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ABSTRACT 

A system is described for using a medium scale 
computer in real time data acquisition, analysis, and 
control of high-energy physics experiments utilizing 
wire spark chambers. 

Objectives 

MIDAS is a control program for the IBM 1800 com- 
puter (see figure 1 for the SLAC configuration), designed 
as part of the IBM-Stanford Joint Study Agreement for 
real time data acquisition, analysis, and control in con- 
junction with the rho-zero experiment. The implemen- 
tation had several objectives . . . 

1. to supply a set of standard functions required 
for any data acquisition system. These include 
run control, event control, buffer management, 
magnetic tape recording facility, data setup 
for analysis, CRT display control, listing con- 
trol, message and keyboard control, periodic 
monitoring facility, and background task 
scheduling; 

2. to provide convenient, table-driven interfacing 
between experimentally dependent tasks and 
fixed system functions; 

3. to keep as independent as possible the tasks in 
the system, and to provide a hierarchical 
structure between them; 

4. to permit a large degree of operator interaction 
with the experiment via an experimenter com- 
mand post; 

5. to provide a framework in which a complete 
analysis could be performed, free from time 
constraints and independent of the source of 
data; 

6. to allow both FORTRAN and assembly language 
routines to be incorporated; 

7. to operate in two distinct modes with no repro- 
gr amming 

(a) online for performing data acquisition, 
analysis, display, equipment monitoring, 
and equipment control in real time, 

(b) offline for analysis and display of data 
on magnetic tape. 
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Introduction 

The basic operational entity in the system is called 
a task. Each task is designed to accomplish a single 
unit of work, and operates independently of other tasks. 
Since there is only one instruction processor, parallel 
operation of several tasks does not actually occur, but 
conceptually this is the best way to visualize their 
asynchronous operation. A priority scheme is used for 
allocating the processor to one task in the set of those 
active at any given time. Tasks remain dormant until 
explicitly activated by a request for their operation. 
There are two sources of request generation - other 
tasks; and signals or conditions in the external envi- 
ronment requiring action by the computer. These ex- 
ternal conditions are made known to the computer either 
actively by an interrupt trigger, or passively by a spe- 
cialized task in the computer, called a sensor or detec- 
tor, which continually scans external equipment for 
meaningful changes in status. This event-driven organ- 
ization seems the most natural for real time systems 192 
and was utilized in the SPECTRE system implemented 
at SLAC on another computer. 3 

Interrupts 

The usefulness of interrupt triggers in a data acqui- 
sition system depends on the existence of a priority 
interrupt scheme such as that on the 1800.4 Triggers 
are assigned in groups called levels, designed so that 
processing on a given level precludes interruption by 
triggers at a lower level, but permits interruption for 
servicing higher level requests. This hardware is a 
convenient, effective queue for handling external demands 
on the computing resource, and enables the computer to 
remain continually “alive” to all requests. By assigning 
the most urgent demands to the highest priorities, the 
hardware allocates the processor to the most important 
tasks and enqueues other requests for subsequent exe- 
cution in the proper priority sequence. 

The implementation involves a mapping of each in- 
terrupt source into a unique item in a table that is filled 
with task names whenever an experiment is begun. This 
enables each experiment to assign tasks to interrupts 
and to arrange the relative priorities between tasks. 
Additional interrupts are incorporated by simply filling 
the corresponding slot in the table with a task name. 

There are three major classes of interrupt triggers 
in MIDAS - (1) those involved in run dependent functions, 
(2) those associated with individual events, and (3) those 
connected to I/O devices. 

Assigned to the first category are the highest prior- 
ity interrupts which include a set of function pushbuttons 
required by the operator for run control purposes, sig- 
nals for unusual error conditions, preset checks, and 
equipment malfunction triggers. These functions are in- 
frequent relative to other triggers, but require immedi- 
ate response when they do occur, since they directly af- 
fect everything else in the experiment. 
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The triggers assigned to the next levels are those 
associated with the data acquisition tasks. These sig- 
nal the computer that an interesting event has occurred, 
that data is ready for transmission, or that a data trans- 
mission has been completed. They are utilized for 
equipment control and monitoring, and to synchronize 
computer action with the movements of active experimen- 
tal devices. This class also includes the analysis, 
scope, and timer triggers, as well as interrupts from 
the high-speed magnetic tape on which raw data is 
logged. 

The lowest levels are assigned to slow speed I/O 
devices, such as card reader, printer, typewriter, and 
to anything else which does not need fast, guaranteed 
response. 

Tasks operating on the priority levels constitute the 
“foreground” activity in MIDAS. “Background” activity 
is supervised by a monitor which provides queuing and 
scheduling of the lowest priority tasks for which real 
time operation is not essential. Most of these tasks are 
involved withformatting and printing histograms, param- 
eter tables, scaler readings, etc. Since these tasks 
are often large and slow, they are kept on the disk until 
requested, then brought into an overlay area of memory 
for execution. Response time is not critical, so the 
disk overhead can be ignored, but the space saving is a 
significant bonus. Requests for background tasks orig- 
inate from typewriter commands, or from tasks on higher 
levels which have completed the urgent phase of their 
operation. Typically, the task on an interrupt level 
obtains data from an external device in real time, then 
enqueues a background task to format, print, and record 
the data as time permits. 

The arrangement of individual priorities within the 
second class depends on the data rates and the amount of 
analysis attempted. The most urgent tasks are con- 
nected to the “next-event” triggers, to the “end-of- 
readout” triggers, and to interrupts from the logging 
device. These requests must be guaranteed service with 
minimal delay if the experiment is to be even attempted. 
Therefore they are assigned to the highest levels in this 
class, with the analysis routines immediately below them. 

To obtain raw data from the input stream the data 
setup routines employ an event-sampling strategy that 
imposes no constraints on the time required to analyze a 
single event. The acquisition tasks on higher levels pro- 
ceed independently of the analysis, so that any number of 
events can be acquired and logged while a single event is 
analyzed in the remaining time. Naturally the data setup 
routines are interlocked with the buffer managing routines 
to guarantee that data setup for analysis belongs entirely 
to a single event. In the rho-zero experiment the event 
rate was low enough and the analysis routines fast enough 
to perform an analysis on every event, so that the sam- 
pling method served as a buffer which enabled the analysis 
to “catch up” after short bursts of very rapid inputs. 
Other experiments with higher data rates have verified 
the usefulness of the event-sampling approach. 

Display generation is assigned to the next level in 
order to keep information on the CRT current, An at- 
tempt is made to regenerate the display after every new 
event has been analyzed, which is feasible only when all 
processor time is not consumed by higher level functions. 

Were this not true, the scope functions would be placed 
on the same level as the analysis, in lieu of analyzing 
at a higher rate, or on a level above the analysis, in 
which case display updating would be triggered at a 
rate significantly below the analysis rate. 

It is worth noting the advantages which our scope, 
an ordinary laboratory oscilloscope with a storage tube, 
has for small and medium scale computers. The pic- 
tures are drawn in a manner analogous with plotting on 
an x-y plotter. There is no need for complicated buf- 2 
fering or continual regeneration of the scope coordin- 
ates by the computer. This saves processor time and 
storage space - both valuable resources in smaller 
configurations. Because the storage tube retains 
images indefinitely, annoying flicker is totally absent, 
and displays can easily be superimposed on one an- 
other, a feature useful for comparisons and curve fit- 
ting. Image retention can also be used effectively for 
building up scatter plots involving large numbers of 
points, a task usually impossible for systems with 
limited memory and speed. Finally they are cheap 
when compared to other types of computer displays - 
the only other hardware components required are two 
digital-to-analog convertors and two amplifiers to 
drive the beam deflection plates in the CRT. These 
combined factors make it quite feasible to consider 
attaching several of these display units to the computer, 
although this has not been done in the current versions 
of MIDAS. 

Sensors 

Sensors are special tasks designed to detect changes 
in the environment which require repeated observations 
over a period of time and which are therefore not eas- 
ily representable to the computer as interrupt triggers. 
Examples are switches and thumbwheel dials, DVM 
readings, etc. The sensor itself may be activated 
periodically, by external interrupts, or by conditions 
arising in other programs. Its operation consists of 
obtaining the current values and settings of external 
devices, then performing a series of tests on this in- 
formation to determine whether or not activation of a 
new task is required. The test results are used to 
select the particular task from tables assigned to the 
sensor when the experiment is loaded into the computer. 
The table lookup enables each experiment to use the 
same detection mechanism for initiating completely 
different actions. Sensors form an integral part of any 
data acquisition system, since they constitute conven- 
ient, programmable interfaces for mapping external 
conditions into computer tasks. This is particularly 
desirable when using the same equipment in different 
experiments, because the sensor becomes an exten- 
sion of the equipment as far as the programmer is 
concerned. 

The MIDAS scope control facility is a good example 
of a sensor. Every 0.1 seconds this routine reads in 
the settings of the scope ID thumbwheel and the toggle 
switches on the scope control panel, then checks this 
information against the previous settings to select new 
display or print routines from the task name tables. 
If additional options, such as x-y plotter output, were 
desired, the same selection mechanism could be em- 
ployed by adding another test in the sensor along with 
a corresponding task name table. 



The keyboard input facility and begin-run/end-run 
interlock routines have also been implemented as sen- 
sors in MIDAS. 

Operator Interface 

The operator command post (figure 2) consists of 
the CRT, the typewriter/keyboard, a set of function 
pushbuttons with associated status lights, a panel of 
toggle switches, thumbwheel dials, and status lights, 
and a set of numerical display scalers. The intention is 
to make readily available to the experimenter as much 
information as possible, and to permit him a large de- 
gree of control of the experiment via the computer. The 
various input components of this interface (typewriter, 
scope ID selector, and pushbuttons) are table driven 
for easy use. 

There are two types of CRT displays, those based 
on individual events and those showing summaries of 
event data. Event-by-event schematic plots of the spark 
chamber planes and hodoscope counters, with marks to 
indicate the location of sparks and counters which fired, 
are extremely useful for equipment checkout and mon- 
itoring. By inhibiting the screen erase between events 
and superimposing the successive displays, a distribu- 
tion of sparks is built up in which any dead spots or mal- 
functions are easily discernible. Another display draws 
the tracks found by the analysis in positions relative to 
the chamber schematic. 

The summary plots are histograms and scatter plots 
of various phenomena. These include results of the 
analysis (mass, energy, angular distributions), self- 
checks on the analysis (track deviations), and checks on 
the raw data (spark and hodoscope distributions). 

Communication via the typewriter utilizes a simple 
command language in conjunction with an internal de- 
scriptor table (see appendix for commands). There are 
two basic classes of descriptors - task names; and 
parameter names - with commands to operate on each. 
The descriptors contain external names, internal names 
(storage addresses), and other information about the 
properties of the items being defined. 

Tasks can be executed in the background once, or on 
an event-by-event basis, with any necessary parameters 
supplied from the typewriter. Parameters can be of four 
types - single and double precision integers, floating- 
point numbers, and character strings. They can be in- 
terrogated or changed by the experimenter at any time. 

Explicit commands are part of the basic interface, 
but the more common command words can be dropped by 
making the command implicit in the name. Effectively 
each name becomes a command and the number of com- 
mands available is therefore unlimited. This is imple- 
mented by utilizing the additional information about the 
name in its descriptor. If the descriptor type is “task”, 
entering the name obviously implies “execute the task”, 
with any parameters needed by the task included after 
the name in the input. If the descriptor type is “param- 
eter”, the name alone indicates “type out the current 
value”, whereas the name followed by a value means 
“change the parameter to this value. ” The descriptors 
also provide useful information when formatting param- 
eter values both for typing them individually and for 

printing and logging the descriptor table as a whole. 
Finally the parameter descriptors can cause the back- 
ground scheduler to execute an associated task when- 
ever the value of the parameter is changed by the 
operator. This is especially useful for recomputing 
other parameter values derived from the one that was 
changed, or for readjusting control settings on exter- 
nal equipment as a consequence of the parameter’s 
new value. 

For debugging purposes the typewriter permits 
interrogation or modification of any word in storage, 
and dumping of any area of core, features frequently 
used in developing other parts of the system. 

Additional Comments 

The current system does not permit assemblies or 
compilations to be performed as background tasks, so 
that online reprogramming is not possible. FORTRAN 
routines can be incorporated, but they proved to be too 
large and too slow to be of any use in the rho-zero 
experiment. MIDAS components were written in as- 
sembly language for the same reasons, and the fact 
that FORTRAN is too restrictive and cumbersome for 
most system functions. However compatibility con- 
siderations and lack of time and manpower required us 
to utilize wherever possible the TSX operating system 
supplied by IBM for the 1800.8 The result is a some- 
what larger and slower resident nucleus than would be 
necessary had everything been written specifically for 
MIDAS. The TSX program loader builds and maintains 
all core loads on the disks in absolute format, including 
the overlay tasks. Therefore all routines which might 
be needed at any point in the experiment must be re- 
located and stored on the disk when the core load for 
that experiment is built. This speeds up subsequent 
loadings significantly, but modifications or additions 
require rebuilding the entire core load. This is bother- 
some during the initial phases of an experiment, when 
new routines are frequently being added and debugged, 
but is tolerable after the programming stabilizes if 
one considers the amount of storage necessary to main- 
tain a resident relocating loader and accompanying 
symbol dictionary. 

The hierarchical task structure and relative inde- 
pendence of the components has aermitted a simole 
implementation of &o modes of operation. Online the 
data acquisition tasks are activated to input the data, 
while offline equipment triggers are blocked and a tape 
reading task obtains data from magnetic tape. In either 
case the data is deposited in the same buffer chain, so 
that other tasks in the system need not know or care 
which particular data source is being employed. They 
operate identically in either mode. The event-sampling 
strategy for passing data to the analysis works quite well 
for analyzing all events offline because the data rate from 
tape adjusts to the rate at which the analysis can process 
events. Mode switching can be effected at any time by a 
command from the typewriter. 

MIDAS includes a timer control facility for periodic 
activation of tasks at rates varying from several times 
a second to once every several minutes. This is used 
to initiate the scans of all MIDAS sensors, as well as a 
special monitor task every 10 minutes during a run. 
This monitor recomputes the chamber fiducial6 on the 



basis of current data, reads all scalers and DVM’s, 
dumps these along with the parameter table onto both 
printer and tape, and notifies the operator of any unusu- 
al conditions detected. 

Although originally designed to use spark chambers 
as the principle acquisition equipment the basic system 
is not constrained to any particular device or data for- 
mat, and has incorporated much additional equipment 
as the experiment progressed. A few changes in the in- 
put routine enable any device, digital and/or analog, to 
be included. The data rates attainable are a function of 
the device itself, the amount of data read per event, the 
amount of space allowed for buffers, and the event block- 
ing factor for recording on tape. The availability of 
cheap selector-type data channels having direct access 
to memorv oermits I/O activitv independent of the CPU, 
so that digiial inputs; analog inputs, -tape logging, and 
CRT displays can be in progress simultaneously. 

Appendix: MIDAS Typewriter Commands 

1. 

2. 

3. 

4. 

5. 

6. 

In the command definitions, a <name> can be 
either an alphameric name or an absolute core 
address, preceded by a slash if the address is in 
hexadecimal, e.g., XYX, 9572; /F04B. 

3. Brown, R. M., Fisherkeller, M. A., Gromme, A. E., 
and Levy, J. V., “The SLAC High-Energy Spectrom- 
eter Data Acquisition and Analysis System, ” Pro- 
ceedings of the IEEE, Vol. 54, No. 12, (Dec. 1966), 
pp. 1730-1734. 

A <value> can be either a decimal or hexadecimal 4. IBM 1800 Functional Characteristics, Form A26- 
integer constant, a floating-point constant, or a 5918-5, International Business Machines Corpora- 
character string. tion, San Jose, California. 

Command words can be typed in full, but the first 
letter alone will suffice. 

5. IBM 1800 Time-Sharing Executive System Specifi- 
cations, Form C26-5990-1, International Business 
Machines Corporation, San Jose, California. 

Comments are entered by first typing a quote mark 
(s) and then the text of the comment, e.g., ‘This is 
a comment. 

All commands and comments are free-field with the 
component parts separated by at least one blank. 

Command definitions : 

ADDRESS <name> 
The hexadecimal core address of pa- 
rameter or task <name> is typed. 

DUMP <namel><name2> 
The contents of core storage between 
locations <namel> and <nameZ> are 
dumped onto the printer in hexadecimal 
format. 
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TYPE 

HEX 

SET 

XEQ 

OPEN 

CLOSE 

<name> 
The value of parameter <name> is 
typed. 

<name> 
The hexadecimal representation of the 
value of parameter <name> is typed. 

<name> <value> 
The current value of parameter <name> 
is replaced with <value>. 

<name> <value, if needed> 
Enqueues task <name> for execution 
once in the background. The <value> 
issupplied only if needed. 

<name> <value, if needed> 
Enqueues task <name> for execution 
in the background after the analysis 
of each subsequent event. The 
<value> is supplied only if needed. 

<name> 
Removes task <name> from the back- 
ground queue. 



ACTIVE 
DEVICES 

2401 2310 

DISK 

----------- 

32K, 2pSeC 

DIGITAL OUTPUT ---------- -------- 

FUNCTION BUTTONS 
AND STATUS LIGHTS 

-ER -I 

SPARK CHAMBERS 

HODOSCOPES 

CONTROL SETTINGS 

SCOPE CONTROL 
PANEL 

EQUIPMENT 
MONITORS 

1 DISPLAY 1 
OPERATOR - 

TYPEWRITER / 
SCALERS KEYBOARD 

Fig. 1 

CRT 
- 

I 

1816 -1 TYPEWRITER 

CRT 
CONTROL PANEL 
DIALS JWITCHES, 

AND LIGHTS 

Fig. 2 


