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Abstract: On chip high quality and high degree pulse compression is desirable in the 

realization of integrated ultrashort pulse sources, which are important for nonlinear photonics 

and spectroscopy. In this paper, we design a simple inversely tapered silicon ridge waveguide 

with exponentially decreasing dispersion profile along the propagation direction, and 

numerically investigate self-similar pulse compression of the fundamental soliton within the 

mid-infrared spectral region. When higher-order dispersion (HOD), higher-order nonlinearity 

(HON), losses (α), and variation of the Kerr nonlinear coefficient γ(z) are considered in the 

extended nonlinear Schrödinger equation, a 1 ps input pulse at the wavelength of 2490 nm is 

successfully compressed to 57.29 fs in only 5.1-cm of propagation, along with a compression 

factor Fc of 17.46. We demonstrated that the impacts of HOD and HON are minor on the 

pulse compression process, compared with that of α and variation of γ(z). Our research results 

provide a promising solution to realize integrated mid-infrared ultrashort pulse sources. 

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (130.0250) Optoelectronics; (190.4390) Nonlinear optics, integrated optics; (320.5520) Pulse 

compression. 
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1. Introduction 

Optical pulse compression technique is important for many applications, including optical 

communication, nonlinear microscopy, supercontinuum and frequency comb generations [1–

6], etc. In laser systems, prism or grating-based compressors are typically used to compensate 

the linear chirp of pulses to compress them [7–9]. But the compression factor of linear chirp 

compensation is limited especially when the chirp is not significant and the pulse spectrum is 

not wide. Several nonlinear pulse compression schemes have been used to compress the pulse 

width with spectral broadening. In anomalous dispersion region, the breathing of higher-order 

solitons can be used to compress the pulse without grating pairs, but significant pedestal will 

accompany the compressed pulse and the compression factor is not high [9–13]. Adiabatic 

soliton compression in a dispersion decreasing fiber can provide a high compression factor 

without generating significant pedestal [14,15]. But the long fiber length required is 

undesirable in most systems because of compactness and cost [16–18]. Compared with the 

adiabatic compression, self-similar pulse compression can achieve large compression factor 

without pedestal generation in much shorter nonlinear media [3,19–23]. In a 6.4 m 

nonlinearity increasing photonic crystal fiber (PCF) taper, a 1 ps pulse is self-similarly 

compressed to 53.6 fs with low pedestal [3]. However, the required peak power of the input 

pulse reaches several kilowatts, and such PCF tapers with specific taper profiles are still 

difficult to fabricate in the fiber drawing process. Compared with the dynamic control 

required in the drawing of a fiber taper, controlling the waveguide dimension of on-chip 

devices is much easier. Self-similar compression of a pulse from 1 ps to 81.5 fs in a 6 cm long 

dispersion decreasing chalcogenide slot waveguide taper has been demonstrated by 

simulation [23]. However, further compression under the self-similar scheme in such a slot 

waveguide is limited by the two-photon absorption (TPA) of the substrate material and 

higher-order dispersion (HOD). 

Compared with the PCF, silicon waveguide has much stronger Kerr nonlinearity. More 

important, silicon waveguide is CMOS compatible [24], which is easier to be fabricated than 

chalcogenide slot waveguide. Adopting silicon waveguide will greatly promote the 

development of on-chip scale nonlinear photonics [25–28]. In the near-infrared spectral 

region around 1.55 μm, the TPA in silicon has a significant effect [23,29], which greatly 

limits the output optical power and degrades the efficiency of nonlinear optical processes. 

TPA can be greatly reduced in the mid-infrared spectral region. Silicon waveguide has no 

TPA beyond 2.2 μm, and three-photon absorption (3PA) can be significantly reduced when 

the intensity of pulse is below 2.22 GW/cm
2 [30,31]. The transmission window of silicon for 

nonlinear applications without TPA is in the wavelength range of 2.2 to 8.5 μm [24,32]. With 

the development of various devices including laser sources and passive components in the 
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mid-infrared region in the past decade, silicon-based mid-infrared photonics has attracted 

much more interest in recent years [33–35]. 

In this paper, we propose an inversely tapered silicon ridge waveguide with a simple taper 

profile to realize exponentially decreasing dispersion profile for self-similar pulse 

compression. By increasing the waveguide width, the dispersion of the waveguide is 

gradually reduced. The nonlinear evolution in the waveguide taper of a chirped soliton pulse 

with a wavelength of 2490 nm is investigated with a generalized nonlinear Schrödinger 

equation (GNLSE). The paper is organized as follows. In Section 2, the GNLSE and the 

principle of self-similar compression in the waveguide taper will be introduced. In Section 3, 

we design and characterize the dispersion and nonlinear feature of the proposed silicon 

waveguide taper. The self-similar pulse compression of chirped fundamental soliton in the 

waveguide taper is numerically investigated in Section 4. Finally we draw conclusions in 

Section 5. 

2. Theoretical model and principle of self-similar pulse compression 

The propagation of optical pulses in parameters varying silicon waveguide can be modeled by 

the GNLSE which includes the HOD and higher-order nonlinearity (HON) [36–38] as 

following 

 
m 1 m

2 43PAm

0m 2
m 2 eff

( ) 1
( ) 1 ,

m! 2 3 ( )
s

i zA A
i z i A A A A A

z tt A z

γβ
γ τ α

+

≥

∂ ∂ ∂ 
= + + − − 

∂ ∂∂  
  (1) 

where A(z, t) is the slowly varying envelope. βm(z) (m = 1, 2, …, and 6) is the m-th order 

dispersion coefficient at propagation distance z and obtained by Taylor expansion of the 

propagation constant β(ω) at a specific wavelength. τs = 1/ω0 is the shock time to describe the 

self-steepening, where ω0 is the actual frequency of the optical carrier. γ(z) represents the 

Kerr nonlinear coefficient varying along z, which is calculated by integration over the whole 

cross-section of the waveguide as [23,39] 

 

4

2

2 2

( , ) ( , )
,

( ( , ) )

n x y F x y dxdy

c F x y dxdy

ω
γ =




 (2) 

where n2(x, y) and F(x, y) represent the distributions of nonlinear Kerr index and the electric 

field, respectively. The varying cross-section of the waveguide along propagation direction 

will lead to a varying γ(z). The delayed Raman response is negligible in silicon and therefore 

no included [36,37]. α0 represents the linear loss of the waveguide. Since silicon has very low 

TPA in the spectral region >2.2 μm, we can neglect TPA when the pump wavelength is 

chosen as 2490 nm [30,31]. γ3PA represents the 3PA coefficient. Aeff(z) is the effective mode 

area of the light at different taper position z. In the spectral region from 2200 to 3200 nm, 

3PA plays an important role [36]. The impact of nonlinear loss induced by 3PA depends on 

the optical intensity in the waveguide [24,30,31]. 

It is known that self-similar solutions can be found for parameters varying nonlinear 

Schrödinger equation (NLSE) [3,23] 

 
2

22

2

( )
( ) ,

2

i zA A
i z A A

z t

β
γ

∂ ∂
= − +

∂ ∂
 (3) 

when the nonlinear coefficient γ(z) is a constant and dispersion profile β2(z) varies 

exponentially along the waveguide taper as 

 2 2( ) (0 exp( )) ,z zβ β σ= −  (4) 
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where σ = β2(0)ξ and ξ is the initial chirp factor of the input pulse. The analytic self-similar 

solution [19–21] of Eq. (3) is given by [3,23] 

 ( )
1/ 2

20

0 0

0

( )
( , ) sech exp ( ) ,

2

z

z zt t e i
A z t P e t t e

T

σ
σ σξ

 −  
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 (5) 

 2

0 2 0(0) (0) ,P Tβ γ =    (6) 

where T0 and P0 are the pulse width and peak power at z = 0, respectively. t0 is the temporal 

position of the pulse peak. As shown in Eq. (5), the duration and peak power of the pulse will 

decrease and increase exponentially along z, respectively. As the pulse compression factor 

only depends on the ratio of β2(z) and β2(0), a suitable waveguide design to realize a large 

ratio of the dispersion at the output and input points is the key for self-similar pulse 

compression. 

3. Design of silicon ridge waveguide taper 

To design a silicon ridge waveguide that satisfies the self-similar compression condition as 

described in Eq. (4), we first characterize the silicon ridge waveguide with different width as 

shown in Fig. 1(a). The waveguide is fabricated on silicon on insulator (SOI) wafer. After the 

etching of the silicon layer with thickness H1, the silica substrate is also etched for a depth of 

H2 with the same pattern of the silicon layer. The over etching into the silica layer will reduce 

the light in the silica layer thus enhance the refractive index contrast and confinement of light 

in the waveguide. Even for the light penetrating into the silica layer, the attenuation will not 

be high since the pump wavelength is still within the transparency window of silica [24,40]. 

The open surfaces of the waveguide are surrounded by air. The height of the silicon layer (H1) 

and the thin silica layer (H2) are 320 nm and 150 nm, respectively. The waveguide widths at 

the input (Win) and output (Wout) ports are 800 and 1390 nm, respectively. 

 

Fig. 1. (a) Schematic diagram of the designed inversely tapered silicon ridge waveguide. (b) 

Dispersion curves of the fundamental mode in the designed waveguide with width (W) varying 

from 800 to 1390 nm. The red vertical line indicates the pump wavelength of 2490 nm and the 

light green region has normal dispersion. (c) The variation of β2 at 2490 nm versus W. The 

insets show the mode patterns at the input and output ports of the waveguide taper. 

The dispersion and nonlinear coefficients of the fundamental mode at different W are 

characterized with finite element method (FEM). Figure 1(b) shows the dispersion curves of 
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the fundamental mode in waveguide with different W. When W increases, the minimum of the 

dispersion curve is shifted towards longer wavelength. In the design of dispersion decreasing 

waveguide taper in [23], the operation points were chosen on the longer wavelength side with 

respect to the minimum points of the dispersion curves since the dispersion curve on the 

shorter wavelength side is insensitive to the taper size in that design. In this work, the shorter 

wavelength side with respect to the minimum points of the dispersion curves significantly 

shifts upwards with the increase of W. In [23], the third-order dispersion increases 

significantly along the decrease of |β2| and the zero-dispersion wavelength (ZDW) is very 

close to the pump wavelength 1550 nm at the end of the taper, which distorts the soliton in 

the propagation. In our design, the third-order dispersion decreases along the decrease of |β2| 

and the value of |β3| is much lower than that in [23]. The ZDW is far away from the pump 

wavelength 2490 nm in the whole taper. For the black solid curve in Fig. 1(b), the minimum 

of the dispersion occurs at 2680 nm. Other dispersion curves shown in Fig. 1(b) are similar to 

the black solid one. When W increases, the value of β2 at the pump wavelength 2490 nm 

increases as shown by the red vertical line in Fig. 1(b). Figure 1(c) shows the variation of β2 

at 2490 nm versus W. The circles are the β2 values calculated by FEM and the solid curve is 

the spline interpolation. The insets of Fig. 1(c) show the mode patterns at the input and output 

ports of the waveguide taper for the light with a wavelength of 2490 nm. From Fig. 1(c), 

when W increases from 800 to 1390 nm, β2 increases monotonically from −6.3628 to −0.2584 

ps2/m, where the ratio of the two β2 values is 24.62. The signal wavelength can be selected 

from a rather broad range because of the gentle slopes of the dispersion curves in Fig. 1(b). 

Variation in the central wavelength will change the start and end values of β2, which will 

slightly change the compression ratio. The gentle slopes of the dispersion curves significantly 

reduce the sensitivity of the pulse compression to wavelength detune after the fabrication of 

the waveguide taper. 

 

Fig. 2. (a) The profile of W(z) along the propagation direction z. (b) The variations of the 

nonlinearity coefficient γ(z) (blue solid curve) and dispersion β2 (red dashed curve) along z. 

With the β2(W) shown in Fig. 1(c), Fig. 2(a) shows the taper profile W(z) that can fulfill 

the self-similar compression condition. The circles and solid curve in Fig. 2(a) correspond to 

those in Fig. 1(c). When the waveguide is tapered, it is not possible to keep the nonlinear 

coefficient γ(z) constant, thus the nonlinear coefficient γ will also be changed with the 

variation of W. The nonlinear indices n2 of silicon and silica are 4.79 × 10−18 m2/W [24] and 

2.20 × 10−20 m2/W, respectively. The electrical field distributions in both the silicon and silica 

regions are considered in the calculation of γ. Figure 2(b) shows the variations of γ versus z 

besides the exponentially decreasing dispersion curve at 2490 nm. The taper length is 5.1 cm. 

From Fig. 2(b), the variation of γ(z) (blue solid curve) is not monotonic. The value of γ 
increases from 29.30 to 30.36 W−1m−1 when z < 0.61 cm. When z > 0.61 cm, γ decreases 

monotonically and reaches the minimum value of 24.33 W−1m−1 at z = 5.1 cm. The ratio of 

the γ values at the input and the output ports is 1.20. Since the relative variation of γ(z) is 

much lower than that of β2, the nonlinearity variation can be considered as a perturbation to 
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the self-similar propagation, which will be discussed in the following section. The influence 

of nonzero α0 will be also discussed. 

4. Self-similar pulse compression in the waveguide taper 

From Eq. (5), when the nonlinear coefficient is a constant and the dispersion coefficient 

decreases exponentially, a chirped soliton will be compressed exponentially as the ideal case 

described by Eq. (3). To study the self-similar pulse compression in the designed waveguide, 

we model the pulse propagation dynamics by using Eq. (3). The initial chirp factor ξ = −9.87 

ps−2 according to Eq. (4). The full width at half maximum (FWHM) of the input hyperbolic 

secant pulse is 1 ps. With the initial dispersion β2(0) = −6.3628 ps2/m and nonlinearity γ(0) = 

29.30 W−1m−1, the peak power is chosen as 0.67 W to satisfy the fundamental soliton 

condition according to Eq. (6). A compression factor Fc to describe the degree of compression 

is defined as 

 FWHM_i FWHM_o ,cF T T=  (7) 

where TFWHM_i and TFWHM_o are the FWHMs of the input and output pulses, respectively. In 

addition, a compression quality factor Qc is used to quantify the compression performance as 

[7, 23] 

 out in( ) ,c cQ P P F=  (8) 

where Pout and Pin are the peak powers of the output and input pulses, respectively. 

 

Fig. 3. The evolutions of the (a) temporal waveform and (b) normalized spectrum of the pulse 

along the propagation distance in the waveguide in the ideal case, where the variation of γ(z), 

α0, 3PA, HON, and HOD are all neglected. 

Figures 3(a) and 3(b) respectively show the evolutions of the temporal profile and 

normalized spectrum of the pulse along propagation distance in the waveguide in the ideal 

case without considering the variation of γ(z), α0, 3PA, HON, and HOD. In the propagtaion, 

the input pulse is exponentially compressed and the temporal profile is kept as hyperbolic 

secant. In the pulse compression process, the temporal and spectral profiles are both 

symmetric without pedestal or satellitic peaks. After compression, TFWHM and peak power of 

the output pulse are 40.62 fs and 16.61 W, respectively. According to Eqs. (8) and (9), Fc and 

Qc of self-similar pulse compression in the designed waveguide taper in ideal case are 24.62 

and 1, respectively. 

However, the impacts of the variation of γ(z), α0, 3PA, HON, and HOD cannot be ignored 

in realistic case. Figures 4(a) and 4(b) show the evolutions of the temporal pulse and 

normalized output spectrum along propagation distance in the waveguide when the variation 

of γ(z), α0, 3PA, HON, and HOD are all considered. α0 is chosen as 0.026 dB/cm [41–43] and 

the 3PA coefficient γ3PA is 0.028 cm3/GW2 [30]. HOD coefficients are considered up to 6-th 

order. The input pulse is same as that used in the ideal case. The evolutions shown in Figs. 

4(a) and 4(b) are similar to the ideal case but with longer pulse durations, lower intensities 
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and narrower bandwidths. At the output port of the waveguide taper, the 1-ps input pulse is 

compressed to 57.29 fs corresponding to an Fc of 17.46, which is lower than the designed Fc 

24.62. The peak power of the output pulse is 10.63 W. The corresponding Qc is 0.91. 

 

Fig. 4. The evolutions of the (a) temporal profile and (b) normalized spectrum of the pulse 

along the propagation distance in the waveguide when the variation of γ(z), α0, 3PA, HON, and 

HOD are all considered. 

 

Fig. 5. Comparison of (a) the temporal profiles and (b) normalized spectra of the output pulses 

when the variation of γ(z) (orange short dashed curves), α including α0 and 3PA (cyan dashed 

curves), HON (green dash dotted curves) which means the self-steepening, and HOD (blue 

short dash dotted curves) are considered, respectively. The output pulse of the ideal case 

(NLSE, black solid curves) and realistic case with all effects included (red solid curves) are 

also plotted for comparison. The inset in (b) shows the detail of the peaks in the curves of 

NLSE, HON, HOD, and α. 

Clearly, the inclusion of the multiple effects have deviated the pulse propagation from the 

ideal self-similar pulse compression. To characterize the impact of each effect to perturb the 

self-similar pulse compression, we compare the pulse propagation with the inclusion of each 

effect respectively. Figures 5(a) and 5(b) show the comparison of the temporal waveforms 

and normalized output spectra of the output pulse when the variation of γ(z), combined losses 

α including the linear loss α0 and 3PA, HON, and HOD are respectively considered. The 

outputs in the ideal case and realistic case with all effects are also plotted for comparison. 

From Figs. 5(a) and 5(b), both the HOD and HON have slightly delayed the waveform by a 

few femtoseconds but the spectra are almost unchanged. In contrast, the peak power of 

waveform is greatly lowered to 12.81 W by the variation of γ(z) and the compressed pulse 

duration is enlarged to 52.07 fs. The spectrum is accordingly narrowed. The lossy effect 

including α0 and 3PA decreases the peak power to 13.27 W and simultaneously increases the 

pulse duration to 45.53 fs. Because of the energy loss, the peak of spectrum is not increased 

along the narrowing of spectrum. On the whole, the deviation of the pulse compression from 

the ideal self-similar propagation is mainly caused by the variation of γ(z), linear loss, and 

3PA. 

                                                                                          Vol. 25, No. 26 | 25 Dec 2017 | OPTICS EXPRESS 33446 



Compared with the significant distortion caused by the HOD in [23], the impact of HOD 

is greatly reduced in our design as shown in Fig. 5. To quantify the contribution of HOD in 

the self-similar pulse compression, we plot the different order dispersion lengths, LDk (k = 2, 

3, 4, and 5) for comparison, as shown in Fig. 6, where LDk is defined as 

 Dk 0 k( ) ( ) ( ) ,kL z T z zβ=  (9) 

where T0(z) is the pulse width and βk(z) is k-th order dispersion coefficient at propagation 

distance z. The ratio LD2/LD3 = |β3/(β2T0)| to estimate the relative contribution of third order 

dispersion, is also plotted in Fig. 6. Along the propagation, LD2 and LD3 both decrease 

monotonically since the spectrum of the pulse is increasing. Although the relative 

contribution |β3/(β2T0)| also increases monotonically, the maximum |β3/(β2T0)| is less than 0.6, 

which indicates a weak impact of β3 in the whole propagation process. In addition, β4 and β5 

are zero at z = 0.19 and 1.28 cm, which lead to infinite values of LD4 and LD5. The values of 

LD4 and LD5 are much larger than LD2, hence the effects of β4 and β5 are much weaker than that 

of β2. It can be concluded that choosing a region of flat dispersion far from the ZDW has 

greatly reduced the distortion induced by HOD in the self-similar propagation. 

 

Fig. 6. The variations of different order dispersion lengths LDk (k = 2, 3, 4 and 5, red, navy, 

yellow, and green solid curves, respectively), and the ratio LD2/LD3 (black dash dotted curve) 

along the propagation distance. The black dashed vertical lines indicate the locations with zero 

β4 and β5. 

 

Fig. 7. The evolutions of (a) TFWHM and (b) the peak power of the pulse along the propagation 

in the waveguide taper in the ideal case (NLSE, black solid curves), with the variation of γ(z) 

(blue dashed curves), HOD (orange dash dotted curves), HON (green dash dot doted curves), α 

including α0 and 3PA (cyan short dash dotted curves), and all effects (red solid curves), 

respectively. 

Figure 7 shows the evolutions of TFWHM and the peak power of the pulse along the 

compression for the different cases shown in Fig. 5. The curves with HOD and HON overlap 
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well to the curve modeled by NLSE in the ideal case. In the region of z < 2.35 cm, the 

deviations of other curves from the ideal case are hard to observe. The deviations of the 

curves with the variation of γ(z), lossy terms and all effects grow quickly and monotonically 

after the point of z = 2.35 cm. Clearly, either the decreasing nonlinear coefficient γ(z) or the 

attenuated peak power will weaken the nonlinear effect to be insufficient to compensate the 

dispersion effect. Since the self-similar propagation condition is not satisfied, the pulse 

compression is degraded manifested as the increase of TFWHM and decrease of the peak power 

at the output port. With the variation of γ(z), TFWHM and peak power of the output pulse are 

52.07 fs and 12.81 W, which deviate from the ideal case by 11.45 fs and 3.80 W, respectively. 

The inclusion of the lossy terms increases TFWHM by 16.67 fs to 57.29 fs and decreases the 

peak power by 5.98 W to 10.63 W, respectively. 

From Fig. 7, any effects that perturb the self-similar propagation condition will degrade 

the quality of pulse compression and lead to output pulses with longer durations and lower 

peak powers. It is the ideal case that the pulse is a fundamental soliton at every point in the 

propagation with LD2(z) = LNL(z) for all z values, where LNL(z) = 1/[γ(z)P0(z)] is the nonlinear 

length. Figures 8(a) and 8(b) show the variations of LD2 and LNL along the propagation in the 

waveguide taper for different cases to evaluate the quality of self-similar propagation. The 

chirp length LC = 1/σ is plotted to estimate the contributions of dispersion and nonlinearity 

effects in self-similar compression process [44]. The lengths are plotted in logarithmic scale 

for better presentation of the differences. In Fig. 8(c), the relative separations of LD2 and LNL, 

δL/L = 2(LD2−LNL)/(LD2 + LNL) in cased with γ(z) or all effects are plotted respectively. 

Because of the variation of γ(z), both LD2 and LNL deviate gradually from the ideal self-similar 

propagation. When all effects are included, similar but larger deviations are observed for both 

LD2 and LNL, as shown in Fig. 8(b). However, the relative difference between LD2 and LNL is 

less than 8% in the propagation of all cases, as shown in Fig. 8(c). Therefore, the fundamental 

soliton is still well maintained in the pulse compression process, and a much better output 

pulse quality is obtained compared with reported results in [23]. 
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Fig. 8. The evolutions of the second-order dispersion length LD2 (red solid curves) and 

nonlinear length LNL (blue solid curves) in logarithmic scale along the propagation in the 

waveguide taper when (a) only the variation of γ(z) and (b) all effects are considered. The 

black dotted lines are the chirp length LC. The green dashed curves represent LD2 and LNL in the 

ideal case (NLSE) for comparison. (c) The relative deviations δL/L = 2(LD2−LNL)/(LD2 + LNL) in 

the cases with γ(z) or all effects included. 

From the above discussions, the energy loss caused by α0 and 3PA is the second important 

effect that deviate the self-similar pulse compression from the ideal case besides the variation 

of γ(z). The 3PA coefficient is determined by the material and mode field size, which are 

fixed once the device is designed. However, α0 may vary significantly depending on the 

fabrication techniques of the waveguide, which should be investigated in practice. The 

scattering by voids, damages and rough surfaces of the waveguide, along with the material 

absorption, are the dominant sources of loss [41]. With well-designed cross-section of the 

waveguide and optimized lithography and dry etching processes to reduce the sidewall 

roughness, α0 can be reduced to 0.274 dB/cm [45]. With a combination of resist reflowing to 

form a surface-tension confined smooth etch mask and a low DC bias dry etch to reduce 
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roughness and damage in the silicon sidewalls, α0 can be further reduced to 0.1 dB/cm [46]. 

By using the passive-split wafers, an α0 as low as 0.026 dB/cm was measured [42]. We 

characterize the self-similar pulse compression with α0 = 0.026, 0.1, 0.274, and 1 dB/cm by 

the evolutions of TFWHM and peak power of the pulse, as shown in Fig. 9. The case with zero 

α0 is also plotted for comparison. In Fig. 9, although the input pulses are all compressed along 

the propagation in the waveguide taper, the output pulses, especially the peak powers of them, 

are significantly affected by α0. Table 1 summarizes the parameters TFWHM, peak power, and 

Fc of the output pulses with different α0. When a large α0 = 1 dB/cm is adopted, the peak 

power of the pulse is increased but then decreased at the final stage of propagation, which is 

clearly no longer a self-similar propagation. Thus, from Fig. 9 and Table 1, a low α0 will lead 

to perturbation to the self-similar pulse compression but a large enough α0 will eventually 

destroy the self-similar propagation. 

 

Fig. 9. The evolutions of (a) TFWHM and (b) peak power of the pulses along the propagation in 

the waveguide taper with α0 = 0.026 (red dashed curves), 0.1 (blue short dashed curves), 0.274 

(orange dash dotted curves), and 1 dB/cm (green dash dot dotted curves), respectively. The 

curves for α0 = 0 (black solid curves) are also plotted for comparison. 

Table 1. TFWHM, peak power, and Fc of the output pulse for different α0 and a 1-ps input 

pulse. 

α0 (dB/cm) TFWHM (fs) Peak power (W) Fc 

0 55.43 11.27 18.04 

0.026 57.29 10.63 17.46 

0.1 62.92 8.97 15.89 

0.274 77.23 6.08 12.94 

1 130.44 1.62 7.67 

 

In the above discussion, we have considered the perturbations to the self-similar 

propagation coming from the practical taper parameters with a 1-ps input pulse. The designed 

waveguide taper is applicable to compress pulses with different durations by a fixed 

compression ratio, while the peak power should be varied simultaneously to satisfy the 

fundamental soliton condition. Considering the perturbations of HODs and self-steepening, a 

longer input pulse with a lower peak power will have a better compression quality since the 

bandwidth is narrower. The self-similar pulse compression will be always valid unless the 

input pulse spectrum is too broad that the HOD and HON will significantly degrade the 

compression. 
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5. Conclusion 

In summary, we design a simple inversely tapered silicon ridge waveguide with exponentially 

decreasing dispersion profile to achieve mid-infrared self-similar pulse compression of low 

power picosecond pulse. In the designed waveguide taper, a 1-ps input pulse at the 

wavelength of 2490 nm is successfully compressed to 57.29 fs in only 5.1-cm propagation, 

along with an Fc of 17.46. We study the impacts of HOD, HON, α, and the variation of γ(z) 

on the pulse compression process. Compared with the HOD and HON, α and variation of γ(z) 

are considered as the dominant perturbations to degrade the self-similar pulse compression. In 

future work, the performance of the self-similar pulse compression can be further enhanced 

through optimizing the nonlinear parameter of the silicon waveguide taper and reducing α0 

during the fabrication process. Our proposed inversely tapered silicon ridge waveguide is 

simple and easy to fabricate, and should have immediate interest for realization of on-chip 

ultrashort pulse sources for nonlinear photonics and spectroscopy in the mid-infrared spectral 

region. 
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