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Mid infrared gas spectroscopy using efficient fiber
laser driven photonic chip-based supercontinuum
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Directly accessing the middle infrared, the molecular functional group spectral region, via

supercontinuum generation processes based on turn-key fiber lasers offers the undeniable

advantage of simplicity and robustness. Recently, the assessment of the coherence of the

mid-IR dispersive wave in silicon nitride (Si3N4) waveguides, pumped at telecom wavelength,

established an important first step towards mid-IR frequency comb generation based on such

compact systems. Yet, the spectral reach and efficiency still fall short for practical imple-

mentation. Here, we experimentally demonstrate that large cross-section Si3N4 waveguides

pumped with 2 μm fs-fiber laser can reach the important spectroscopic spectral region in the

3–4 μm range, with up to 35% power conversion and milliwatt-level output powers. As a

proof of principle, we use this source for detection of C2H2 by absorption spectroscopy. Such

result makes these sources suitable candidate for compact, chip-integrated spectroscopic

and sensing applications.
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T
he middle infrared (mid-IR) spectral region (2–10 μm) has
a high technological importance for spectroscopy and
sensing with applications in health and environmental

monitoring1,2. Particularly, the 3–5 μm region, the functional
group region, is interesting as it hosts the first mid-IR atmo-
spheric window, and contains the molecular fingerprint of many
hydrocarbons, nitrogen dioxide, greenhouse gases, and specimens
detectable in breath analysis3. Besides direct mid-IR generation
with quantum cascade lasers4, interband cascade lasers5, and Fe2
+ doped crystals6, wavelength conversion in nonlinear materials
is a promising solution to reach the mid-IR spectral range. Very
efficient conversion towards mid-IR has been demonstrated
through frequency-divide-by-two optical parametric oscillators7,8

and difference frequency generation (DFG) between two telecom
band signals9–13.

Broadband mid-IR generation can also be achieved by super-
continuum generation (SCG) in soft glass optical fibers14–23 or
photonic integrated waveguides24–31. Compared to other wave-
length conversion schemes, SCG offers some advantages32: it is in
fact a compact single-pass geometry that does not require any
additional seed laser or temporal synchronization, and it can
provide a broader and tunable mid-IR emission. When CMOS
compatible materials are employed, SCG platforms benefit from
lithographic precision and high yield, and usually have low power
consumption. Recent works have shown that such approach can
be applied as well to dual-comb spectroscopy32.

Often, to extend the reach into the mid-IR, the nonlinear
waveguides are pumped with an optical parametric oscillator
placed beyond the 2-micron wavelength range, but there is
interest in driving such platforms with femtosecond mode-locked
fiber lasers, which are reliable, easy to use, and compact frequency
comb sources.

However, up to now, very few demonstrations succeeded in
generating supercontinua following this paradigm. High energy
(2–3 nJ) femtosecond pulses in the 2-micron region can lead to
more than 30% of conversion efficiency (CE) beyond 2200 nm in
an InF3 fiber22, and spectral broadening extending beyond 4.5 μm
in Telluride photonic crystal fibers23. Despite the large CE and
spectral extent, the coherence of such mid-IR emission has not
been experimentally investigated. Conversely, low pulse energy
(18 pJ) at 2000 nm can lead to coherent mid-IR SCG in chalco-
genides nanospikes16,17 or nanotapers19, but early damage power
threshold and high mid-IR absorption from the cladding avoid
power scaling up to the milliwatt level. In terms of chip integrated
waveguides, mid-IR extended SCG has been experimentally
demonstrated in AlN waveguides pumped with 0.8 nJ from a
telecom band femtosecond mode-locked fiber laser24. The power
generated inside the waveguide in the 3000–4000 nm range is
about 0.3 mW, corresponding to a CE close to 0.5%. Overall,
none of the above-mentioned approaches has been employed for
mid-IR spectroscopy demonstrations.

Also, in the last years there has been a trend in miniaturizing
and simplifying DFG schemes by utilizing single pump config-
uration with chip-scale nonlinear platforms. Emission up to 5.5
μm was obtained by DFG between the pump and the long-
wavelength dispersive wave (DW) in AlN waveguides24, while
intrapulse DFG, generated from an Er:doped fiber mode-locked
laser, enables tunable mid-IR radiation in the 4–5 μm region
using PPLN waveguides33. However, efficiencies are limited to
below 0.5%.

Recently, we showed that direct generation of mid-IR light,
from an erbium-doped fiber laser at 1.56 μm, is possible through
DW generated in Si3N4, and asserted the phase coherence and
frequency comb nature34. This platform has the potential to
merge all the desired features addressed separately in the above-
mentioned devices: a power scalable, fiber laser pumped coherent

mid-IR generation in a low loss chip-scale waveguide with
lithographical control of its dispersion.

However, the outstanding problem in this first demonstration
was the extremely low CE and insufficient power beyond 3 μm for
future molecular fingerprinting. Indeed, reaching efficient DW
generation beyond 3 μm is still difficult in CMOS platforms
directly pumped by fiber lasers. The larger is the spectral cover-
age, the lower is the power transferred in the targeted region.
Moreover, the SCG process can convert a non-negligible portion
of the pump energy over unwanted spectral bands, such as in the
visible, further decreasing the CE in the region of interest35.

In this work, we overcome these hurdles and demonstrate a
turn-key, high-efficient, and compact mid-IR source based on
DW generation with power levels sufficient for spectroscopy
application. We leverage both recent advances in fiber laser
technologies, which allow shifting their emission wavelength in
the short wave infrared (SWIR), until the limit of the silica
absorption edge (around 2.1 μm), and large cross-section wave-
guide designs36, enabling considerable freedom in dispersion
engineering and low mid-IR propagation losses. In this way we
efficiently convert, to the 3–4 μm wavelength region, a commer-
cial SWIR femtosecond fiber laser by setting the pump wave-
length as to favor dispersion for targeted long wavelength
operation. Record CE, defined as on-chip generated mid-IR DW
power over on-chip coupled pump laser power, as high as 35% is
reached at 3.05 μm, and close to 20% at 3.950 μm, corresponding
to more than one milliwatt average power at the chip output. A
systematic experimental and numerical study on the generation of
mid-IR DW provides new information on the efficiency and
dynamics of the DW generation process as a function of the
pump power. Finally, as a proof-of-principle, we successfully
exploit this on-chip mid-IR source for C2H2 detection through
gas absorption spectroscopy.

Results
Design of mid-IR source through dispersive wave optimiza-
tion. It is well known that propagation of sufficiently powerful
femtosecond laser pulses in the anomalous group velocity dis-
persion (GVD) region of a nonlinear waveguide can induce high
order soliton dynamics35, leading to an initial spectral broadening
caused by self-phase modulation (SPM) and subsequent temporal
compression which are proportional to the soliton number37. At
the compression point, when the spectrum is extensively broa-
dened, the soliton can be perturbed by high order dispersion
(HOD) or nonlinear terms resulting in soliton fission, and can
transfer energy to linear DW spectrally shifted from the pump35.
The DW generation process can occur at the frequency where the
phase constant of the soliton pulse equals the one of the linear
wave38, and is thus given by the phase matching condition:

β ωð Þ � β ωsð Þ � v�1
g ω� ωsð Þ ¼

γP

2
ð1Þ

where β is the mode propagation vector, ωs is the soliton central
frequency, vg is the soliton group velocity, P is the pulse peak
power, and γ is the waveguide’s effective nonlinearity. The non-
linear phase shift on the right-hand side of Eq. (1) is small and is
usually neglected. The left-hand side of Eq. (1) is called integrated
dispersion βint, and can be rewritten as a Taylor expansion
leading to

βint ¼
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The GVD determines the location of the phase matching
points and it has been shown that the generation of a phase
matched DW corresponds to the occurrence of a zero dispersion
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wavelength (ZDW)39,40. Also, HOD terms (k > 2) affect the
amount of power transfer to the DW38,40,41. Qualitatively, even-
order dispersion terms lead to two DWs with symmetric intensity
and frequency detuning42 with respect to the pump, while
positive or negative odd-order terms break this symmetry
favoring blue or red-shifted DW, respectively40. The material
dispersion of Si3N4 can easily lead to a first ZDW point in the
near-IR for the fundamental waveguide mode, responsible for
DW generation at visible wavelengths. The large anomalous
material GVD in the mid-IR has to be compensated by waveguide
dispersion in order to reach a second ZDW at longer wavelengths.
However, efficiently converting the light to the mid-IR DW
means that conversion towards the unwanted visible DW has to
be limited, and mid-IR mode confinement has to be improved to
avoid cladding absorption. These limitations can be mitigated, as
seen in Fig. 1, by combining large cross-section waveguides,
which satisfy both the necessary confinement and dispersion

engineering, with accurate positioning of the pump wavelength,
to meet the requirements on HOD terms. The waveguides we use
in this study have a height that can reach 2.2 μm, with width in
the 1 μm range, while the central wavelength of the pump laser
can be tuned between 2070 and 2090 nm.

In Fig. 1a, we show the computed GVD of standard (with a
height around 870 nm) and large cross-section Si3N4 waveguides.
The second ZDW of the latter waveguides is further red-shifted
compared to standard ones, enabling the generation of DW
deeper in the mid-IR for the same pump wavelength. At the
same time, the large cross-section waveguide can significantly
reduce mid-IR absorption in the silica cladding through improved
mode confinement, as seen in Fig. 1b, where we computed
the absorption losses α by including the imaginary part of
the refractive index of silica in our numerical simulations
(see Methods). The amount of integrated dispersion separating
the pump from the DW phase matched wavelengths, which we
will refer to as dispersion barrier, clearly illustrates a symmetry
breaking in DW generation. As seen in Fig. 1c, a 2090 nm pump
in large cross-section waveguides generates a mid-IR DW in the
same wavelength range as the one obtained by using standard
waveguides with a 1560 nm pump. However, 2090 nm pumping
in large waveguides leads to a much lower mid-IR dispersion
barrier, and a much higher visible one, that should clearly favor
mid-IR power transfer. It has to be noticed that even if the large
cross-section waveguide pumped at 1560 nm in theory features a
DW generated beyond 5 μm, the mid-IR dispersion barrier will
also significantly increase (Fig. 1c), greatly limiting the efficiency.

Experimental implementation and simulated dynamics. The
experimental set-up is detailed in Fig. 2a. The pump source is a
commercial, turn-key soliton self-frequency shifted thulium-
doped fiber mode-locked laser (NOVAE Brevity λ+), with pulse
duration at full width half maximum (FWHM) of 78 fs, band-
width of 60 nm centered at 2090 nm, repetition rate of 19MHz
and average power of about 100 mW. Before coupling to the
waveguide, the polarization is managed and the power can be
varied with a variable optical attenuator (VOA). Light is coupled
into the fundamental transverse magnetic (TM) polarization
mode of the waveguide, facilitated by inverse tapers and using two
identical aspheric black diamond lenses. At the device output, the
collimated light is focused by means of a parabolic mirror onto a
fluoride multimode fiber (MMF) and the spectra are recorded
with a Fourier Transform Optical Spectrum Analyzer (FT-OSA)
spanning the 1–5 μm range (Thorlabs OSA205C). The top view of
the device is acquired with a microscope objective which projects
the image on a visible camera. The samples consist of 5 mm long
straight Si3N4 waveguides buried in SiO2. We investigated
waveguides with four different nominal widths: 1000, 1050, 1100,
and 1175 nm. The waveguide thickness slightly increases with
larger widths, ranging from 2.09 to 2.19 μm. The total coupling
losses were around 11 dB for the larger waveguides, but 1.5 and
2.5 dB higher for the 1050 and 1000 nm respectively, while pro-
pagation losses are 0.2 dB/cm. Figure 2b shows the experimentally
recorded output spectrum from the 1100 nm width waveguide for
a coupled average power of 13.6 mW, corresponding to about 6.8
kW peak power and coupled pulse energy of 0.75 nJ. For these
values, the soliton number is around 5. A clear DW is observed at
the expected phase matching position near 3.5 μm.

Indeed the obtained simulated spectrum reproduces well the
experimental one after a propagation of 4.2 mm, which matches
the length of the straight waveguide section, without considering
the tapered regions. It also shows a weaker visible DW around
500 nm which cannot be detected by the FT-OSA, but justifies the
observed green light scattered out of the chip (see Fig. 2a).
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Fig. 1 Comparison between standard and large cross-section silicon

nitride (Si3N4) waveguides. a Group velocity dispersion (GVD) for the

TE fundamental mode of a standard waveguide with cross-section 870 ×

1700 nm2 (blue) and the TM fundamental mode of a large cross-section

waveguide with dimension 2177 × 1150 nm2 (red). The insets show

scanning electron microscope (SEM) images of the waveguide cross-

section. b Attenuation coefficient α as a function of wavelength for (blue)

standard and (red) large cross-section waveguides. c Solid lines: integrated

dispersion as a function of the wavelength for the standard waveguide

pumped at 1560 nm (blue) and the large cross-section one pumped at
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Looking at the simulated pulse evolution over the waveguide
length (Fig. 2c), we notice how both the visible and mid-IR DWs
are generated at the soliton compression point which takes place
at around lc= 3.5 mm, also qualitatively confirmed on the
waveguide image in Fig. 2a. Moreover, Fig. 2c shows how, after
the first compression point, additional spectral broadening points
separated by a much shorter distance occur. This behavior can be
understood by looking at the temporal evolution in Fig. 2d. Just
after the first compression point, the propagating pulse separates
in two pulses in a process known as the soliton splitting effect43.
Due to HOD and high order nonlinear effects (e.g., the self-
steepening effect), one of the pulses has more energy and can
undergo sufficient broadening to again overlap with the DW. The
soliton self-compression process can thus repeat, leading to
multiple generation of DW as long as the new pulse maintains
enough energy for the necessary spectral broadening. This
mechanism thus reinforces the power in the DW spectral region.

Evolution and efficiency of DW generation. The simulated
integrated dispersions (Fig. 3a) indicate that the 2090 nm pump
significantly favors mid-IR DW for the four waveguide geome-
tries, and that the phase matching point continuously shifts
towards longer wavelength with increasing width. This expected
behavior is confirmed experimentally as seen in Fig. 3b. We
measure a DW peak at 3050, 3220, 3530, and 3950 nm for the
1000, 1050, 1100, and 1175 nm waveguide width, respectively.
There is a difference with the theoretically predicted phase
matched wavelengths for the smaller waveguides, which can be
primarily due to the recoil of the central soliton toward shorter
wavelengths and small variation in the actual waveguide
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dimensions (see Supplementary Note 1). In fact, because of the
negligible Raman response39, here we do not see the red-shift of
the soliton and the consequent trapping of DW, as observed in
silica fibers44,45. The spectra of Fig. 3b also show that, apart from
some pump broadening due to SPM, most of the converted pump
energy lies in the DW bandwidth. We both experimentally
retrieved and numerically simulated the on-chip CE for all tested
waveguides (see Methods). It should be noted that the 1000 nm
wide waveguide suffered from higher input coupling loss, which
limited the range of coupled pump power.

The results for the on-chip mid-IR DW CE as a function of the
coupled pump power are plotted in Fig. 4a. We observe a power
threshold above which the DW is generated. This threshold
comes from the fact that the power must be high enough for the
soliton compression point to occur before the end of the
waveguide since37 lc∝ (|β2|P)−1/2. In addition, the broadening,
which is proportional to the soliton number37 N∝ (P/|β2|)−1/2

must be sufficient to overlap with the DW phase matched
wavelength. For the two smaller waveguides, the efficiency rapidly
increases with pump power, reaching record values in the
30–35%. For the larger waveguides, the efficiency does not
increase as quickly, mostly limited by the larger spectral
separation between pump and DW. Additionally, larger wave-
guides have a higher value of |β2| at the pump wavelength (0.32
and 0.4 fs2/μm, respectively, compared to 0.14 and 0.22 fs2/μm for
the 1000 and 1050 nm wide waveguides). For a given pulse peak
power and width, the soliton number is thus smaller46, limiting
both the compression factor and the number of compression

points before the end of the waveguide (see Supplementary
Figure 1 for a numerical comparison between all the different
waveguides). Therefore less power can be coupled to the DW.
Nevertheless, CEs close to 20% are still experimentally measured.
Interestingly, the CE for the two smaller waveguides starts
decreasing beyond a coupled power of about 12 mW, a behavior
confirmed by the simulations. Indeed, increasing the pump power
up to our 20 mW maximum does not result in a significant
increase in DW power (see Fig. 4b). This could be due to the low
values of |β2| in these waveguides, leading to a longer
compression point than in the two larger waveguides (see
Supplementary Note 1). Therefore, in narrower waveguides,
spectral broadening caused by modulation instability46 can
happen on the same length scale of soliton compression, already
for coupled pump powers in the 12–20 mW range. In fact, at a
given point on the waveguide, modulation instability scales
exponentially with the pump power43. Equivalently, one can look
at the soliton number, which also increases when |β2| decreases.
Indeed, it has been shown that soliton fission occurs earlier than
wave breaking by modulation instability35 when N < 10.

In Fig. 4b, we report numerical and experimental data of the
mid-IR DW power as a function of the coupled pump power. In
the employed pump power range, all waveguides can generate
mid-IR DW with at least 4.5 mW but, due to the lower CE, the
required pump power increases with the wavelength reach.
However, thanks to the lower in-coupling losses, we could inject
more power in the two larger waveguides and reach stronger DW
generation at longer wavelengths. In fact, in such samples, the CE
increases all over the tested power range, as N > 10 is expected for
coupled power beyond 40 mW. Overall, this means that more
than 1 mW can be estimated at the waveguides output (see
Methods), covering the entire 3–4 μm spectral region.

We could also experimentally estimate the visible DW
contribution by changing the output objective with a silica lens
and the long pass filter with a short pass one with cut-off at 700
nm. While this configuration leads to larger uncertainties in the
measurements, mainly due to larger scattering losses at shorter
wavelengths, both simulations and experimental data confirmed
the much lower CE for the visible DW generation, which
remained well below 5%.

Proof-of-principle spectroscopy measurement of C2H2. To
demonstrate the application of our on-chip source, we preformed
mid-IR absorption spectroscopy of acetylene (C2H2) using the DW
near 3 μm from the 1000 nm wide waveguide (see Methods for
additional information on the employed experimental set-up). The
light from the Si3N4 waveguide is directly coupled into a 108.5 cm
long gas cell, which contained the sample or reference gas. The
transmitted spectra measured with an optical spectrum analyzer
(OSA) after the cell, with and without sample C2H2 gas, are shown
in Fig. 5a. Absorption dips originating from C2H2 in the gas cell
and from atmospheric gas (H2O) outside the cell are clearly seen.
Figure 5b, c shows the normalized absorption spectrum of C2H2

compared to the one simulated utilizing the HITRAN database47.
The standard deviation of residual absorbance for this global fit is
~2.5 × 10−4 cm−1. The maximum absorbance for 396 ppm C2H2

was measured to be 8.8 × 10−3 cm−1. The signal-to-noise ratio
was calculated to be 35 and the noise equivalent concentration is
~11 ppm. Clear spikes in the residuals near the absorption peaks
are likely due to the wavelength nonlinearity of the OSA within the
detection range, which is not taken into account in the model.

Discussion
We showed that the generation efficiency of mid-IR DW from a
commercial femtosecond SWIR fiber laser can be greatly
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enhanced to more than 35%, by proper dispersion engineering of
Si3N4 waveguides. In fact, state-of-the-art fabrication techniques
and fiber laser technology allow for careful waveguide design
which, in combination with a proper choice of the pump para-
meters, significantly favor the generation of mid-IR DW and
reduce the visible one, allowing us to report the highest efficiency
measured to date for on-chip mid-IR DW generation. The central
wavelength of the DWs increases with the width of the waveguide
and can be precisely positioned inside the first mid-IR trans-
parency window while maintaining preferential power transfer to
the mid-IR. Although the efficiency decreases with increasing
DW wavelength, we were able to obtain, at the chip output, a
maximum average output power of more than 1 mW spanning
roughly the entire 3–4 μm region. These values represent a sig-
nificant improvement both in terms of spectral coverage and
efficiency, compared to previous mid-IR SCG34. Notably, the
mid-IR output energy we obtained is comparable to the state-of-
the-art mid-IR sources for dual-comb spectroscopy, based on
DFG in PPLN waveguides13, pumped with similar peak power
fiber frequency combs. The source can be used for absorption
spectroscopy, as shown here with the detection of C2H2 in the 3
μm band. The expected comb structure of the DW34 could also
enable dual-comb measurements, which however would be best
implemented pumping the waveguides using a laser with hun-
dreds of MHz of repetition rate8.

In summary, the presented approach can lead to a very effi-
cient, compact, and easy to use device for coherent mid-IR light
generation. In fact, it benefits from photonic integration both for
the chip-scale nonlinear stage, compatible with planar fabrication
techniques, and for the pump source which is a silica fiber-based
laser. The device can cover the 3–4 μm region, which hosts the
signature of important greenhouse gases like methane (CH4) and
nitrous oxide (N2O). The absorption lines of carbon dioxide
(CO2), just at the boundaries of the covered range (around 2.7
and 4.3 μm), can be targeted with slightly narrower or wider
waveguides. In addition, this approach provides a power level
sufficient for spectroscopy application13, bridging the gap
between fiber sources and quantum cascade lasers, which are the

workhorse of mid-IR spectroscopy devices. Such result could
therefore provide a suitable alternative to microresonators48–52 to
generate mid-IR frequency combs on a chip, when sub-gigahertz
teeth spacing is required. Moreover, soliton-induced SCG in
integrated photonic platforms has been recently demonstrated to
coherently broaden the spectrum of optical frequency combs by
more than one octave53, allowing their stabilization in f-to-2f
schemes54,55. Therefore, with the possibility to combine both χ(2)

and χ(3) nonlinearities in Si3N4
56–58, full on-chip stabilization of

the mid-IR comb generated in these waveguides can also be
considered.

Methods
Numerical simulations. The waveguide dispersion was simulated using a Finite
Element Method software (COMSOL Multiphysics) in which the wavelength
dependence of the real part of the refractive index of Si3N4 and SiO2 were included
using the Sellmeier equation reported in refs. 48,59 respectively. In Fig. 1b, we
include the imaginary part of the refractive index of SiO2 as k= 5·10−(9+λ), which
qualitatively reproduces, in the region from 1 to 5 μm, the data reported in ref. 60.
The SCG was simulated based on the nonlinear Schrödinger equation. We consider
an input sech2 pulse with a frequency chirp of −1000 fs2/2π, leading to pulse
duration of about 110 fs. The laser temporal pulse broadening mainly comes from
the dispersion in the wave-plates and input objective. We included the spectral
dependence of the nonlinear coefficient and a full and complete dispersion profile
that comprises up to 30th order when Taylor expended with respect to the
pumping frequency. Including more than 30 HOD terms does not change the
simulation result but just slowed down the computation. We also set the Raman
fraction and linear propagation losses to 0. In order to better compare with the
experimental results, we included a nonlinear contribution in the experimental in-
coupling losses proportional to the coupled pump power to the third power. We
attribute the need of this correction to the increase of multiphoton absorption
processes and the consequent free carrier absorption, mainly coming from
the increase of visible DW and the generated third harmonic with the pump power.

Waveguide fabrication. The waveguides under test are fabricated accordingly to
the photonic damascene process36, which consists of a conformal low pressure
chemical vapor deposition (LPCVD) of Si3N4. In addition to the waveguides, a
dense filler pattern is patterned into the hard mask of amorphous silicon on a 4 μm
thick wet thermal silicon dioxide. This pattern efficiently releases the tensile stress
and prevents cracking of the thick Si3N4 thin film. The Si3N4 core channels are
covered by a cladding of low temperature oxide (LTO).
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Dispersive wave generation efficiency. We estimate the DW power by inte-
gration on the FT-OSA. To first calibrate the power measurement in the FT-OSA,
we directly coupled the attenuated pump laser at 2090 nm to the MMF via the
parabolic mirror and sent it to the spectrometer. We measured the value obtained
integrating the entire laser bandwidth in the FT-OSA (PFT-OSA) and we compared
it to the power detected with an InGaAs photodiode (Thorlabs S148C) at the
output of the MMF (PPD). The quantity c= PPD/PFT-OSA gave us the calibration
factor for the spectrometer. The mid-IR DWs were then integrated over their entire
spectral extend, namely 86–113, 80–110, 76–105, and 70–90 THz for the 1000,
1050, 1100, and 1175 nm wide waveguides, respectively. These values were then
multiplied by the measured calibration factor (c) at the pump wavelength to
retrieve the mid-IR DW power at the MMF output. It is important to notice that c
is constant over the entire FT-OSA spectral range. Finally, we considered the total
out-coupling losses, including transmission through the MMF and the output lens,
which was optimized for mid-IR throughput. The on-chip CE is then calculated as
the ratio between the on-chip mid-IR DW power over the coupled pump power.
The coupled pump power is estimated by direct detection of the pump laser before
the chip, and taking into account the in-coupling losses from the input lens (5 dB).

Also, we simulated the CE by integrating the output spectra obtained solving
the nonlinear Schrödinger equation. The CE was defined as the ratio between the
integral performed over the DW bandwidth, over the integral of the input
spectrum. The on-chip power was then calculated by multiplying the theoretical
CE by the value of the pump power used in the simulation.

Absorption spectroscopy. The mid-IR DW is collimated by adjusting the focal
distance of the objective at the chip output and passes through the cell. The sample
spectrum is obtained by filling the gas cell with 396 ppm C2H2 buffered in N2 in
1 atm total pressure at T= 296 K. The reference is obtained by purging the cell with
pure N2. The measurement time is ~2 min. The light exiting the gas cell is guided to
an OSA (Yokogawa AQ6376) through a single mode indium fluoride (InF3) fiber to
improve spectral resolution. In this configuration, the total losses from the chip
output are estimated to be around 20 dB. The OSA was set to its best resolution,
corresponding to 0.1 nm with a single mode fiber, and high sensitivity setting using
the internal chopper mode. We used 0.1 sampling interval for Fig. 5a and 0.02 for
Fig. 5b, c.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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