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We	 present	 the	 first	 demonstration	 of	 mid‐infrared	
supercontinuum	tissue	imaging	at	wavelengths	beyond	5	
μm	 using	 a	 fiber‐coupled	 supercontinuum	 source	
spanning	2‐7.5	 μm.	The	supercontinuum	was	generated	
in	 a	 tapered	 large	 mode	 area	 chalcogenide	 photonic	
crystal	 fiber	 in	 order	 to	 obtain	 broad	 bandwidth,	 high	
average	 power,	 and	 single‐mode	 output	 for	 diffraction‐
limited	 imaging	 performance.	 Tissue	 imaging	 was	
demonstrated	 in	 transmission	 at	 selected	 wavelengths	
between	5.7	μm	(1754	cm‐1)	and	7.3	μm	(1370	cm‐1)	by	
point	scanning	over	a	sub‐mm	region	of	colon	tissue,	and	
the	 results	were	 compared	 to	 images	 obtained	 from	 a	
commercial	instrument.	

Mid‐infrared	 (mid‐IR)	 spectral	 imaging	 is	 a	 promising	 label‐free	
diagnostic	 tool	 that	 could	 complement	 the	 current	 method	 of	
cancer	 diagnosis	 rendered	 by	 conventional	 histopathology.	 Its	
capabilities	in	combination	with	data	mining	algorithms	have	been	
demonstrated	on	various	 types	of	 cancer	 	[1–4],	which	makes	 it	
interesting	 and	 relevant	 for	 clinical	 applications.	 However,	
conventional	 mid‐IR	 spectral	 imaging	 is	 based	 on	 thermal	 light	
sources	 in	 combination	 with	 Fourier	 transform	 infrared	 (FTIR)	
spectroscopy,	which	limits	the	acquisition	speed	and	penetration	
depth	 due	 to	 low	 source	 brightness	 and	 precludes	 the	 use	 of	
optical	 fibers	 for	 flexible	 delivery	 and	 detection	 of	 light.	 Clinical	
applications	 of	 spectral	 pathology	 rely	 on	 its	 ability	 to	 compete	
with	current	practice	and	to	fit	into	existing	timescales	for	sample	
analysis.	 In	 this	regard,	considerable	attention	has	been	directed	
towards	utilizing	intense	laser	sources	to	provide	sufficient	signal‐
to‐noise	ratio	(SNR)	for	rapid	acquisition	across	the	mid‐IR.	Such	
sources	could	also	have	potential	 for	non‐destructive	reflectance	
imaging	 of	 tissue	 in	 vivo	[5].	 In	 recent	 years,	 several	
demonstrations	of	mid‐IR	imaging	using	quantum	cascade	lasers	
(QCL)	has	emerged,	resulting	in	a	drastic	reduction	in	acquisition	

time	 from	hours	 to	minutes,	 and	even	 just	 a	 few	seconds	when	
operated	 in	a	discrete	 frequency	 imaging	mode	 	[6–9].	However,	
several	 QCLs	 are	 needed	 to	 cover	 the	 frequencies	 that	 are	 of	
diagnostic	importance	to	pathologists,	which	adds	significantly	to	
the	cost	and	complexity	of	the	system.		
Another	 type	 of	 laser	 source	 that	 could	 be	 useful	 for	mid‐IR	

broadband	 spectral	 imaging	 is	 the	 supercontinuum	 (SC)	
source	[10].	Unlike	QCLs,	mid‐IR	SC	sources	have	the	potential	for	
providing	scan‐less	access	to	both	the	functional	group	region	(~2‐
6	μm)	and	part	of	the	fingerprint	region	(~6‐12	μm)	from	a	single	
monolithic	 fiber‐based	source	[11,12].	Having	access	 to	both	 the	
fundamental	 and	 overtone	 vibrational	 resonances	 of	 various	
molecules	 allows	 for	 more	 advanced	 chemometric	 analytical	
techniques,	such	as	multitone	correlation	spectroscopy,	which	has	
found	application	in	e.g.	 food	quality	control	[13].	Previous	work	
on	mid‐IR	 SC	 imaging	 has	 been	 based	 on	 ZrF4‐BaF2‐LaF3‐AlF3‐
NaF	(ZBLAN)	fiber‐based	sources,	benefitting	from	the	availability	
of	components	and	maturity	of	mid‐IR	technology	in	the	2‐5	μm	
range	[14–16].	 In	a	 recent	demonstration,	 such	a	 SC	 source	was	
used	in	combination	with	an	acousto‐optic	tunable	filter	(AOTF),	a	
Cassegrain	 transmission	 microscope,	 and	 a	 640	 x	 480	 pixel	
infrared	camera	to	perform	hyperspectral	imaging	of	colon	tissue	
from	 2.8‐3.7	 μm	[14].	 The	 combination	 of	 fast	 wavelength	
selection	and	high	signal	power	enabled	capturing	of	a	100	x	640	x	
480	hyperspectral	cube	in	just	2	seconds,	which	is	fast	enough	to	
perform	real‐time	measurements	for	clinical	applications.		
In	 this	 letter	 we	 present	 the	 first	 proof‐of‐principle	

demonstration	 of	mid‐IR	 supercontinuum	multispectral	 imaging	
in	 the	 long‐wavelength	region	beyond	 the	 capabilities	of	ZBLAN	
fibers,	enabled	by	a	chalcogenide	(ChG)	fiber‐based	SC	source	 in	
combination	 with	 a	 point	 scanning	 approach.	 We	 demonstrate	
tissue	 imaging	 in	 the	diagnostically	 important	 fingerprint	 region	
from	5.7	μm	(1754	cm‐1)	to	7.3	μm	(1370	cm‐1),	and	compare	the	
results	to	those	obtained	using	a	commercial	FTIR	system.	
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