))/2) (14)

The top of Fig. 4 highlights in dot-red line the ideal profile

of the medium magnetic-equipotential line in the air gap,

while the black line is the approximated profile obtained

implementing eq. (14). In Fig. 4 on the bottom, the function

τg(γ, α) calculated numerically is represented in pu as a

function of γ at a specific α.
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Fig. 4: Profile of the medium magnetic equipotential line in

pu: τg(γ, α)

E. Modelling and representation of the rotor cage

In a cage structure featuring a set of bars having equal

cross section, the current flowing in each bar exhibits, unless

very unusual operating conditions, a sinusoidal distribution

along the circumferential development of the rotor. Due to the

symmetry property of such distribution, the current flowing in

a loop under a pole is identical to the one of the loop placed

at a pole pair pitch and it is opposite with respect to the loop

located at a pole pitch distance. This considerations allow to

model each equivalent rotor phase as series and anti-series

connections of loops as shown in Fig. 5.

Fig. 5: Simplified representation of the current loops by

exploiting the symmetry of the cage

The rotor cage can be therefore modelled with a set of

b/(2 · p) equivalent rotor phases. The rotor cage description

presented enables to reduce the total number of equivalent

phases from 3 (stator) + 28 (rotor) to 3 (stator) + 7 (ro-

tor), thus reducing the model complexity and computational

burden. However, the matrix of the resistances needs to be

modified as in eq. (15) in order to take into account the new

value of resistances of each equivalent rotor phase.

R = 4 ·
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(15)

The mutual resistance between loop 1 and loop 7 is R′

m =
RBar, in agreement with the relative current directions shown

in Fig. 5.

III. NUMERICAL RESOLUTION

The validation of the modelling method described in

Section II is numerically implemented. The representation

of the inductances matrix taking into account the geometric

features of the SCIM under investigation is developed. In Sec-

tion III-A the inductances against rotor position α computed

numerically are compared with respect the FE results. The

arrangement of such quantities in look-up tables, in particular

the matrix ∂L(α)/∂α and L(α)−1, enables the numerical

resolution of the model with the Matlab-Simulink platform.

Further validation are presented to highlight the symmetrical

behaviour of the rotor cage by means of comparing the full

model with the simplified rotor cage model.

A. Inductances identification

The identification of L(α) is performed numerically off-

line using eq. (12). The main inductances of such matrix are

compared against a set of multi-static simulation, supplying

alternatively the stator and rotor phases of a FE model aiming

to identify the dependency of such quantities with respect to

the rotor position. In Fig. 6 and Fig. 7 the self and mutual

inductance respectively of a stator winding is shown as a

function of the angular position α.

Fig. 6: Lsisi(α): Stator self-inductance vs rotor angular

position



Fig. 7: Lsjsi(α): Stator mutual-inductance vs rotor angular

position

In Fig. 8 and Fig. 9 the mutual inductance between a stator

winding and a rotor winding is shown as a function of

the rotor position. An overall good match of those profiles

enables to assume a fair representation of the real distribution

of the flux lines into the air gap.

Fig. 8: Lsjri(α): Stator-rotor mutual inductance vs rotor

angular position

Fig. 9: Lrjri(α): Rotor self inductance vs rotor angular

position

B. Symulink model

A Matlab-Simulink model is built to calculate stator

and rotor winding currents. As shown in Fig. 10, the input

quantities of the model are the voltages imposed to the

stator and rotor windings. The latter, due to the short circuit

nature of their connections, exhibit a null value. The scheme

displayed in Fig. 10 highlights in red line an additional con-

nection which allows to simulate the real set up of the stator

windings. In fact, as mentioned in Section II-C, the stator

windings are Y-connected to a common node representative

of the reference of the phase voltages.

Fig. 10: Matlab-Simulink block diagram of the model

C. Simulation results

In this section the simulation results of the full rotor cage

model are compared with the symmetric rotor cage model.

The aim is to prove the symmetry property of the rotor

winding constitute by loops placed at a pole pitch and a

pole pair pitch distance and quantify the benefits relative

to the simplified cage model in terms of computational

time saving. The PC used for the analysis is a Intel Xeon

with clock frequency of 3.5 GHz and 128 GB of RAM.

A complete period of the rotor position is divided in 7560

divisions leading to an L(α) matrix featuring dimension of

31x31x7560 for the fully rotor cage while 10x10x7560 for

the simplified cage structure. A group of rotor phases of the

full rotor cage model with b = 28 are shown in Fig. 11.

Fig. 11: Rotor loop current waveforms

The rotor phase windings constitute by loop currents 1-8 and

15-22 shown in Fig. 11 exhibit, as aspected, an anti-series

trend. In fact, the currents flowing in the rotor loops placed

at a pole pitch are equal and opposite. The current flowing in

loops placed at a pole pair pitch, e.g. 1-15 and 8-22, exhibit

the same profile. In Fig. 12 the currents of the rotor windings

located at the same geometrical position are displayed for full



and symmetric cage model, respectively. A good match is

exhibited between the two currents, confirming the reliability

of the symmetric rotor cage model.

Fig. 12: Rotor loop current waveforms: Full vs symmetric

cage

A comparison of the time consumed for the two models in

term of off-line inductances computation, numerical resolu-

tion and data post-processing is presented in Table I. The

simplified cage model allows to reduce the computational

effort with respect to the full cage model without any impact

over the accuracy of the currents computation.

TABLE I: Computational effort: full vs symmetric cage

model

Div Off-line Simulation Post-proc. Tot.

Full 7560 28’ 25” 39” 29’ 4”

Sym 7560 3’ 3’ 30” 6’ 36”

Sym 25200 24’ 3’ 31” 27’ 31”

IV. RESULTS AND FE VALIDATION

A further numerical resolution of the model has been

performed considering a major number of divisions for each

mechanical period in order to improve the accuracy of the

outputs (circumferential coordinate discretized in 25200 ele-

ments). The symmetric rotor cage model permit a restrained

impact over the computational effort as shown in Table I.

The current of each stator and rotor winding is computed

numerically while the current of each bar was computed

in post-processing as the difference between adjacent loops.

Finally, the torque profile was computed using eq. (13).

The results are compared against a time step FE simulation

supplying each stator phase with a set of balanced symmetri-

cal voltages. The working points investigated are: no-load

(Slip = 0), locked rotor (Slip = 1), load condition at

Slip = 0.5 and nominal condition at Slip = 0.02. At no-

load the currents induced in the rotor bars due to the first

harmonic of flux density supported by the stator currents are

null. However, the higher order harmonics of the flux density

are asynchronous with respect to the rotor and therefore high

order rotor currents are induced. In Fig. 13, Fig. 14, Fig. 15

and Fig. 16 a comparison of stator currents on the top and

two rotor bars on the bottom are displayed, respectively. At

lock-rotor condition Fig. 14, the stator and rotor currents

exhibit a sinusoidal trend due to the constant permeance of

the magnetic circuit.

Fig. 13: Stator and rotor current waveforms: Slip = 0 [pu]

Fig. 14: Stator and rotor current waveforms: Slip = 1 [pu]

Fig. 15: Stator and rotor current waveforms: Slip = 0.5 [pu]

Fig. 16: Stator and rotor current waveforms: Slip = 0.02 [pu]



Fig. 17: Electro-magnetic torque waveforms: Slip = 0.02 [pu]

An overall good match is exhibited for all the operating

conditions investigated. The SCIM produce the nominal

mechanical power at rated slip of 0.02 [pu]. At this specific

operating rotor frequency, the main output in term of currents

and torque are shown in Fig. 16 and Fig. 17. In Fig. 17,

the torque profile with respect to the time is displayed,

considering a rotor electrical period on the left side of the

graph and half of the last simulated stator period on the

right side. A good match, exhibited also in term of torque

profile Fig. 17, confirms the reliability of the circuital model

of the SCIM under the assumptions reported in Section II.

The adoption of a symmetric rotor model permit to increase

the number of steps of a single rotor revolution, allowing an

improved performance prediction.

V. CONCLUSION

This paper deals with an accurate estimation of the main

quantities such as inductances, currents and torque profiles of

a SCIM. A numeric resolution of a mid-complexity circuital

model is implemented for a SCIM and particular focus was

given to the rotor cage representation. Two different models

are compared in order to prove the validity of the assumptions

considered with the symmetric cage model. Advantages in

term of computational time are highlighted and a comparison

with an equivalent FE model is presented. The validity of

the proposed methodology of modelling a SCIM, under

simplified hypotheses, was proved. Such model will allow

to investigate and analyse different motor topologies. Further

work is on going aiming to include in the modelling the skin

effects of the rotor bars, skewed cage and rotor layout with

closed rotor bars.
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