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Abstract: We report on the ultrafast laser inscription (ULI) of volume 

phase gratings inside gallium lanthanum sulphide (GLS) chalcogenide glass 

substrates. The effect of laser pulse energy and grating thickness on the 

dispersive properties of the gratings is investigated, with the aim of 

improving the performance of the gratings in the mid-infrared. The grating 

with the optimum performance in the mid-infrared exhibited a 1st order 

absolute diffraction efficiency of 61% at 1300 nm and 24% at 2640 nm. 

Based on the work reported here, we conclude that ULI is promising for the 

fabrication of mid-infrared volume phase gratings, with potential 

applications including astronomical instrumentation and remote sensing. 

©2013 Optical Society of America 

OCIS codes: (050.1950) Diffraction gratings; (050.7330) Volume gratings; (140.3390) Laser 

materials processing; (230.1950) Diffraction gratings. 
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1. Introduction 

Ultrafast laser inscription (ULI) is a rapidly maturing fabrication process that facilitates the 

direct-laser writing of three-dimensional structures inside dielectric materials. To perform 

ULI, sub-bandgap ultrashort laser pulses are focused inside the substrate. Nonlinear 

absorption processes, such as multiphoton absorption, tunnelling ionization and avalanche 

ionization, deposit optical energy in the focal region. This deposition of energy can induce a 

localised structural modification, which can manifest itself in a variety of ways e.g. refractive 

index change [1] or chemical etch-rate modification [2, 3]. By translating the material through 

the laser focus, the ULI induced refractive index modulation can be used to fabricate three 

dimensional optical waveguide structures [4–6], while the ULI induced chemical etch-rate 

modification can be used to fabricate micro-optic [7], micro-mechanic [8] and micro-fluidic 

[9] structures. The applications of such a unique and flexible fabrication technology are vast, 

and those currently under investigation include (but are not limited to) quantum-optics [10], 

astrophotonics [4–6, 11, 12], biophotonics [9], and telecommunications [13]. 

In this paper we report on the ULI fabrication of volume phase gratings in gallium 

lanthanum sulphide (GLS) chalcogenide glass substrates, primarily with a view towards 

future mid-IR applications in astronomy, space-science and remote-sensing. The motivation 

behind this work is three-fold. Firstly, commercial volume phase holographic gratings 

(VPHGs) are most commonly fabricated in dichromated gelatine [14], which restricts the long 

wavelength operation to below ~2200 nm. Secondly, gelatine VPHGs are fabricated by 

exposing the material to an interference pattern – this restricts the size and form of the 

refractive index structure that can be realised. Thirdly, traditional VPHGs are extremely 

fragile. The application of ULI could address each of these drawbacks. For example, ULI 

may facilitate the fabrication of volume phase gratings in mid-IR transmitting materials, such 

as the GLS glass used in this work. Furthermore, since ULI is a direct-write technology there 

is no need for an interferometer, thus it may enable the fabrication of large volume phase 

gratings with variable line spacing, blazed profiles, or curved lines. Lastly, in contrast to 

traditional gelatine VPHGs, ULI fabricated volume phase gratings are extremely robust since 

the grating is fabricated at depth inside a single robust glass substrate. 

It is important to state that there have been many previous studies aimed at exploring the 

ULI manufacture of diffraction gratings. Early studies used fused silica substrates [15, 16] 

and achieved a peak efficiency of 20% @ 633nm [16]. Later development of fused silica 

gratings [17] resulted in diffraction efficiencies of 75% and 59% being measured for TE and 

TM polarized 633 nm light respectively. From these measurements, a refractive index 

modulation of 0.002 – 0.01 was calculated via Kogelnik’s coupled wave theory [14]. Gratings 

have also been manufactured in Schott filter glass OG530 [18] and demonstrated a large 
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refractive index modulation of 0.018, and a peak diffraction efficiency of 37% @ 633nm. 

Gratings have also been manufactured in Foturan photosensitive glass [19] with peak 

efficiency of 56% @ 633nm, but the refractive index modulation was not mentioned. Gratings 

with the potential to operate in the mid-IR have been manufactured in CaF2 [20], but the low 

refractive index modulation of 0.00036 resulted in gratings with a low diffraction efficiency 

of 8.5% @ 633nm. It is also worth highlighting recent work [21], which demonstrated the 

ULI fabrication of a high efficiency volume Bragg-grating in fused silica using a phase mask 

base technique. These previous studies, and others, clearly demonstrate that diffraction 

gratings can be manufactured using ULI in a wide variety of materials and high diffraction 

efficiency can be obtained. In this work, we explore the potential of using ULI to fabricate 

efficient volume phase dispersive transmission gratings for the mid-IR, beyond 2200 nm. 

2. Volume grating fabrication details 

All gratings were fabricated in GLS chalcogenide glass (n ~2.4) using ULI. GLS was chosen 

for two reasons: its ability to produce a relatively high refractive index modulation [5] and its 

good transmittance over the wavelength range 500 nm → 10 μm, with its potential application 

to near-IR and mid-IR astronomical spectroscopy. The ULI process was performed using an 

ultrafast Ytterbium-doped fiber laser system (Fianium HE1060-fs) which produced 430 fs 

pulses of 1064 nm light at a pulse repetition frequency of 500 kHz. The substrate material 

was mounted on x-y-z crossed-roller bearing translation stages (Aerotech ANT130) which 

facilitated the smooth and precise translation of the sample through the laser focus. The 

gratings were fabricated by circularly polarizing the laser and focusing it inside the substrate 

using a 0.4 NA lens. The substrate was then repetitively scanned back and forth through the 

laser focus at a translation velocity of 10 mm.s−1. Each full volume phase grating was 

fabricated by inscribing 1000 parallel lines of modified material, with a line spacing of 3.0 

μm. The specification of the translation stages indicates that the grating period should be 

stable to ± 125 nm. Individual grating lines were inscribed by translating the material only 

once through the laser focus and adjacent lines were inscribed using opposite sample 

translation directions. The complete grating was constructed by repeating this process a 

number of times. Each time the process was started at the same position in the glass, except 

for the depth of the inscription, which was reduced by 2.4 μm for each additional layer, such 

the grating is manufactured with deeper modifications inscribed first. A similar process was 

used to extend the depth of the gratings demonstrated in [18]. The ULI technique can be 

adapted for the manufacture of reflective volume Bragg-gratings as discussed in [21]. 

3. Volume grating studies 

3.1 Inscription pulse energy study 

To investigate the optimum pulse energy for grating inscription, volume phase gratings were 

fabricated which consisted of 17 layers of index modification, resulting in gratings ~41 μm 

thick and finishing ~150 μm below the surface. A preliminary investigation (Sample A) was 

first conducted where gratings were fabricated using pulse energies between 10 nJ and 180 

nJ. Based on the 1st order diffraction efficiency of 633 nm light, measured at blaze, this 

preliminary study indicated that the optimum pulse energy lay between 60 nJ and 90 nJ. 

Using the results of the preliminary study, 16 gratings were then inscribed using pulse 

energies between 62 nJ and 92 nJ, in 2 nJ steps (Sample B). Figure 1 shows two pictures of 

Sample B. The left image clearly shows light diffracted by the 16 gratings. The right image 

was taken using a shadowgraph. The yellow appearance of the GLS grating is due to the 

natural color of the substrate material, whereas the dark color of the gratings is related to the 

amount of diffracted light such that a darker color indicates a more efficient grating at visible 

wavelengths. 
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Fig. 1. (a) Digital camera picture of Sample B taken with angled illumination and viewing. (b) 

Shadowgraph image of Sample B. The orientation in both images is the same. The pulse 

energy used to fabricate the gratings decreases from left to right for each row and from top to 

bottom. 

 

Fig. 2. (a) Digital camera picture of the experimental setup used to measure the broadband 

efficiency of the gratings. The pieces of equipment shown are the IR camera (1), diffraction 

grating (2), collimating lens (3), optical fiber (4), monochromator (5) and light source (6). (b) 

Digital camera picture of one of the GLS gratings illuminated with a 633 nm laser. 

The diffraction efficiency of the gratings was measured using the experimental setup 

shown in Fig. 2(a). The setup consists of a white light source, an order sorting filter, a 

monochromator, an optical fiber, a collimator lens, the grating under test, and a detector. The 

light source is intensity stabilised and provides an output with less than 0.5% root mean 

square ripple. The monochromator operates over the wavelength range 400 – 4000 nm, with 

the appropriate grating installed, and provides a bandpass of 4 nm to 20 nm depending on the 

slit selected. An interchangeable order sorting filter is used to block second and third order 

diffracted wavelengths from the grating in the monochromator. An optical fiber (either a 
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multimode silica fiber or chaolcogenide As2S3 infrared fiber from Fibre Photonics, depending 

on the wavelength range under test) is used to efficiently couple the light from the 

monochromator to a small collimator lens. The gratings under test are only 3 mm in size, so it 

was important to test them using a small collimated beam. Thus, the beam size was restricted 

to 2 mm diameter by an aperture placed at the output of the collimator lens. The intensity of 

the diffracted beams is measured using either a Hamamatsu silicon photodiode or a Xenics 

Xeva-2.5-320 infrared camera system to cover the wavelength range 400 – 1000 nm and 1000 

– 2600 nm respectively. Both the grating and the detector are mounted on separate rotation 

and translation stages to provide accurate positioning and alignment during testing. 

The image in Fig. 2(b) shows the diffraction pattern produced by a typical grating from 

Sample A. The image was taken using a long exposure, e.g. 20 seconds, in a darkened room. 

During the exposure a piece of black card is moved by hand through the laser beam so that 

the camera captures the position of the beam. At the end of the exposure the card is removed 

from the scene and a flash is used to expose the image of the grating and mounting hardware. 

Figure 3 presents the results of the 633 nm diffraction efficiency measurements for 

Sample B, measured at blaze to maximise efficiency (where angle of incidence = angle of 

diffraction = 6 degrees). Figure 3, and all of the subsequent graphs and results present the 

absolute diffraction efficiency which includes the external transmittance of the substrate 

material. As shown in Fig. 3, the grating with the highest diffraction efficiency was found to 

be the one inscribed with 72 nJ laser pulses. For our experimental setup and parameters, this 

value represents the optimum pulse energy for volume grating fabrication in the GLS 

material. The precise reasons for this optimum have not been investigated. However, as 

shown in [22], when using ULI to write structures in GLS glass, the pulse energy not only 

affects the magnitude of the induced refractive index change, but also its width and profile. 

We conclude, therefore, that our optimum pulse energy is the one which balances all of these 

phenomena to maximise the diffraction efficiency. Clearly, the optimum pulse energy could, 

and indeed would, be expected to vary with other parameters such as translation speed, 

grating period etc. As discussed extensively in [14], the grating efficiency is a function of the 

grating thickness, and we expected that mid-IR gratings would require thicker gratings for 

efficient operation. In the following section we investigate the grating performance as a 

function of grating thickness. 

 

Fig. 3. Plot of absolute diffraction efficiency measured at 633 nm, for 0th and 1st diffraction 

orders vs. laser pulse energy for Sample B. 
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3.2 Grating thickness study 

Using the optimum pulse energy evaluated from the results of Sample B (72 nJ), a third 

sample was fabricated, denoted Sample C, containing 4 gratings. Each of these gratings was 

fabricated using identical parameters, except that the number of layers was either 17, 35, 53 

or 71, resulting in grating thicknesses of 41, 84, 127, 170 μm respectively. These gratings 

were then tested using the experimental setup shown in Fig. 2(a) in order to evaluate the peak 

1st order diffraction efficiency as a function of wavelength for each grating. The results of 

these investigations are shown in Fig. 4 where it can be seen that the thickest grating, 

fabricated using 71 layers, exhibited the peak efficiency at the longest wavelength, thus 

indicating the most promise for efficient mid-IR operation. Consequently, the 71 layer grating 

was further tested using Littrow illumination conditions to determine the diffraction 

efficiency, for both 0th and 1st orders, as a function of wavelength. The measured efficiency 

curve is shown in Fig. 5, where it can be seen that the peak efficiency is 61 ± 2% at 1300 nm. 

The grating continues to show significant diffraction efficiency of 24 ± 2% at 2640 nm, the 

upper wavelength limit of the measurement apparatus. 

Of the four Sample C gratings shown in Fig. 4 the one with 53 layers has the highest 

absolute diffraction efficiency at 65%. This value is consistent with theoretical predictions of 

grating efficiency made using GSolver grating modelling software and discussed later. The 17 

layer grating has low peak efficiency as a result of absorption losses in the GLS substrate 

material at wavelengths below 650 nm. At wavelengths above 700 nm the GLS substrate 

transmittance is approximately constant at ~70%. The peak efficiency of the gratings with 35 

and 71 layers is somewhat lower than the theoretical maximum and this may indicate the 

presence of a manufacturing tolerance such as misalignment of the grating layers, or a change 

in the refractive index of the modified region, resulting in lower diffraction efficiency. 

 

Fig. 4. Plot of absolute diffraction efficiency in 1st order vs. wavelength for Sample C with 

gratings of different thicknesses. 
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Fig. 5. Plot of absolute diffraction efficiency in 0th and 1st order vs. wavelength for the 

Sample C grating manufactured with 71 layers. 

The blaze angle performance of the 71 layer grating on Sample C was then tested in more 

detail to determine its diffraction efficiency as a function of angle of incidence. A plot of the 

0th and 1st order diffraction efficiency, measured at 1300 nm is shown in Fig. 6. The peak 

diffraction efficiency occurs at an angle of approximately 12 degrees consistent with the 

predicted blaze angle. The peak 1st order efficiency of 61% is the absolute efficiency and 

includes absorption and reflection losses caused by the GLS substrate material. The measured 

external transmittance of the GLS substrate at 1300 nm is 72%. If the substrate had an 

efficient anti-reflection coating, we would expect to obtain a peak diffraction efficiency of 

85%. Figure 6 also presents the results of theoretical simulations made with GSolver grating 

modelling software. The parameters used in the GSolver simulations were obtained by first 

fitting the experimental data by varying the Δn of the simulated grating, and then by varying 

the depth of the simulated grating. Three different grating profiles were also investigated 

(binary, sinusoidal and stepped). The measured data is best fit using a 150 μm thick binary 

grating, where the width of the region of increased index is 0.9 μm and the index modulation 

is Δn = 0.0075. We note that the fitted grating thickness is somewhat lower than the expected 

grating thickness. We suspect that this may be due to a depth dependent variation in the ULI 

induced Δn – the result of depth dependent spherical aberration imparted on the laser beam. 

 

Fig. 6. Plot of absolute diffraction efficiency measured at 1300 nm, for 0th and 1st diffraction 

orders vs. angle of incidence for the GLS Sample C 71 layer grating. The theoretical GSolver 

prediction for a binary refractive index profile is also shown. 
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As seen in Fig. 2(b), the GLS gratings exhibit a stripe of scattered light and ghosts 

between the main diffraction orders. The amount of scattered light was determined by 

measuring the total integrated transmittance of the grating and subtracting the known 

efficiency of the diffraction orders [23]. The total integrated transmittance includes the 

contribution from all of the diffraction orders, ghosts, and the halo of scattered light. The total 

integrated transmittance is measured by placing the entrance aperture of the integrating sphere 

within a few millimetres of the grating, such that most of the output beam is captured. Sample 

A produced less than 5% integrated scattered light at 633 nm but this is inferred to be < 1% at 

2500 nm. The ULI process in GLS performs well, producing highly transparent gratings. 

If this grating technology is to be used at mid-IR wavelengths (>2500 nm) it is important 

to demonstrate that the gratings can survive cooling to cryogenic temperatures and that their 

performance is unaffected by cooling. To achieve this GLS gratings have been subjected to a 

number of thermal cycles, from room temperature to 20 K. The diffraction efficiency, 

measured at room temperature, is unaffected by the thermal cycling. The efficiency at 

cryogenic temperatures has not yet been characterised but is unlikely to be significantly 

affected by cooling. The performance of the GLS gratings has been monitored over a period 

of 18 months and no change in the diffraction efficiency has been detected. 

4. Conclusions 

This work has demonstrated the capability of ULI to write volume phase diffraction gratings 

in GLS material and obtain 1st order diffraction efficiency exceeding 61% in the near-IR, and 

up to 24% at 2640 nm (mid-IR). Simulations indicate that the grating performance is best 

modeled by a binary refractive index modulation of 0.0075, and not a sinusoidal modulation 

as in a holographic grating. The robust nature of the ULI grating structures, the ability to 

manufacture them in a wide range of materials, the ability to create arbitrary grating 

structures, and their high performance, make them well suited to a variety of applications e.g. 

hyper-spectral imaging, satellite sensors, small laboratory spectrometers and wavelength-

stabilization elements for mid-IR lasers. The excellent performance of the prototype GLS 

gratings is such that their use in astronomical spectrometers should be considered, particularly 

at near and mid-IR wavelengths, where GLS provides excellent transmission. 
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