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Abstract: To address the need for flexible energy management and impact angle control in the
midcourse guidance of modern long-range antiballistic interceptors, an impact time and angle
guidance law is designed for the exoatmospheric midcourse flight of antiballistic interceptors, which
covers two pulse sections and two coast sections. The problem is described as an optimal control
model with discontinuities in the system equations at interior points, and an iterative guidance
method is used to efficiently solve the two-point boundary value problem. Simulation results
demonstrate the effectiveness of the proposed guidance law; the obtained miss distance accuracy has
an order of magnitude of 1 m, and the impact angle accuracy has a 1◦ order of magnitude while the
angle can be achieved.

Keywords: impact angle and time control; iterative guidance method; midcourse guidance

1. Introduction

In the context of modern aerospace vehicle guidance, the search for a larger inter-
ception range is the development direction of interceptors. With increasing ranges and
flight times, the structures and flight procedures of interceptors are becoming increasingly
complex, and flexible energy management is also required. For example, to support the
extended range of an exoatmospheric interceptor, additional thrust is provided in a new
third stage for the SM-3 vehicle, which contains a dual-pulse rocket motor. Upon sepa-
ration (the second stage), the first pulse burn of the third-stage rocket motor provides an
axial thrust to maintain the vehicle’s trajectory into the exoatmosphere. Upon entering
the exoatmosphere, the third stage coasts. If the third stage requires a course correction
for an interceptor, the rocket motor begins burning the second pulse. On the other hand,
impact angle constraints are widely used in modern guidance law investigations due
to their advantages, such as exploiting the weak points of a target, avoiding directional
defense mechanisms, addressing seeker positioning and orientation requirements, and
pincer attacking [1–7]. For antiballistic interceptors, it is suitable to carry out impact angle
control during midcourse guidance because terminal guidance is realized by a kill vehicle
(whose main task is to hit the target) with limited acceleration. Thus, for modern long-range
antiballistic interceptors, due to the needs of flexible energy management and impact angle
control, higher requirements for midcourse guidance algorithms are proposed.

To the best of the authors’ knowledge, no existing impact angle guidance methods
address the multipulse guidance problem with coast sections. Most methods require
continuous control and no great changes in speed. Limited published works have addressed
the 2D impact angle control guidance problem for an interceptor with a booster [8,9], while
research on a 3D multipulse guidance method for an interceptor has yet to be conducted.
This paper focuses on the design of impact time and angle guidance laws for an antiballistic
interceptor’s exoatmospheric midcourse flight. During this phase, the interceptor flies
towards a predicted intercept point (PIP), with strict arrival time requirements and relatively
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loose impact direction requirements, and all those parameters are given by the command
system. Based on iterative guidance methods (IGM), which are under the framework of
optimal control and have been successfully applied in real space missions [10], a midcourse
guidance law is derived for a two-pulse interceptor against a stationary PIP with impact
time and impact angle constraints in this paper. In addition, the proposed iterative guidance
method can also be used independently in missions such as multi-interceptor pincer attacks.

The remainder of this paper is organized as follows. In Section 2, the IGM is presented.
In Section 3, the simulation results are presented and discussed. Finally, in Section 4, the
conclusions are presented.

2. Iterative Guidance Method
2.1. Motion Model

The motion equations of the interceptor are modeled in an earth-centered inertial
frame (J2000). r and v are defined as the position and the velocity vectors of the interceptor,
respectively. Then, the motion equations of the pulse section can be written as

.
r = v
.
v = T

m0−mdt l + g
(1)

where m0 is the mass of the interceptor when the pulse starts; T is the constant thrust
magnitude; md is the fuel consumption rate; l is the direction vector of the thrust, which
satisfies ‖l‖ = 1; and g is the gravity acceleration vector. The motion equations of the coast
section can be written as .

r = v
.
v = −µr/‖r‖3

(2)

The general flight procedure of a two-pulse interceptor in the midcourse guidance phase
can be described as “first pulse section + first coast section + second pulse section + second
coast section”. Thus, an integrated motion model can be described as{ .

r = v
.
v = T1

m10−md1t l + g
, 0 < t < t1

{ .
r = v
.
v = −µr/‖r‖3

, t1 < t < t2

{ .
r = v
.
v = T2

m20−md2t l + g
, t2 < t < t3

{ .
r = v
.
v = −µr/‖r‖3

, t3 < t < tPIP

(3)

where t1, t2, t3 denote the start or end time of each section and tPIP is the required arrival time.

2.2. Optimization Model

The state variable vector and control variable vector are defined as

x =

[
r
v

]
, u = [l] (4)

The motion equations of the two coast sections can be replaced with algebra equations
for the two-body solution, i.e.,

xt = Φ(x, t) (5)
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where the detailed expressions of the function Φ and its partial derivative can be found in
Appendix A. Thus, the state equations can be written as two pulse section equations with
discontinuities in the state variables at interior points, i.e.,

.
x =

[ .
r
.
v

]
=


f
′
=

[
v

T1
m10−md1t l +

–
g

]
, 0 < t < ts

f
′′
=

[
v

T2
m20−md2t l +

–
g

]
, ts < t < t f

(6)

xs+ = Φ
(
xs−, δ2)

x f+ = Φ
(

x f−, tPIP − δ2 − t f

) (7)

where ts = t1 and t f = t1 + t3 − t2 are specified, while δ2 = t2 − t1 is free. In this paper,
we use the subscripts 0, s, f to signify variables at the initial, discontinuous, and final
points, respectively, and the subscripts + and – signify the variables just before and after
discontinuities, respectively. Realistic position-dependent gravity can be approximated as
the mean of the gravitation vectors at the initial point r0 of the interceptor and at the PIP
rPIP [10], i.e.,

–
g = −1

2

(
µr0/‖r0‖3 + µrPIP/‖rPIP‖3

)
(8)

The optimization goal is to achieve both a zero miss distance and impact angle con-
straints at a specified terminal time. The impact angle is considered a cost function instead
of a terminal constraint in case the expected impact angle cannot be essentially achieved.
Thus, the cost function can be written as

maxJ =
ed

Tv f+

‖v f+‖
(9)

where ed represents the desired velocity direction of the interceptor, and the terminal
constraint can be written as

r f+ − rPIP = 0 (10)

Thus, the optimal control problem with discontinuities in the state variables at interior
points can be modeled as

minJ = − ed
Tv f+
‖v f+‖

s.t.
.
x =

[ .
r
.
v

]
=


f
′
=

[
v

T1
m10−md1t l +

–
g

]
, t < ts

f
′′
=

[
v

T2
m20−md2(t−ts)

l +
–
g

]
, ts < t < t f

‖l‖ = 1

Φ
(
xs−, δ2)− xs+ = 0

x f+ = Φ
(

x f−, tPIP − δ2 − t f

)
r f+ − rPIP = 0

(11)
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The optimization model needs to be nondimensionalized for numerical computation
purposes. The reference variables are chosen as follows:

Rre f = Re, Vre f =
µ

Re2 , are f =
Vre f

2

Rre f
,

tre f =
Rre f
Vre f

, mre f =
m10+m20

2 , Tre f = mre f are f

(12)

Accordingly, the dimensionless variables can be written as

~
r = r

Rre f
,

~
v = v

Vre f
, t̃ = t

tre f
, ã = a

are f
,

∆
~
–
g = ∆

–
g

are f
, m̃d = md

mre f /tre f
, T̃ = T

Tre f

(13)

Thus, the dimensionless optimization model can be rewritten, and the wavy lines on
the variables can be ignored for convenience. Thus, the dimensionless model has the same
form as Equation (11).

2.3. Optimal Solution

The optimization model in Equation (11) is solved by applying optimal control the-
ory [11,12], where the concept of a Hamiltonian function and Lagrange multipliers are used
to carry out a calculus of variations-based local optimization. Let

ϕ = −
ed

Tv f+

‖v f+‖
+ ξT

(
r f+ − rPIP

)
+ ξs

T
[
Φ
(

xs−, δ2
)
− xs+

]
(14)

The Hamiltonian function can be written as

H′ = λ
′T

f
′
= λ

′
r

Tv + T1
m10−md1(t−ts)

λ
′
v

Tl + λ
′
v

T –
g

H′′ = λ
′′T

f
′′
= λ

′′
r

Tv + T2
m20−md2(t−ts)

λ
′′

v
Tl + λ

′′
v

T –
g

(15)

where λ
′
=
[
λ
′
r

T λ
′
v

T
]T

and λ
′′
=
[
λ
′′

r
T λ

′′
v

T
]T

are the adjoint variables. The optimal
conditions can be written as

.
λ
′T

= −∂H′

∂x
,

.
λ
′′T

= −∂H′′

∂x
(16)

λ
′
s−

T =
∂ϕ

∂xs−
,λ
′′

s+
T = − ∂ϕ

∂xs+
,λ
′′

f−
T =

∂ϕ

∂x f−
(17)

and
∂ϕ

∂δ
= 0 (18)

minH′(l), minH′′ (l) (19)

From Equation (16), it can be derived that λ
′
r = λ

′
r0

λ
′
v = λ

′
v0 − λ

′
r0t

,

 λ
′′

r = λ
′′

r0

λ
′′

v = λ
′′

v0 − λ
′′

r0t
(20)
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From Equation (17), it can be derived that

λ
′
s−T= ∂ϕ

∂xs−
= ξs

T ∂Φ(xs− ,δ2)
∂xs−

λ
′′

s+
T= − ∂ϕ

∂xs+
= ξs

T

λ
′′

f−
T= ∂ϕ

∂x f−
=

(
− 1
‖v f+‖

ed
T +

ed
Tv f+

‖v f+‖3 v f+
T
)

∂v f+
∂x f−

+ ξT ∂r f+
∂x f−

=

[
ξT− 1

‖v f+‖
ed

T +
ed

Tv f+

‖v f+‖3 v f+
T
]

∂x f+
∂x f−

(21)

From Equation (18), it can be derived that[
ξT − 1

‖v f+‖
ed

T +
ed

Tv f+

‖v f+‖3 v f+
T
]

∂x f+

∂δ
+ ξs

T ∂xs+

∂δ
= 0 (22)

From Equation (19), it can be derived that

l = − λv

‖λv‖
,λv 6= 0 (23)

The Jacobian matrixes (detailed expressions can be found in Appendix A) are denoted as

Js =
∂Φ(xs− ,δ2)

∂xs−

J f =
∂Φ(x f ,tPIP−δ2−t f )

∂x f

(24)

Thus, from Equation (21) we have

Js
−Tλ

′
s− = λ

′′
s+ = ξs

J f
−Tλ

′′
f− =

 ξ

− 1
‖v f+‖

ed +
ed

Tv f+

‖v f+‖3 v f+

 (25)

By substituting Equation (21) into (20) and denoting λ
′′

f+ = J f
−Tλ

′
f−, the adjoint

variables can be expressed as λ
′
r = λr0

λ
′
v = λv0 − λr0t

, λ
′
s− =

[
λr0

λv0 − λr0ts

]

λ
′′

s+ = Js
−Tλ

′
s− λ

′′
r = λ

′′
rs+

λ
′′

v = λ
′′

vs+ − λ
′′

rs+(t− ts)
, λ

′′
f− =

 λ
′′

rs+

λ
′′

vs+ − λ
′′

rs+

(
t f − ts

)


λ
′′

f+ = J f
−Tλ

′′
f−

(26)

Thus, the optimal control expression (23) can be rewritten as

l =


− λv0−λr0t
‖λv0−λr0t‖ , t < ts

− λ
′′

vs+−λ
′′

rs+(t−ts)

‖λ′′ vs+−λ
′′

rs+(t−ts)‖
, ts < t < t f

(27)
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The state variables can be integrated (by using the expression in Appendix B) as

vs−= v0 +
∫ ts

0

(
− T1

m10−md1t
λv0−λr0t
‖λv0−λr0t‖ +

–
g
)

dt

= v0 +
–
gts − vT(0, ts,λr0,λv0, T1, m10, md1)

rs−= r0 +
∫ ts

0

(
v0 +

–
gτ +

∫ τ
0 −

T1
m10−md1t

λv0−λr0t
‖λv0−λr0t‖dt

)
dτ

= r0 + v0ts +
1
2

–
gts

2 − rT(0, ts,λr0,λv0, T1, m10, md1)

(28)

v f−= vs+ +
∫ t f

ts

(
− T2

m20+md2ts−md2t

(
λ
′′

vs++λ
′′

rs+ts

)
−λ′′ rs+t

‖
(
λ
′′

vs++λ
′′

rs+ts

)
−λ′′ rs+t‖

+
–
g

)
dt

= vs+ +
–
g
(

t f − ts

)
−vT

(
ts, t f ,λ

′′
rs+,λ

′′
vs+ + λ

′′
rs+ts, T2, m20, md2

)

r f−= rs+ +
∫ t f

ts


vs+ +

–
g(τ − ts)

+
∫ τ

ts
− T2

m20+md2ts−md2t

(
λ
′′

vs++λ
′′

rs+ts

)
−λ′′ rs+t

‖
(
λ
′′

vs++λ
′′

rs+ts

)
−λ′′ rs+t‖

dt

dτ

= rs+ + vs+

(
t f − ts

)
+ 1

2
–
g
(

t f − ts

)2

−rT

(
ts, t f ,λ

′′
rs+,λ

′′
vs+ + λ

′′
rs+ts, T2, m20 + md2ts, md2

)

(29)

It can be derived from Equation (25) that

λ
′′

v f+ = − 1
‖v f+‖

ed +
ed

Tv f+

‖v f+‖3 v f+ (30)

Note that ∂xt
∂t =

.
xt; then, it can be derived from Equation (22) that

δ
(
λ
′′

s+
T .

xs+ − λ
′′

f+
T .

x f+

)
= 0 (31)

Thus, the optimal condition can be expressed as a function of λr0,λv0, δ, i.e.,
r f+ − rPIP = 0

λ
′′

v f+ = − 1
‖v f+‖

ed +
ed

Tv f+

‖v f+‖3 v f+

δ
(
λ
′′

s+
T .

xs+ − λ
′′

f+
T .

x f+

)
= 0

(32)

Hence, Equation (32) can be solved for λr0,λv0, δ during each guidance cycle by using
algorithms for solving nonlinear equations (a Levenberg–Marquardt algorithm is used in
this paper), and the current guidance command can be written as

l = − λv0

‖λv0‖
(33)

It is worth mentioning that all the expressions in Equation (32) are derived analytically
following the calculus of variations method, although the equations need to be solved
using numerical algorithms.

2.4. The IGM in the Second Pulse Section

After completing the first pulse section, the vehicle coasts until the second pulse is
on. The prerequisites for starting the second pulse can be derived using the IGM in the
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previous section by setting ts = 0 in the model. Specifically, the optimal condition can be
expressed as a function of λr0,λv0, δ, i.e.,

r f+ − rPIP = 0

λv f+ = − 1
‖v f+‖

ed +
ed

Tv f+

‖v f+‖3 v f+

δ
(
λs+

T .
xs+ − λ f+

T .
x f+

)
= 0

(34)

where

xs+ = Φ

([
r0
v0

]
xs−, δ2

)
v f− = vs+ +

–
gt f − vT

(
0, t f ,λrs+,λvs+, T2, m20, md2

)
r f− = rs+ + vs+t f +

1
2

–
gt f − rT

(
0, t f ,λrs+,λvs+, T2, m20, md2

) (35)

λs+ = Js
−T
[

λr0
λv0

]
λ f− =

[
λrs+

λvs+ − λrs+t f

]
λ f+ = J f

−Tλ f−

(36)

After the solution is obtained, the prerequisites for starting the second pulse can be
written as

δ ≤ 0 (37)

Then, we present the IGM for the second pulse section. The optimization model in
this section can be rewritten as

minJ = − ed
Tv f+
‖v f+‖

s.t.
.
x =

[ .
r
.
v

]
= f =

[
v

T2
m20−md2t l +

–
g

]

‖l‖ = 1

x f+ = Φ
(

x f , tPIP − t f

)
r f+ − rPIP = 0

(38)

where the approximation of gravity is modeled as
–
g = −µr0/‖r0‖3 for accuracy purposes

in this section.
With a derivation similar to that in the previous section, the optimal condition can be

expressed as a function of λr0,λv0, i.e.,

r f+ − rPIP = 0

λv f+ = − 1
‖v f+‖

ed +
ed

Tv f+

‖v f+‖3 v f+
(39)

where
v f = v0 +

–
gt f − vT

(
0, t f ,λr0,λv0, T2, m20, md2

)
r f = r0 + v0t f +

1
2

–
gt f

2 − rT

(
0, t f ,λr0,λv0, T2, m20, md2

) (40)
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λ f =

[
λr0

λv0 − λr0t f

]
λ f+ =

[
∂Φ(x f ,tPIP−t f )

∂x f

]−T
λ f

(41)

and the current guidance command can be written as

l = − λv0

‖λv0‖
(42)

2.5. The Complete IGM Procedure

The procedure for calculating the guidance command during each guidance cycle is
summarized as in Figure 1.
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Figure 1. The complete IGM procedure.

3. Simulation Results

In this section, two simulations are carried out to verify the effectiveness of the
proposed IGM. The basic performance of the IGM is shown in the first scenario without
course correction, while in the second scenario, a course correction is added in the coast
section immediately after the first pulse. A square-inverse gravity model is used in the
simulation. The state variables of the interceptor can be obtained from its own inertial
navigation system, and information regarding the PIP is calculated and provided by the
ground system. It is assumed that all information required for the implementation of the
proposed guidance law is obtained without noise during the simulations. The update rate
of the guidance command is 10 Hz.

3.1. Simulation Conditions

The initial conditions of the simulation are listed in Table 1 and shown in Figure 2.
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Table 1. Initial conditions of engagement.

Parameters Symbol (Unit) Value

Initial
Position r0/km [Re + 65, 0, 0]T

Velocity v0/m/s 2500 × [1/
√

2, 1/
√

2, 0]T

Mass m/kg 125

Pulse 1
Thrust T1/N 7000

Specific impulse Isp1/m/s 2800
duration t1/s 7.5

Pulse 2
Thrust T2/N 7000

Specific impulse Isp2/m/s 2800
duration (t2 − t1)/s 7.5

PIP
Time tpip/s 215

Position rpip/km [Re + 300, 0, 500]T

Desired direction ed [0, 0, 1]T

PIP (correction)
Time tpip/s 215

Position rpip1/km [Re + 320, 20, 520]T

Desired direction ed [0, 0, 1]T
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3.2. Scenario 1

In this scenario, a normal IGM guidance procedure is performed, where the guidance
command in each guidance cycle is calculated during the whole two pulse sections and
the first coast section. The simulation results are shown in Figure 3 and Table 2, where the
relative position is defined as r− rPIP. The final position error at the predicted interception
time is less than 1 m (measured by distance), and the impact angle error is approximately
1◦. The time cost for computing the guidance command in each guidance period is less
than 10 ms using a 2.8 GHz CPU.

Table 2. Results of the proposed method in scenarios 1 and 2.

Scenario Duration of the
First Coast/s

Position
Error/m

Miss
Distance/m

Impact Angle
Error/deg

1 62.4 [0.2, 0, −0.4]T 0.4 1.2
2 0 [1.2, 0.8, 0.3]T 1.5 5.9
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3.3. Scenario 2

In this scenario, the simulation condition and the IGM guidance procedure in the first
pulse section are the same as those in scenario 1, while a corrected PIP information is ob-
tained at the beginning of the first coast section. Hence, a course correction is implemented
by using the IGM in this simulation. The simulation results are shown in Figure 4 and
Table 2. Compared to the results in scenario 1, the start time of the second pulse is modified
(immediately after the first pulse) because of the change in the PIP. The final position error
at the predicted interception time is approximately 1 m (measured by distance), and the
impact angle error is approximately 6 degrees because the speed increment offered by the
second pulse is used for PIP correction rather than impact angle control.
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4. Conclusions

An impact time and angle guidance law is designed for the exoatmospheric midcourse
flight of antiballistic interceptors; it covers two pulse sections and two coast sections.
The problem is described as an optimal control model with discontinuities in the system
equations at interior points, and an IGM is used to efficiently solve the two-point boundary
value problem. Simulation results demonstrate the effectiveness of the proposed guidance
law; the obtained miss distance accuracy has an order of magnitude of 1 m (i.e., the impact
time accuracy has an order of magnitude of 1 ms for a 1 km/s speed target), and the impact
angle accuracy has a 1◦ order of magnitude while the angle can be achieved.

Author Contributions: Investigation, J.R.; Methodology, Y.D.; Supervision, Y.C.; Validation, Y.D.;
Writing—original draft, Y.D.; Writing—review & editing, X.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by China postdoctoral science foundation grant number 2018M643666.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The analytical solution to the two-body problem

x =

[
r

v

]
,

{ .
r = v
.
v = −µr/‖r‖3

(A1)

can be expressed as
xt = Φ(x, t) (A2)

Denoting r = ‖r‖ and v = ‖v‖, we can derive the orbit elements
σ =

[
a e i Ω ω M

]T as

1
a = 2

r −
v2

µ

e cos E = 1− r
a

e sin E = r·v√
µa

M = E− e sin E
^
P = cos E

r r−
√

a
µ sin Ev

^
Q = sin E

r
√

1−e2 r +
√

a
µ

cos E−e√
1−e2 v

^
R = r×v√

µa(1−e2)

tan ω = P̂z
Q̂z

tan Ω = − R̂x
R̂y

cos i = R̂z

(A3)

The only time-variant variable is the anomaly, i.e.,

Mt = M + t
√

µ

a3 (A4)
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Then, the state variable at time t can be derived as

Et − e sin Et = Mt

^
P =


cos Ω cos ω− sin Ω sin ω cos i

sin Ω cos ω + cos Ω sin ω cos i

sin ω sin i


^
Q =


− cos Ω sin ω− sin Ω cos ω cos i

− sin Ω sin ω + cos Ω cos ω cos i

cos ω sin i


rt = a

[
(cos Et − e)

^
P +
√

1− e2 sin Et
^
Q
]

vt = −
√

µa
r

[
sin Et

^
P−
√

1− e2 cos Et
^
Q
]

(A5)

The partial state derivative can be expressed as the following Jacobian matrix:

∂xt

∂x
=

∂Φ(x, t)
∂x

=
∂xt

∂σt

∂σt

∂σ

∂σ

∂x
(A6)

where
∂σt

∂σ
= I6×6 +

 01×5 05×5

− 3
2

√
µ

a5 05×1

 (A7)

For ∂xt
∂σt

, we have

∂r
∂a = 1

a r

∂r
∂e = − cos E+e

1−e2 r + sin E√
µ/a3

(
1 + r

a(1−e2)

)
v

∂r
∂M = 1√

µ/a3
v

(A8)

∂r
∂i =

 cos Ω
sin Ω

0

× r = rz
sin i

^
R

∂r
∂Ω =

 −ry
rx
0


∂r
∂ω =

^
R× r

(A9)

and
∂v
∂a = − 1

2a v

∂v
∂e = sin E

r(1−e2)

√
µ
a

[
1− a

r

(
1 +

a(1−e2)
r

)]
r + cos E

1−e2 v

∂v
∂M = −

√
µa3

r3 r

(A10)
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∂v
∂i =

 cos Ω
sin Ω

0

× v = vz
sin i

^
R

∂v
∂Ω =

 −vy
vx
0


∂v
∂ω =

^
R× v

(A11)

For ∂σ
∂x , we have

∂a
∂r = 2a2

r3 rT

∂a
∂v = 2a2

µ vT
(A12)

∂e
∂r= −

1
aer
(
1− r

a
)
rT + r·v

µae vT

+

[(
1− r

a
) r

a2e −
(r·v)2

2µa2e

]
∂a
∂r

∂e
∂v=

(r·v)
µae rT +

[(
1− r

a
) r

a2e −
(r·v)2

2µa2e

]
∂a
∂v

(A13)

∂M
∂r = (1− e cos E) ∂E

∂r − sin E ∂e
∂r

∂M
∂v = (1− e cos E) ∂E

∂v − sin E ∂E
∂v

(A14)

∂i
∂r = − [ez ·(r×v)]

µa(1−e2) cos i sin i (v× ez)
T

+ 1
2a tan i

∂a
∂r −

e
(1−e2) tan i

∂E
∂r

∂i
∂v = − [ez ·(r×v)]

µa(1−e2) cos i sin i (ez × r)T

+ 1
2a tan i

∂a
∂v −

e
(1−e2) tan i

∂E
∂v

(A15)

∂Ω
∂r = − cos2 Ω

ey ·(r×v) (v× ex)
T − sin Ω cos Ω

ey ·(r×v)

(
v× ey

)T

∂Ω
∂v = − cos2 Ω

ey ·(r×v) (ex × r)T − sin Ω cos Ω
ey ·(r×v)

(
ey × r

)T
(A16)

∂ω
∂r = −

cos E
r2 cos ω sin i

rT

r ez · r + cos E
r cos ω sin i ez

T

− 1
2

√
1

aµ
sin E

cos ω sin i ez · v ∂a
∂r

− sin ω cos i
cos ω sin i

∂i
∂r

−
[

sin E
r cos ω sin i ez · r +

√
a
µ

cos E
cos ω sin i ez · v

]
∂E
∂r

∂ω
∂v = −

√
a
µ

sin E
cos ω sin i ez

T − 1
2

√
1

aµ
sin E

cos ω sin i ez · v ∂a
∂v

− sin ω cos i
cos ω sin i

∂i
∂v

−
[

sin E
r cos ω sin i ez · r +

√
a
µ

cos E
cos ω sin i ez · v

]
∂E
∂v

(A17)

where
∂E
∂r = 1

are sin E rT − r
a2e sin E

∂a
∂r +

1
e tan e

∂E
∂r

∂E
∂v = − r

a2e sin E
∂a
∂v + 1

e tan e
∂E
∂v

(A18)
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Appendix B

The integration of the state equation under the optimal control law, i.e.,

vT(t1, t2,λr0,λv0, T, m0, md) =
∫ t2

t1
T

m0−mdt
λv0−λr0t
‖λv0−λr0t‖dt

rT(t1, t2,λr0,λv0, T, m0, md) =
∫ t2

t1

[∫ τ
t1

T
m0−mdt

λv0−λr0t
‖λv0−λr0t‖dt

]
dτ

(A19)

I. General case (neither λr0 = 0 nor λr0 ‖ λv0)

First, we derive the indefinite integral:

vinde f (t,λr0,λv0, T, m0, md) =
∫ T

m0−mdt
λv0−λr0t
‖λv0−λr0t‖dt

= T
md

∫ (
λr0 +

λv0−
m0
md

λr0
m0
md
−t

)
dt√

λr0
2t2−2(λv0·λr0)t+λv0

2

(A20)

We denote that
λv(t) = λv0 − λr0t (A21)

t′ = t− m0

md
(A22)

s =
√

λr02t2 − 2(λv0 · λr0)t + λv02 (A23)

It can be easily obtained that

λv(m0/md) = λv0 −
m0

md
λr0 (A24)

s =
√

λr02t′2 − 2[λr0 · λv(m0/md)]t′ + λv(m0/md)
2 (A25)

Thus,

vinde f =
T

md
λr0

∫ dt
s
− T

md
λv(m0/md)

∫ dt′

t′s
(A26)

Note that for optimal control, we have λr0
2 > 0, ∆ = λr0

2λv0
2 − (λv0 · λr0)

2 > 0;
hence, ∫ dt

s
=

1
‖λr0‖

arcsinh
−λr0 · λv(t)√

∆
(A27)

Additionally, note that λv(m0/md)
2 > 0, λr0

2λv(m0/md)
2 − [λr0 · λv(m0/md)]

2 =
∆ > 0. Thus,∫ dt′

t′s
= −sgn

(
t− m0

md

)
1

‖λv(m0/md)‖
arcsinh

λv(m0/md) · λv(t)(
t− m0

md

)√
∆

(A28)

By substituting Equations (A27) and (A28) into Equation (A26) and noting that
t− m0

md
< 0 for our case, we obtain the indefinite integral result for velocity:

vinde f (t,λr0,λv0, T, m0, md)

= T
md

λr0
‖λr0‖

arcsinh−λr0·λv(t)√
∆

− T
md

λv(m0/md)
‖λv(m0/md)‖

arcsinh−λv(m0/md)·λv(t)(
m0
md
−t
)√

∆

= T
md

λr0
‖λr0‖

arcsinh −λr0·(λv0−λr0t)√
λr0

2λv0
2−(λv0·λr0)

2

− T
md

λv0−
m0
md

λr0

‖λv0−
m0
md

λr0‖
arcsinh

−
(
λv0−

m0
md

λr0

)
·(λv0−λr0t)(

m0
md
−t
)√

λr0
2λv0

2−(λv0·λr0)
2

(A29)
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and the definite integral result for velocity:

vT(t1, t2,λr0,λv0, T, m0, md)

= vinde f (t2,λr0,λv0, T, m0, md)

−vinde f (t1,λr0,λv0, T, m0, md)

(A30)

For the position component, we also derive the indefinite integral first:

rinde f (t,λr0,λv0, T, m0, md)

=
∫

vinde f (t,λr0,λv0, T, m0, md)dt

= T
md

λr0
‖λr0‖

∫
arcsinh−λr0·(λv0−λr0t)√

∆
dt

− T
md

λv(m0/md)
‖λv(m0/md)‖

∫
arcsinh−λv(m0/md)·(λv0−λr0t)(

m0
md
−t
)√

∆
dt

(A31)

Denoting that x = λr0
2t−λr0·λv0√

∆
, we have

∫
arcsinh−λr0·(λv0−λr0t)√

∆
dt

=
√

∆
λr0

2

∫
(arcsinhx)dx

=
√

∆
λr0

2

(
xarcsinhx−

√
x2 + 1

)
= λr0

2t−λr0·λv0
λr0

2 arcsinhλr0
2t−λr0·λv0√

∆
− ‖λv0−λr0t‖

‖λr0‖

(A32)

Considering Equation (A22), we have∫
arcsinh−λv(m0/md)·(λv0−λr0t)(

m0
md
−t
)√

∆
dt

=
∫

arcsinhλv(m0/md)
2−[λv(m0/md)·λr0]t′

t′
√

∆
dt′

=
∫

arcsinh
(

b
t′ + a

)
dt′

(A33)

where a = −λv(m0/md)·λr0√
∆

, b = λv(m0/md)
2

√
∆

. By using the trick of integration by parts, we have

∫
arcsinh

(
b
t′ + a

)
dt′

= t′arcsinh
(

b
t′ + a

)
+
∫

t′d
[
arcsinh

(
b
t′ + a

)]
= t′arcsinh

(
b
t′ + a

)
− b
∫ 1√

(a2+1)t′2+2abt′+b2
dt′

(A34)

Note that
(
a2 + 1

)
b2 − a2b2 = b2 > 0; therefore,

∫ 1√
(a2 + 1)t′2 + 2abt′ + b2

dt′ =
1√

a2 + 1
arcsinh

(
a2 + 1

)
t′ + ab
|b| (A35)

Thus, ∫
arcsinh−λv(m0/md)·(λv0−λr0t)(

m0
md
−t
)√

∆
dt

=
(

t− m0
md

)
arcsinh−λv(m0/md)·(λv0−λr0t)(

m0
md
−t
)√

∆

− ‖λv(m0/md)‖
‖λr0‖

arcsinh−λr0·(λv0−λr0t)√
∆

(A36)
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By substituting Equations (A32) and (A36) into Equation (A31), we obtain the indefinite
integral result for position:

rinde f (t,λr0,λv0, T, m0, md)

= T
md

λr0
‖λr0‖

(
λr0

2t−λr0·λv0
λr0

2 arcsinhλr0
2t−λr0·λv0√

∆
− ‖λv0−λr0t‖

‖λr0‖

)
− T

md

λv(m0/md)
‖λv(m0/md)‖

(
t− m0

md

)
arcsinh−λv(m0/md)·(λv0−λr0t)(

m0
md
−t
)√

∆

+ T
md

λv(m0/md)
‖λr0‖

arcsinh−λr0·(λv0−λr0t)√
∆

(A37)

and the definite integral result for position:

rT(t1, t2,λr0,λv0, T, m0, md)

=
∫ t2

t1

[∫ τ
t1

T
m0−mdt

λv0−λr0t
‖λv0−λr0t‖dt

]
dτ

=
∫ t2

t1

[
vinde f (τ,λr0,λv0, T, m0, md)− vinde f (t1,λr0,λv0, T, m0, md)

]
dτ

= rinde f (t2,λr0,λv0, T, m0, md)− rinde f (t1,λr0,λv0, T, m0, md)

−vinde f (t1,λr0,λv0, T, m0, md)(t2 − t1)

(A38)

II. Special case 1 (λr0 = 0)

Equation (A19) can be rewritten as

vT(t1, t2, 0,λv0, T, m0, md) =
λv0
‖λv0‖

∫ t2
t1

T
m0−mdt dt

rT(t1, t2, 0,λv0, T, m0, md) =
λv0
‖λv0‖

∫ t2
t1

[∫ τ
t1

T
m0−mdt dt

]
dτ

(A39)

Denote that

υ(t, T, m0, md) =
∫ T

m0−mdt dt = − T
md

ln
(

m0
md
− t
)

ρ(t, T, m0, md) =
∫

υ(t, T, m0, md)dt = T
md

(
m0
md
− t
)[

ln
(

m0
md
− t
)
− 1
] (A40)

Thus, we derive the indefinite integral for velocity:

vinde f (t, 0,λv0, T, m0, md) =
λv0

‖λv0‖
υ(t, T, m0, md) (A41)

and the indefinite integral for position:

rinde f (t, 0,λv0, T, m0, md) =
λv0

‖λv0‖
ρ(t, T, m0, md) (A42)

The definite integrals can be written in the same forms as those in Equations (A30)
and (A38).

III. Special case 2 (λr0 ‖ λv0 and λr0 6= 0)

Assuming that λv0 = ηλr0, Equation (A19) can be rewritten as

vT(t1, t2,λr0, ηλr0, T, m0, md) =
λr0
‖λr0‖

∫ t2
t1

T
m0−mdt sgn(η − t)dt

rT(t1, t2,λr0, ηλr0, T, m0, md) =
λr0
‖λr0‖

∫ t2
t1

[∫ τ
t1

T
m0−mdt sgn(η − t)dt

]
dτ

(A43)
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Hence, the definite integral for velocity can be derived as

vT(t1, t2,λr0, ηλr0, T, m0, md)

=



λr0
‖λr0‖

[−υ(t2, T, m0, md) + υ(t1, T, m0, md)], η < t1

λr0
‖λr0‖

[
2υ(η, T, m0, md)− υ(t1, T, m0, md)

−υ(t2, T, m0, md)

]
, t1 < η < t2

λr0
‖λr0‖

[υ(t2, T, m0, md)− υ(t1, T, m0, md)], η > t2

(A44)

and the definite integral for position can be derived as

rT(t1, t2,λr0, ηλr0, T, m0, md)

=



λr0
‖λr0‖

[
υ(t1, T, m0, md)(t2 − t1)

−ρ(t2, T, m0, md) + ρ(t1, T, m0, md)

]
, η < t1

λr0
‖λr0‖


υ(t1, T, m0, md)(t1 + t2 − 2η)

+2ρ(η, T, m0, md)− ρ(t1, T, m0, md)

−ρ(t2, T, m0, md)

, t1 < η < t2

λr0
‖λr0‖

[
−υ(t1, T, m0, md)(t2 − t1)

+ρ(t2, T, m0, md)− ρ(t1, T, m0, md)

]
, η > t2

(A45)
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